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ABSTRACT 
This research presents an alternative approach for predicting the punching shear strength of 
interior slab-column connections using fuzzy logic (FL). A total of 176 data points were used 
in the training and testing of the fuzzy system. The data was obtained from test results of 
concentric punching shear tests of reinforced concrete flat plates available in the literature.  
The fuzzy system was trained to address the uncertainty in the relationship between various 
parameters, which might not be captured in previous research attempts. The fuzzy-based 
model was verified by using the remaining data sets that were not used in the training 
process. The model predictions were compared to current strength models most widely used 
in design practice such as CEB-FIP MC 90, Eurocode 2, and ACI 318 codes. It was found 
that a significant enhancement in the prediction of the punching shear strength of interior 
slab-column connections can be achieved by means of the fuzzy system. 
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INTRODUCTION  
Flat plates are widely used worldwide for their economic and fuctional advantages such as 
fast construction, low story height, and irregular column layout. Geometrically, the system 
consists simply of slabs directly supported on the columns. In spite of their simple 
appearance, from a structural point of view, flat plates are complex structures. Furthermore, a 
flat plate usually fails in a brittle manner by punching at the slab-column connections within 
the discontinuity region known as D-region (Schlaich et al. 1987). At the connection, three 
dimensional stresses are developed due to combined high shear and normal stresses, which 
are very complicated to analyze accurately (CEB-FIP 2001). 

For the last four decades a lot of research has been performed in order to solve this 
complex problem of concentric punching shear of reinforced concrete flat plates. The results 
range from mechanical models up to purely empirical models. Kinnunen and Nylander  
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(1960), and Bažant and Cao (1987) developed design equations based on failure criteria and 
fracture mechanics, respectively. Pralong (1982) and Nielsen (1999) developed strength 
models based on the theory of plasticity. Alexander and Simmonds (1987) proposed a strut-
and-tie model with concrete ties to describe the load transfer in the slab-column connections. 
However, these theoretical strength models are too complicated to use in design practice. 
Furthermore, such complexity can be hardly justified because of the low accuracy of punch 
shear strength prediction (Theodorakopoulos and Swamy 2002). 
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Figure 1: Current design codes for punching shear 

To develop simple strength equations, most design codes use the so-called control 
perimeter approach depicted in Figure 1 based on the calibration of existing test results. The 
applied punching shear stress is calculated at a defined critical perimeter and compared to an 
allowed value. The various design codes significantly differ in defining the location of the 
critical section and the punching shear resistance. The punching shear strength specified in 
CEB-FIP MC 90 (1993) and Eurocode 2 (2002) are smaller than that specified in ACI 318 
(2005), while the critical sections specified in CEB-FIP MC 90 and Eurocode 2 are much 
greater than that specified in ACI 318. Figure 2 shows the punching shear strength predicted 
by these current design methods compared with test results. In this figure, except for 
Eurocode 2, the current design methods show considerably large scatter represented by high 
standard deviations of test-prediction ratios.  

It becomes obvious that the complexity of the punching problem and the dependence of 
the punching shear strength on a number of interacting variables necessitate the use of 
empirical coefficients/equations in modeling punching shear strength. A robust model for 
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predicting punching shear strength that considers uncertainties in the modeling variables is 
needed. 
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Figure 2: Punching shear strength test result to design codes prediction ratios. 

The current study introduces a new approach for predicting the punching shear strength 
of concentrically loaded interior slab-column connections using fuzzy systems. The fuzzy-
based model targets predicting the shear strength of the slab-column connections based on 
concrete strength, tension reinforcement ratio, and slab and column geometry. The fuzzy 
system was trained using an extensive punching shear test database to address the uncertainty 
in the relationship between the different parameters which was not usually captured in 
previous research attempts. The fuzzy model is then tested using parts of the database that 
were not used for its training process. Punching shear strength predictions of the fuzzy-based 
model will be compared to CEB-FIP MC 90, Eurocode 2, and American ACI 318 codes 
predictions.  

FUZZY SYSTEMS FOR PUNCHING SHEAR STRENGTH 
Fuzzy systems have been successfully used in the last decade for modeling complex 
engineering systems (e.g. Reda Taha et al. 2003 and Chatterjee et al. 2005) and proven as 
universal approximators (Kosko 1993). The capability of fuzzy systems to model complex 
systems is attributed to their inherent ability to incorporate uncertainty due to vagueness 
and/or ambiguity in modeling parameters (Klir et al 1995). The fundamental concept in 
complex system modeling using fuzzy systems is to establish a fuzzy rule-base that is 
capable of describing the relationship between the input and the output parameters (Ross 
2004). This fuzzy rule-base captures individual and group relationships which distinguish the 
internal complex relations in the system (Passino et al. 1998). As such, system non-linearity 
is not recognized by using a specific power of a non-linear equation but through establishing 
a number of fuzzy rules such that the fuzzy system becomes capable of describing the system 
to a pre-specified level of accuracy (Ross 2004). A group of successful techniques to 
establish fuzzy rule-base has been reported in the literature (Passino et al. 1998 and Jang et 
al. 1997).  

