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A CO-EVOLUTIONARY STRATEGY FOR 
STRUCTURAL DAMAGE IDENTIFICATION 

Wilkins Aquino1 and Babak Kouchmeshky2 

ABSTRACT 
A new methodology for damage identification is presented in this work. This new 
strategy, called the Estimation-Exploration Algorithm (EEA) is designed to identify 
damage using a minimum number of physical tests. The underlying dynamics of the 
algorithm mimic the principles of co-evolution in which different populations of 
individuals challenge each other in an ongoing cycle of adaptation. In the context of 
structural damage identification, two main populations exist: a population of damage 
hypotheses and a population of potential physical tests. Damage hypotheses are evolved 
to predict data collected from physical tests, while the population of tests evolves to 
create discrepancy among the best current damage hypotheses. This competition results 
in a sequence of tests that drives the damage hypotheses towards the global optimum 
solution. The feasibility of the methodology has been demonstrated in numerical 
simulations. EEA has demonstrated greater accuracy in identifying damage than alternate 
strategies such as random selection of tests and user-designed tests.  
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INTRODUCTION 
One of the main challenges in structural health monitoring is to obtain sufficient 
information through sensing so that damage identification algorithms can uniquely and 
unambiguously characterize the current state of the structure. Information (e.g. 
displacement or acceleration histories) obtained from a structure is usually limited due to 
the use of a small number of sensors. Even when a large number of sensors are used, the 
information may still be incomplete due to the inability of the sensor network to perceive 
damage in certain regions of a structure. The amount of information about damage in a 
structure can be increased by performing a sequence of strategic tests composed of 
actuation and sensing. However, a significant challenge that engineers constantly face in 
non-destructive evaluation is how to perform these strategic tests so as to maximize the 
likelihood of finding damage with the least number of trials. 

A co-evolutionary strategy is presented herein which minimizes the number of tests 
needed for solving inverse problems that arise in structural health monitoring applications 
(Kouchmeshky et al. 2006). A co-evolutionary paradigm is used to setup competition 
between tests and damage scenarios with the ultimate goal of eliminating false 
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hypotheses and identifying a near optimal solution. The proposed algorithm is composed 
of two stages: an estimation phase, which searches for damage scenarios that can predict 
current physical tests, and the exploration phase, which searches for tests that increase the 
level of information about the damaged system. Evolutionary algorithms are used to 
implement the two stages of the proposed strategy.  

Co-evolution is a biological process where populations of interacting individuals 
challenge each other in an ongoing cycle of adaptation. There has been growing interest 
in co-evolutionary algorithms within the evolutionary computation community, starting 
with the seminal work of Hillis (1992) on sorting networks. Contrary to conventional 
evolutionary systems, in which individuals are evaluated using a static quality or fitness 
metric, co-evolutionary systems consist of one or more populations in which individuals 
may influence the relative ranking of each other (Bucci et al. 2004).   

THE ESTIMATION-EXPLORATION ALGORITHM (EEA) 
The problem of damage identification is concerned with existence, location, and severity 
of the damage in a structure.  When damage identification is cast as an optimization 
problem, great challenges arise such as large search domains and lack of sufficient 
information from tests performed on the structure. This leads to ill-posed inverse 
problems in which solution uniqueness is not guaranteed. The naïve way of getting 
around this situation is to continue to test the structure until enough information can be 
extracted. However, apart from the cost, blind testing may fail to elucidate sufficient 
information about the damage state of the structure, even if a very large number of tests 
are carried out.   

The Estimation-Exploration Algorithm (EEA) presented in this work is designed to 
search for the global optimum solution with the least number of physical tests. The steps 
involved in EEA are summarized in Figure 1. Two main stages are involved in this 
algorithm: the estimation phase and the exploration phase. In the estimation phase, 
candidate solutions are sought based on information gained from current tests. This step 
is similar to conventional structural damage identification approaches. In the early stages 
of EEA, multiple candidate damage scenarios will be obtained due to the ill-posedness of 
the inverse problem. In the exploration phase, a set of the best candidate solutions found 
in the estimation phase are used to select the next test to be performed on the structure.  
The exploration phase is cast as an optimization problem in which the objective is to 
maximize the discrepancy among candidate damage scenarios. Maximizing the 
discrepancy among candidate damage scenarios can be interpreted as increasing 
information about the state of the structure since the selected candidate solutions can 
already explain all the existing test data.  

