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ABSTRACT 
Moisture content of concrete decreases due to moisture diffusion when concrete exposed to 
dry ambient air. Therefore, drying shrinkage is developed and damage is initiated; at the 
same time, the diffusion process in concrete is accelerated by the induced damage and micro-
cracks. In this paper, a fully coupled hygromechanical model to simulate these phenomena is 
used, where the solution of a parabolic type and second order partial differential equation 
(PDE) of the moisture diffusion process is required. The numerical computation is done by 
using two different methods: finite element and finite difference. Numerical results from both 
methods were compared with the exact solution of a simple problem. Also, the obtained 
numerical results were compared with available experimental results of concrete specimens 
and showed good agreement. Finally, the results for simulation of a bridge deck slab 
subjected to uniform environmental drying were presented. This numerical study is part of an 
effort to develop an integrated computer program that simulates concrete structures 
degradation under different environmental conditions. This simulation is very important for 
durability and service life predictions of reinforced concrete structures. 
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INTRODUCTION  
Environmental degradations of concrete structures are mainly attributed to heat transfer and 
transport of fluids and deleterious chemicals into concrete. These processes are diffusion-
controlled, derived based on Fick’s laws and described by nonlinear partial differential 
equations (PDEs) of a parabolic type.  

 
In the last few years, several numerical models were developed using the finite element 

method to simulate real structures under different environmental conditions. Kim and Lee 
(1998) simulated a concrete slab under differential drying shrinkage. Isgor and Razaqpur 
(2004) developed a computer program to simulate the coupled heat transfer, moisture 
transport and carbonation processes in concrete structures. Witasse et al. (2002) and 
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Benboudjema et al. (2005 a, b) investigated the effect of drying shrinkage and creep on 
concrete cracking. All the previous research calculations did not consider the influence of 
mechanical response on the diffusion process. Meschke and Grasberger (2003) analyzed 
concrete structures with a coupled hygromechanical model; in their simulation, they assumed 
only the capillary pressure as the driving force for the diffusion process. A numerical 
simulation which includes the coupling between the moisture diffusion and the induced 
damage is required to give more accurate simulations and to predict the structure life.  

 
The application of hygromechanical analysis models of concrete structures is presented 

including the coupling effect between damage due to drying shrinkage and concrete moisture 
diffusion. The simulation is done using two different methods: finite element and finite 
difference. A comparison between both methods is presented; also a comparison between 
numerical and experiential results is shown, and finally a bridge deck slab simulation is 
presented. 

MODELING MOISTURE DIFFUSION IN CONCRETE  
The moisture transport in concrete can be expressed in terms of the relative humidity, H, and 
Fick’s first law which defines the moisture flux as: 

)(HgradDJ H−=     (1) 

where DH  is the moisture diffusion coefficient (diffusivity), and H is the internal relative 
humidity. Under unsteady state condition, where the driving force changes with time, t, the 
mass conservation law gives: 
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where w is the water content and MH=∂w/∂H is the moisture capacity. Substituting Eq. 1 into 
Eq. 2 yields: 

))(( HgradDdiv
t
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∂

∂ .        (3) 

Eq. 3 describes the moisture distribution in time and space for concrete, and it is a nonlinear 
partial differential equation because both moisture diffusion parameters (moisture diffusivity 
and moisture capacity) are dependent on the relative humidity. The above equation will be 
solved using finite difference and finite element methods.  

 
The initial condition can be written as follows:  

 ),,()0,,,( zyxHtzyxH o==     (4)  
where Ho(x,y,z) is the initial distribution of relative humidity in the concrete body. The 
boundary conditions are imposed on the surface as follows:  
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 0. =nJ      (5) 
)(. envHHnJ −= β     (6)  

where J is the humidity flux, n  is a unit vector normal to the exposed surface and directed 
towards the exterior environment, β is the surface moisture diffusion coefficient, H is the 
unknown surface humidity and Henv is the environmental relative humidity. Eq. 5 represents 
the case of no moisture exchange between the body and the environment on the surface of 
that body.  