We start by defining N number of fuzzy sets 
~
A  over the domain of the input parameter 

(x). Each value of the parameter (x) has a membership to each fuzzy set 
~
A . The concept of 
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membership (degree of belonging) represents a cornerstone in the formulation of fuzzy set 
theory. The membership is denoted )(

~
xAµ  and ranges between 0.0 and 1.0. Membership 

values do not express probability but characterize the evaluator’s view of the extent to which 
a parameter belongs to the fuzzy set (Laviolette et al. 1995). Several methods for establishing 
membership functions are provided in the literature (Cox 1994, Ross 2004). 

Here, we demonstrate the use of fuzzy set theory to model the punching shear strength of 
slab-column connections. Extensive preliminary investigations were performed to identify 
the most important input parameters that have a significant influence on the punching shear 
strength. Possible parameters included concrete compressive strength, slab thickness and 
effective depth, span length, column geometry, punching shear perimeter, and compression 
and tension reinforcement ratio. The investigation showed that for circular and rectangular 
columns with (c1/c2) ratio equals to 1.0 and perimeter to slab depth ratio (b0/d) ranging 
between 5.8 and 20.8, the most significant parameters that affect the punching shear strength 
are: concrete compressive strength ( cf ' ), slab thickness ( h ) and tension reinforcement ratio 
( ρ ). These three parameters have therefore been selected to model punching shear strength 
in the proposed fuzzy-based model.  

In the present study, the punching shear failure load of slab-column connection without 
shear reinforcement ( cV ) has been defined as 
 

dbvV 0cc =       (1) 
 

cV  = punching failure load; ob = critical perimeter at a distance d/2 from the column face = 
( dcc 422 21 ++ ) for a rectangular column,  )( dD +π  for a circular column; 21 , cc  = column 
sizes of a rectangular column; and D  = diameter of a circular column. Equation (1), although 
simplified, respects the fundamental punching failure mechanism observed by most 
researchers. The modeling process starts by fuzzifying all three input domains and 
constructing a fuzzy rule-base that describes the relationship between the fuzzy sets defined 
on all input domains and the punching shear strength. Examplar rule in the fuzzy rule-base 
can be defined as 

 
If 

~~
, k

f
k
fc AhAf ∈∈ and 

~
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where 

~

k

~

k
h

~

k
f AandA,A ρ  are the kth fuzzy set (k = 1, 2 or Nj) defined on the universe of 

discourses of compressive strength cf ' , slab height h  and reinforcement ratio ρ  
respectively.  Nj  is the total number of fuzzy sets defined over the jth input parameter. 
Equation (2) represents the ith rule in the fuzzy rule-base. ai, bi, ci and di are known as the 
consequent parameters that define the output side of the ith fuzzy rule. If the fuzzy rule-base 
includes R rules, the punching shear strength vc can be computed as 
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where vi is the output of the ith rule in the fuzzy rule-base and λi represents the weight of the 
ith rule in the fuzzy rule-base. If we employ bell-shape membership functions (MF) (Jang et 
al. 1997) to describe the three input parameters, the weight of the ith rule in the fuzzy rule-
base can be computed as 
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where j
k
cx  k

jw and k
jq represents the center, the top width and the shape parameter of the  

membership function defining the kth fuzzy set defined over the jth input parameter. The 
fuzzy operator (Π) represents the T-norm (minimum-multiplication) operation (Gupta et al. 
1991) to capture the interaction between the input parameters and its influence on the output. 
T represents the total number of input parameters (here T = 3). The number of fuzzy rules 
“R” is a function of the number of input variables (T) and the number of fuzzy sets (Nj) 
defined over each input domain.  

The learning process starts by initializing the premise parameters (parameters describing 
the membership functions j

k
cx  k

jw and k
jq ) using a fuzzy clustering algorithm (Bezdek 1981). 

This is followed by computing the consequence parameters (ai, bi, ci and di) using least 
square techniques (Partington et al. 1995) such that the root mean square error of the 
punching shear strength does not exceed a target root mean square error (RMSET) (here 
RMSET = 1E-5). To further enhance the learning process, the premise parameters are then 
updated using a back propagation technique and the updated premise parameter are used to 
re-compute a new set of consequence parameters. The process continues and the fuzzy rule-
base parameters (premise and consequent parameters) are updated in each training epoch 
until the target root mean square error or a maximum number of training epochs is reached. 