FORMULATION 
The steps involved in EEA will be described in the context of structural damage 
identification in truss structures subjected to static loading. The methodology however is 
general and has been applied to dynamics problems (Kouchmeshky and Aquino, 2006). 
Static response simplifies the theoretical framework for demonstrating the feasibility of 
proposed algorithm. In addition, static tests eliminate uncertainties related to insufficient 
knowledge about the damping and mass distribution in the structure as is the case in 
vibration tests.  
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Figure 1. Flowchart of the Estimation-Exploration Algorithm. (Figure 1 in 
(Kouchmeshky et al.)). 

 
Local damage in truss elements can result, for instance, from the decrease of cross 

sectional area due to cracking or corrosion, which will translate into the reduction of the 
global stiffness of the structure. For the skeletal structures studied in this paper, the 
mathematical model for the system can described as  

( ) =K α u f , (1)  

where ( )K α  is the stiffness matrix of the structure defined as a function of a vector 
of damage parameters α , f represents the load applied to the structure, and u are the 
computed displacements at all degrees of freedom. There is one damage parameter,α , 
per element of the truss that represents the relative decrease in stiffness of that element. 
The reduced stiffness, ee

iK , corresponding to element i in the structure can be computed 
from the undamaged stiffness, ee

iKo , and the corresponding damage parameter, iα , as   

( )1ee ee
i i iα= −K Ko . (2) 
The global stiffness matrix is assembled from individual element contributions as 
( ) ee

i
elements

= ∑K α K . (3) 

Damage parameters are obtained by minimizing the error between the computed 
response and the measured displacements. The error function used in this article is given 
by 
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where n is the number of tests performed on the structure, j indexes the tests, j
cu is a 

vector whose elements are the computed displacements at sensor locations,  and ˆ ju  is a 
vector containing the measured displacements. The difference between displacements 
should be normalized to get a better representation of the relative change in response. The 
maximum displacement of all sensors is selected as the normalization parameter to cancel 
out spurious effects of very small displacements. The damage parameters,α , are obtained 
by solving the following optimization problem. 

 ( ) Subject to 0 1
m

iMinimize E α
∈

≤ ≤
α

α
R

 (5) 

ESTIMATION PHASE 
The estimation phase consists in finding candidate models that minimize the error 
between the predicted response and the tests that have been carried on the structure so far. 
In our work, the fitness of each individual is defined as the negative of the output error. 
The following fitness function is used in the estimation phase. 

 ( )f E= − α  (6) 
The population of solutions is evolved for a given number of generations and the best 

z candidate damage scenarios are transferred to the exploration phase (i.e. selection of 
tests). Where z is a number defined by the user and represents the number of candidate 
solutions that will be used for selecting the next test. 

The genetic algorithm used in the estimation phase used a special encoding which has 
been shown to be very efficient (Kouchmeshky et al.) for structural damage identification 
problems. In this approach, two strings of real numbers were used for encoding damage. 
The first string encodes the damage parameters, iα , for all elements, while the second 
string is used to determine whether or not damage is present in a given element.  For a 
more detailed description of this encoding see (Kouchmeshky et al.).  

Maintaining diversity in the solution population is crucial for the success of EEA. For 
this purpose a hybrid approach was used, which combines the deterministic crowding 
method (Mahfoud, 1996) with fitness sharing. Other genetic operators used included 
single-point crossover, and mutation. 