NUMERICAL SOLUTION OF MOISTURE DIFFUSION 
Since the partial differential equation (Eq. 3) which governs the moisture diffusion in 
concrete is nonlinear, it must be solved numerically. The numerical solution can be done 
either by finite element method or finite difference method. These solutions are becoming 
more effective with the advances in the computing technology. Both solutions are described 
in this section. 

FINITE ELEMENT METHOD SOLUTION 
The moisture diffusion equation, Eq. 3, can be solved using the Galerkin finite element 
method as follows:  
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where Ω is the total volume, Ld is the total depth of the sample, and N is the shape functions. 
By rearranging and applying boundary conditions, Eq. 7 becomes: 
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where Γ is the surface area. The relative humidity at any point in an element can be 
determined using shape functions, N, as follows:  

)()(),( tHxNtxH ii∑=     (9)  

Substituting Eq. 9 into Eq. 8 and rearranging yields the following matrix form expression:  

HFHK
t
HC =+

∂
∂     (10)  

where C is the moisture capacity matrix, K is the moisture diffusion coefficient matrix, and 
FH is the hygral load vector; these can be written as follows:    
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Eq. 10 can be solved using one of the step-by-step integration schemes as follows (Logan 
2002):   

[ ] [ ] 11 )1()1( ++ ∆+−∆+∆−−=∆+ iiii PtPtHtAIHtAI αααα         (14)              

where 

KCA 1−=        (15)      
HFCP 1−= .     (16)  

The value of α should lie in the interval [0,1]; when α = 0,  This method is called Forward 
Euler (Explicit scheme); on the other hand, when α = 1,  0.5, and 2/3,Τhe methods are called 
Backward Euler, Trapezoidal and Galerkian, respectively (Implicit schemes).  

FINITE DIFFERNCE METHOD SOLUTION 

The Crank-Nicolson scheme which is one of the powerful schemes of finite difference 
method (Allen and Isaacson 1997) can be employed to solve the moisture diffusion problem 
described in Eq. 3. The pore relative humidity (H(x,t) at different points of the mesh at 
different time intervals) is estimated as follows: 
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where −
tδ  is the backward difference in time, xδ  is the central difference in space, n

jH  is the 
value of relative humidity at point j and time n. Given the temporal grid as ∆t = k, and the 
spatial grid ∆x = h, Eq. 17 is rewritten as follows: 
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where Г = k/h2 is the grid ratio.  
Handling boundary condition in Eq. 6, which is known as Robin boundary condition, is 

done by assuming the difference equation holds at each of the boundary nodes. Then Eq. 6 
can apply between the inner surface node (j=2) and a fictitious node at j=0 (knowing that the 
surface node is j=1) with the central difference in space xδ  as following: 

)()(
2 202 env

H HHHH
h

D
−=− β .   (19) 

Rearranging Eq. 19 gives: 

2210 γγ += HH      
where HenvH DHhandDh /2,/21 21 βγβγ =−= .  (20) 
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Also, the boundary condition of Eq. 5 can be similarly done with the above steps and will 
give γ1= 1 and γ2=0, which means no moisture exchange at that boundary. 

 Because of the coupling of the unknown H associated with time step n+1 in Eq. 18, the 
following nonlinear system must be solved at each time step:  

v
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NUMERICAL APPLICATION 
The results of hygromechanical simulations of concrete structures are presented in this 
section; three numerical examples are discussed in detail. First, the performance of the finite 
element and finite difference methods is studied. Then, a comparison between experimental 
and numerical results is shown. Finally, a full hygromechanical simulation of a bridge deck 
slab is presented. In the following examples, the environmental relative humidity, Henv, is 
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assumed to be 0.5, and the value of surface moisture diffusion coefficient, β, is assumed to be 
0.5 mm/day (Witasse et al. 2002). 