For training and testing of the fuzzy-based model, one hundred seventy six test specimens 
performed by eighteen researchers as reported in the FIP bulletin 12 (2001) were used. We 
only considered specimens that were reported to fail in punching shear only. Specimens had 
two types of boundary geometries (circular and rectangular flat plates) and two types of 
column shapes (circular column, and rectangular columns with 0.1/ 21 =cc ). The dimensions 
and properties of the specimens are summarized in Table 1. The test specimens had a broad 
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range of design parameters: 0.119'2.8 ≤≤ cf (MPa), 32080 ≤≤ h (mm), ρ≤3.0 5.8≤ (percent), 
and 8.20/8.5 ≤≤ dbo . ob = critical perimeter at a distance d/2 from the column face. These 
data cover a wide range of the material and geometric properties of flat plates. A specimen 
reported by Lovrovich and McLean (1990)’s was excluded in this study because its span 
length was extremely short )2/( 11 =cl . Another specimen by Yitzchaki (1966)’s was also 
excluded because its test result was significantly differed from other specimens with similar 
geometry and properties. 96 specimens were used for training of the fuzzy-based model. On 
the other hand, 80 specimens were used for testig of the model. 176 specimens, in total, were 
used for developing and verification of the fuzzy-based model (Table 1). All specimens used 
in the testing were not used in the developing the fuzzy based-model.  

Table 1: Dimensions and properties of specimens, and strength-predictions 
         Number of 
          specimens 

 
Investigator(1) 

Training Verification

      cf '  
 (MPa) 

   h 
  (mm) 

       ρ 
(percent) 

)2(

,

,

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

predc

Testc

v
v

 

Hallgren and Kinnunen (1993a), 
Hallgren and Kinuunen (1993b), 

Hallgren (1996) 

3 3 79.5-
108.8 

239-245 0.3-1.2 1.00-1.08 

Tomaszewicz (1993) 9 4 64.3-119.
0 

120-320 1.5-2.6 0.93-1.17 

Ramdane (1996),  
Regan et al. (1993) 

7 
 

1 23.7-89.4 125 0.6-1.3 1.28 

Marzouk and Hussein (1991) 8 8 30.0-80.0 90-150 0.4-2.1 1.06-1.33 
Lovrovich and McLean (1990) 2 2 39.3 100 1.7 0.89-0.95 
Tolf (1988) 4 4 20.1-25.1 120-240 0.4-0.8 0.90-1.23 
Regan (1986) 11 11 8.4-37.5 80-250 0.8-2.4 0.65-1.28 
Swamy and Ali (1982) 1 1 37.4-40.1 125 0.6-0.7 0.99 
Marti et al. (1977),  
Pralong et al. (1979) 

1 1 23.1-30.4 180-191 1.2-1.5 0.90 

Schaefers (1984) 1 1 23.1-23.3 143-200 0.6-0.8 1.00 
Ladner et al. (1977),  
Schaeidt et al. (1970),  
Ladner (1973) 

3 3 26.4-29.5 110-280 1.2-1.8 0.90-1.29 

Corley and Hawkins (1968) 1 1 44.4 146 1.0-1.5 0.69 
Bernaert and Puech (1996) 9 9 14.0-41.4 140 1.0-1.9 0.67-1.33 
Manterola (1966) 6 3 24.2-39.7 125 0.5-1.4 0.66-0.96 
Yitzhaki (1966) 6 6 8.2-19.0 102 0.5-8.5 0.88-1.26 
Moe (1961) 7 7 20.5-35.2 152 1.1-2.6 0.66-1.13 
Kinnunen and Nylander (1960) 6 6 21.6-27.7 149-158 0.5-2.1 0.72-1.29 
Elstner and Hognestad (1956) 11 9 9.2-35.6 152 0.5-6.9 0.83-1.13 

                   Total 96 80 8.2-119.0 80-320 0.3-8.5 Mean: 1.018 
S.D. : 0.172 

(1) The properties and dimensions of these test specimens were collected from FIP bulletin 12 (2001). 
(2) 

Testcv ,  and predcv ,  = test results and strengths predicted by fuzzy-based model, respectively. 
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All modeling parameters were normalized to their maximum values determined from all 
database (176 data sets). The normalization process is necessary to avoid the influence of 
numerical weights on the learning process (Berenji et al.1992). The fuzzy rule-base that 
achieved the lowest root mean square error during training was used for testing and 
verification of the model capability to predict punching shear strength in slab-column 
connections. Two membership functions were used to represent each input parameters (N1 = 
N2 = N3 = 2). The initial and final membership functions are shown in Figure 3 for the 
concrete compressive strength for exemplar demonstration of the update process during 
learning. A total number of eight rules (R = 8) were needed to describe the relationship 
between the compressive strength of concrete, the slab thickness, the tension reinforcement 
ratio, and the punching shear strength. 