EXPLORATION PHASE 
The goal of the exploration phase is to find a test that maximizes discrepancy among 
candidate solutions (i.e. damage scenarios) selected from the estimation phase. This task 
is cast as an optimization problem, which is solved using a genetic algorithm. The fitness 
of a test in the exploration phase is proportional to its ability to create disagreement 
among candidate solutions. The fitness function for tests used in this work is defined as 
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where z is the number of candidate solutions transferred from the estimation phase, uab is 
the displacement at degree of freedom b corresponding to model a, bu is the average 
displacement obtained from the candidate models at degree of freedom b, maxu is the 
maximum displacement computed from all models, and mdof is the number of degrees of 
freedom where displacements are measured. Equation (7) is in essence the summation of 
the standard deviations of displacement at each degree of freedom for all selected models.  
It is important to keep in mind that selected candidate solutions can predict the data 
collected from the tests performed so far. Therefore, by creating discrepancy among 
candidate solutions, hidden information about the state of the damage structure is 
revealed.  

The population of tests is randomly generated at the beginning of the exploration 
phase. Then, selection, crossover, and mutation are applied over a number of generations. 
At the end of the evolution process, the test genome with the highest fitness is selected 
and is implemented in a physical experiment. Results of this experiment are added to the 
existing bank of tests and the estimation phase is invoked for the next cycle of the 
algorithm.  

Different strategies may be adopted for encoding tests during the exploration phase. 
These strategies depend on the type of excitation (e.g. static vs dynamic tests) and 
quantities being measured. For instance, in the case of static loads, a test may be defined 
by the number of forces applied to the structure, the direction, location and magnitude of 
the forces, the number of degrees of freedom being measured, and the location of the 
sensors. Whatever test definition is used, an important issue to always consider is the 
conservation of building blocks in the encoding scheme in order to maximize the 
effectiveness of the evolution process. For instance, the encoding should assure that 
blocks of sensors and forces are transferred between individuals during crossover. The 
reason for this is that sensor locations that can detect localized damage depend on the 
forces acting on the structure. 

TERMINATION CRITERIA 
The proposed algorithm terminates when one of these conditions is met. 

• One individual can explain all tests in a predefined number of consecutive cycles. 
This indicates that a potentially good solution has been found.  

• Diversity is not maintained. At least two different individuals need to be 
transferred from the estimation phase to the exploration phase. Loss of diversity 
may be due to various factors such as inadequate parameters in the niching 
method, size of the population, number of generations, etc. 

• The exploration phase cannot find a test that causes disagreement among 
candidate solutions. In this case, the algorithm cannot single out a unique 
solution. This situation may indicate that the problem is not fully observable. 
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NUMERICAL EXAMPLES 
The feasibility of the methodology is demonstrated with several numerical examples. A 
four-span bridge truss (Figure 2) with 105 elements and 44 nodes and subjected to static 
loading was used in all the examples. The area selected for the elements of the truss was 
2500 mm2 and the Young’s modulus of the material was 200 GPa. Five damaged 
elements localized in the first left bay were introduced in the structure. The level of 
damage induced in these elements is shown in Table 1. 

In addition to the proposed method (EEA), a control algorithm was used in which the 
exploration phase was disabled and random tests were used instead. Also, a case where 
tests were designed by the authors was investigated. In this case, 10 structural tests were 
engineered so that all bays were tested and loads and sensors were kept in close 
proximity to maximize the measured response. For this case, the damage identification 
process was carried using all the data collected from the tests at once as it is a common 
procedure found in the literature. The control algorithm and the engineered tests serve as 
a benchmark to determine whether the proposed co-evolutionary strategy has significant 
advantages over these alternate approaches. 

 

Figure 2. Truss used in numerical examples. Dashed lines represent damaged elements. 
(Figure 4 in (Kouchmeshky et al.)) 

Each test encoded the locations of three loads applied in the vertical direction at nodes in 
the bottom cord of the truss along with the locations of a fixed number of sensors also in 
the bottom cord. In addition, in order to study the sensitivity of EEA to noise, uniformly 
distributed random noise was added to measurements in the simulated tests as 

 ( )ˆ ˆ 1j j
ou u eβ= + , (8) 

where ˆ j
ou  is the measured displacement at degree of freedom j  without noise, β  is the 

noise amplitude, and e  is a uniformly distributed random variable in the range [-1,1]. 
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Table 1: Damge Ratios used in truss example (Table I in (Kouchmeshky et al.)) 
 