COMPARISON WITH THE EXACT SOLUTION 
In order to study the performance of the two methods to solve Eq. 3, their results are 
compared to an exact solution. In this example, a constant moisture diffusion coefficient, DH, 
and moisture capacity, MH, are assumed to get an exact analytical solution of Eq. 3 as 
follows: 

envdHH HLxMtDAtxH +−−= ))(cos()/exp(),( 2 λλ       (22) 

where Ld is the depth of the slab. The moisture exchange occurs at x=0 and there is no 
diffusion occurs at x=Ld. A is any arbitrary constant. Also, λ is a constant which is required to 
satisfy the boundary condition of Eq. 6 at x=0, and it is defined as follows: 

0/)tan( =− Hd DL βλλ .     (23) 

The above equation can be solved using Newton_Raphson scheme to find the constant λ. 
Figure 1 shows the results of the relative humidity profiles with Ld= 10 cm, λ= 0.1397, 
DH=0.63, MH=1.0 and A=0.5. With the number of elements equal to 10 (10 divisions), the 
finite element simulation gives better results than finite difference. However, as the number 
of divisions increase the finite difference shows better convergence to the exact solution.   

 

Figure 1: The comparison of realtive humidity profiles among exact solution, finite element 
and finite difference methods. 

Also, Table1 shows the percentage of error to the exact solution for both methods at different 
time and position. It is clear that the finite difference with Crank_Nicolson scheme has a 
convergence rate with a first order. On other hand, the finite element method gives lower 
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percentage of error than finite difference with ten elements, but it does not show any 
convergence.  

Table 1: The comparison of the percentage of error to the exact solution for both finite 
element and finite difference methods.  

Time= 50 days Time = 100 days 
Depth=3 cm Depth=5 cm Depth=8 cm Depth=3 cm Depth=5 cm Depth=8 cm No. of 

divisions FD FE FD FE FD FE FD FE FD FE FD FE 
10 4.8 0.7 3.8 0.9 2.9 1.0 4.2 0.4 4.2 0.6 4.2 0.7 
20 2.3 0.7 1.8 0.9 1.3 1.0 2.1 0.4 2.1 0.6 2.0 0.7 
40 1.1 0.7 0.9 0.9 0.6 1.0 1.1 0.4 1.0 0.6 1.0 0.7 
80 0.6 0.7 0.4 0.9 0.3 1.0 0.5 0.4 0.5 0.6 0.5 0.7 
160 0.3 0.7 0.2 0.9 0.2 1.0 0.3 0.4 0.3 0.6 0.3 0.7 
320 0.1 0.7 0.1 0.9 0.1 1.0 0.1 0.4 0.1 0.6 0.1 0.7 

COMPARISON WITH EXPERIMENTAL DATA 
Drying shrinkage due to ambient conditions can initiate damage in concrete structures. 
Drying shrinkage induced-damage accelerates the moisture diffusion of concrete by affecting 
the diffusion parameters.  

The moisture capacity is defined as the derivative of the moisture content with respect to 
the relative humidity in pores. The BSB adsorption isotherm model is used to relate the 
moisture content with relative humidity (Brunauer et al. 1969) as follows: 

( ) ( )[ ]kHCkH
HVkC

w m

111
0

−+−
=      (24)  

where Vm is the monolayer capacity which is the mass of adsorbate required to cover the 
adsorbent with a single molecular layer, C0 is the net heat of adsorption, which is a function 
of temperature, and k determines the degree of saturation of the pores. The moisture capacity, 
MH, can be obtained by deriving the adsorption isotherm with respect to H (more details in Xi 
et al. 1994 a, b). Bazant and Raftshol (1982) stated that the new surface area formed due to 
damage and cracks is small and cannot appreciably influence the internal surface area and 
thus the moisture capacity of concrete. Therefore, no effect of the damage on the moisture 
capacity is assumed in this study.  