 
(a) Initial membership functions defined  

at the start of learning process 
(b) Final membership function  

defined at the end of the learning process 

 

Figure 3: Membership functions used to describe the concrete compressive strength  
at the start (before training) and at the end (after training)  

RESULTS AND DISCUSSION 
It is important to emphasize that the fuzzy-based model was trained using punching shear 
strength testing database with specific geometrical limits: circular and rectangular columns 
with (c1/c2) ratio equals to 1.0, and slabs with perimeter to slab depth ratio (b0/d) ranging 
between 5.8 and 20.8. Therefore, the results presented here are only valid for these given 
geometrical limits. The fuzzy-based model can be updated (re-trained) for its application to 
wider geometrical range beyond those mentioned here once testing database becomes 
available. Table 1 presents a summary of punching shear strengths of the specimens 
predicted by the fuzzy-based model. Figures 4 shows the ratio between the punching shear 
strengths test results to punching shear strengths as predicted by the fuzzy-based model. The 
mean value of strength test to prediction ratios is 1.018 and the standard deviation of the 
ratios is 17.2 percent. As shown in Fig. 4, the fuzzy-based model accurately predicted the 
punching shear strengths of the test specimens with a wide range of values of the design 
parameters. The results show that the fuzzy system can be used to predict the punching shear 
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strengths of slab column connections with various slab geometries including thickness, and 
with various column shapes circular or rectangular. Moreover, prediction accuracy of the 
proposed fuzzy-based model is higher than that of the CEB-FIP MC 90 (1993), the Eurocode 
2 (2002) and ACI 318-02 (2005), whose mean values of strength ratio ( predictedtest VV / ) were 
found to be 1.108, 1.149 and 1.433, respectively with standard deviations of 22 percent, 20.2 
percent and 29. 8 percent respectively as shown in Figure 2.  
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Figure 4: Strength prediction by fuzzy-based model compared with test results 

 
Moreover, observing Figure 2(a), the CEB-FIP MC 90 code underestimates the punching 

shear strength of specimens with low reinforcement ratio while it overestimates the punching 
shear strength of specimens with high reinforcement ratio. The Eurocode 2 (2002) shows a 
good accuracy in predicting the punching shear strength at diferent reinforcement ratios. 
Finally, the ACI 318 (2005) underestimates the punching shear strength of specimens with 
high reinforcement ratio while it overestimates the punching shear strength of specimens 
with low reinforcement ratio. This is attributed to the fact that ACI 318 does not account for 
the effect of the reinforcement ratio on the punching strength. It is also evident from Figure 4 
(c) that the proposed fuzzy-based model predicts shear strength of both low and high 
reinforcement ratios with consistent accuracy. It is worth noting that the two parameters 
found to be significant for modeling: the slab thickness and the tension reinforcement ratio 
have also been promoted by other researchers before because of their influence on the size 
effect (Bažant 1997) and their possible role in developing shear friction (Loov 1998).  

Finally, to make use of the fuzzy-based model in design of slab-column connections and 
to avoid complexity needed when using all the equations representing the fuzzy-based model, 
we suggest developing a set of design charts based on predictions by the fuzzy-based model. 
Figure 5 shows exemplar design charts to evaluate the punching shear strength of slab-
column connections using the fuzzy-based model. The desgin charts are developed for a wide 
range of primary design parameters: 100'20 ≤≤ cf (MPa), 250150 ≤≤ h (mm), and 

ρ≤8.0 0.1≤ (percent). It can be observed from Figure 5 that the punching shear strength 
increases with increasing the concrete compressive strength, increasing the tension 
reinforcement ratio, and decreasing the slab thickness. This reverse thickness effect is known 
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as the size effect (Bažant 1997). This indicates that the fuzzy-based model sucessfully 
describes the characteristical behaviour of slab-column connections.  
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Figure 5: Strength variation according to primary design parameters using fuzzy-based model 

CONCLUSIONS 
A new alternative method for predicting the punching shear strength of simply supported 
interior slab-column connections using fuzzy systems is suggested. 176 test specimens were 
used for training and testing the proposed model (96 training and 80 testing). The training 
and testing data sets cover a wide range of the material and geometric properties. The testing 
data set was not used in the training process. Investigations for developing a model with good 
accuracy showed that concrete compressive strength, slab thickness and tension 
reinforcement ratio are the primary parameters which dominate the punching behavior of 
slab-column connections. This finding is limited to circular and rectangular columns with 
(c1/c2) ratio equals to 1.0 and for slabs with perimeter to slab depth ratio (b0/d) ranging 
between 5.8 and 20.8. It is found that the punching shear strength predicted by the fuzzy-
based model is more accurate than current design codes including CEB-FIP MC 90, 
Eurocode 2, and ACI 318.  
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