Element Label Damage Ratio, α  
4 0.40 
5 0.25 
8 0.10 
9 0.20 

10 0.30 

The performance of each strategy was evaluated by considering its accuracy in 
identifying the damage elements, accuracy in estimating the damage index for each 
element, and the number of misidentifications produced. A misidentification is defined as 
a non-damaged element for which the algorithm produces an average damage index 
greater than zero. 

The results obtained from the different strategies (EEA, control, and engineered tests) 
are summarized in Figures 3-5. These plots show the average damage indexes found in 
each element as well as their standard deviation over ten computer runs. Figures 3 shows 
that EEA was able to find accurately and consistently all damage elements and their 
damage indexes at the end of 10 cycles. In addition, it produced no misidentification. 
Notice that only Element 8 presents some scatter in the results.  

 

Figure 3. Damage indexes found using EEA after 10 cycles. No noise. (Figure 5 in 
(Kouchmeshky et al.)). 

Figure 4 shows the results obtained when 10 engineered tests were used for the damage 
identification process.   It can be noticed in this figure that the five damaged elements 
were correctly identified on average, but the EEA results were considerably more 
accurate in terms of the damage indexes. Notice also the larger scatter in the results 
obtained using engineered tests. There are several possible reasons for the superior 
performance of EEA over engineered tests. For instance, data in the engineered tests is 
presented all at once (as is common practice) to the damage identification algorithm, 
resulting in a more complex optimization problem. Also, EEA selects tests using a 
strategy devised for elucidating new information in each test, while engineered tests may 
contain redundant information.  
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Figure 4. Damage indexes found using engineered tests after 10 cycles. No noise (Figure 
6 in (Kouchmeshky et al.)). 

Figure 5 shows the results obtained using the control algorithm in which location of 
sensors and forces in each test were generated randomly. It can be observed that although 
the five damaged elements could be found, the accuracy of the damage indexes is less 
than that observed for the solutions obtained by EEA and the engineered tests strategy. In 
addition, the results obtained by the control algorithm show a larger scatter and more 
misidentifications than those obtained with the other strategies. The poorer performance 
of the control algorithm is due to the random nature of the test selection.  

 

Figure 5. Damage indexes found using control algorithm after 10 cycles. No noise 
(Figure 7 in (Kouchmeshky et al.)). 

The performance of EEA, the engineered tests strategy, and the control algorithm in the 
presence of noisy data are depicted in Figures 6-8. It can be seen from these plots that 
noise decreases the accuracy of the algorithms and increases the scatter in the results as 
expected. Although the three strategies (EEA, control, and engineered tests) were able to 
locate the five damage elements, EEA was the most accurate in estimating the damage 
indexes and producing the fewest misidentifications. The control algorithm, as expected, 
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produced the worst results, which can be attributed to the random test selection process as 
explained before. 

 

Figure 6. Damage indexes found using EEA after 10 cycles. 1% noise. (Figure 11 in 
(Kouchmeshky et al.)) 

 

 

 

Figure 7. Damage indexes found using engineered tests after 10 cycles. 1% noise. (Figure 
12 in (Kouchmeshky et al.)) 

 
 

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 1060



 

 

Figure 8. Damage indexes found using the control algorithm after 10 cycles. 1% noise. 
(Figure 13 in (Kouchmeshky et al.)) 

CONCLUSIONS 
A new co-evolutionary algorithm for structural damage identification has been presented. 
The algorithm is composed of two stages: the estimation phase that searches for damage 
scenarios and the exploration phase, which searches for tests that increase the level of 
information about the damage system.  

The feasibility of the methodology was demonstrated through several numerical 
examples.  The proposed algorithm was compared to two alternate strategies: a control 
algorithm in which the exploration phase was disabled and tests were generated 
randomly, and a strategy in which tests were engineered by the authors. EEA 
outperformed the control algorithm and the engineered tests strategy by displaying higher 
accuracy in identifying damage indexes and producing fewer misidentifications. In 
addition, the results obtained with EEA contained less scatter than those obtained with 
the two alternate methodologies.  
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