A moisture diffusivity model using S-shaped curves was developed by Bazant and Najjar 
(1972). Later this model was modified by others, e.g., Sakata (1983) and CEP_FIP (90). A 
modified version of Bazant and Najjar model is used in this study: 
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where D1 is the maximum of D(H) for H =1.0, α0 = D0/D1, D0 is the minimum of D(H) for 
H=0, Hc is the pore relative humidity at D(H) = 1/2 D1, and e is a constant  The constants in 
Eq. 25 were calibrated for best fits between experimental and numerical results. In addition, 
Ababneh et al. (2005) presented a model to incorporate the effect of damage on moisture 
diffusivity, and that model is used in this study. 

Kim and Lee (1998) presented experimental data for concrete specimens with water- 
cement (w/c) ratio equal to 0.68; specimen dimensions were 10 X 10 cm exposed area with 
20 cm in depth. Specimens were sealed from five sides to ensure one-direction moisture 
diffusion. Relative humidity probes were used to measure the relative humidity at 3, 7 and 12 
cm from the exposed surface; the results are shown in Figure 2, and more details of the 
experiment and concrete mix design can be found in Kim and Lee (1998). 

  Because of the result from the comparison with the exact solution above, only the finite 
element method is used, and its results are compared with experimental results. By using the 
hygromechanical models developed in Ababneh et al. (2005), the numerical simulation is 
able to approximate the experimental results quite well. Figure 2 shows the experimental and 
numerical results using moisture diffusion coefficient in Eq. 25 with D1= 0.6168 cm2/day, 
Hc=0.85, α0 = 0.12, and e= 3. As shown in Figure 2.a, the numerical results are in good 
agreement with the experimental data. Also, Figure 2.b shows the numerical results of the 
relative humidity profiles with different times.  

 

Figure 2 : Relative humidity verses drying time and depth. 

SIMULATION OF BRIDGE DECK SLAB 
A concrete slab, 20 cm in depth, is simulated by the fully coupled hygromechanical model 
mentioned above. The concrete has an average compressive strength of 34 MPa and is moist 
cured for 28 days before drying. The slab, which is initially saturated (Hini=100%), is 
exposed to drying on the top surface (Henv= 50 %) after curing. The effect of micro-cracking 
due to drying shrinkage is taken into account through the damage parameter, d; the 
mechanical analysis is done within the framework of continuum damage theory (Ababneh et 
al. 2005). 

Figure 3 shows result comparisons of the slab simulation for two cases: case I, when the 
effect of damage on moisture diffusivity is ignored and only Eq. 25 is applied, case II, when 
full coupling between damage and moisture diffusion is considered. In this case, the drying 
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process generates damage in concrete, which accelerates the drying process; this is clear in 
Figure 3.a, at 50 days. However, at 10 days, the difference in relative humidity profiles starts 
only near the top surface (exposed to drying). Then, the difference in relative humidity 
profiles between both cases increases with time. Figure 3.b shows that the damage in 
concrete is accelerated and reached higher values in case II, which means ignoring the 
coupling effect between damage and moisture diffusion can lower the estimation of the 
drying process and damage. 

 

Figure 3 : The relative humidity profiles and the damage parameter verses drying time for the 
bridge deck slab. 

CONCLUSIONS 
 

Two numerical methods, finite element and finite difference, were described to simulate the 
moisture diffusion in concrete including the coupling between the diffusion and the induced 
damage. Numerical solutions were obtained for simple problem with known exact solution, 
concrete specimen with available experimental data, and bridge deck slab simulation.  

Based on the numerical results presented in this paper, the following conclusions can be 
drawn: 

1. Both finite element and finite difference provided reasonable predication of the drying 
process and damage propagation in concrete. 

2. The finite element solution gave better predictions for the drying process with less number 
of elements.  

3. The simulation also showed that ignoring the effect of damage on the moisture diffusion 
process yields an overestimation of the relative humidity in concrete.  

4. This model can be used on to analyze different types of concrete structures, and with some 
modification can be used for durability and service life predictions of reinforced concrete 
structures. 
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