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ABSTRACT 

Facility location models are mixed-integer optimization models aimed at determining the 
best location and size for any type of facilities. In this paper we present a facility location 
model where it is assumed that the demand for service decreases with the distance to the 
facility where it is provided (elastic demand) and that, when a user requires service, the 
probability of visiting some facility decreases with the distance to the facility and increases 
with the size of the facility (gravity-type assignment). It is also assumed that a minimum 
level of demand is needed in order to locate a facility (below that minimum level the facility 
would not be economically viable). The objective is to maximize the total served demand. 
The model is non-linear (in addition to being mixed-integer) and extremely difficult to solve. 
It addresses a type of problem arising with the location of facilities such as libraries, cinema 
complexes, etc. Because of its non-linearity the model must be solved by heuristic methods. 
We tested the classic Add+Interchange method and a simulated annealing algorithm. The 
former often failed to single out optimum or near-optimum solutions, while the latter often 
provided such solutions. 

KEY WORDS 
Facility location, optimization modelling, spatial interaction, gravity-type demand, elastic 
demand.  

INTRODUCTION 
When dealing with problems involving the location of facilities such as schools, fire stations, 
libraries or cinema complexes, planners may have to consider a large number of alternatives. 
If this is the case, the decision-making process will certainly be more efficient if they resort 
to facility location models (Daskin, 1995; Current et al., 2002; ReVelle and Eiselt, 2005). 
These models are mixed-integer optimization models aimed at determining the best location 
and size for any type of facilities according to some objective or objectives (cost 
minimization, accessibility maximization, etc). 

The classic models in the facility location literature (e.g., the p-median, the set covering, 
and the fixed charge models) are also aimed at determining the best user-to-facility 
assignment, assuming that the demand for service is inelastic (known in advance and 
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independent of the location of facilities). Yet, in many cases, users are free to choose the 
facilities they want to patronize and demand for service is elastic to some extent. In these 
cases, the models must be based on assumptions regarding the behaviour of typical users. A 
frequent assumption is that users will patronize the closest facility (for instance, when 
locating elementary schools or post offices). However, when locating facilities such as 
libraries or cinema complexes do these assumptions (inelastic demand and closest 
assignment) still seem valid? Or, otherwise, does it seem reasonable to assume that demand 
for service decreases with the distance (or time, or cost) to the facility? Furthermore, which 
one is a more natural behaviour – do users always patronize the same facility? Or, otherwise, 
do they split their travel between the available facilities, with the probability of visiting some 
facility decreasing with the distance to the facility and increasing with the attractiveness of 
the facility, thus patronizing facilities according to some gravity-type pattern? The size of a 
facility is often seen as a measure of its attractiveness, because larger facilities normally offer 
a wider choice of services of the same type.  

In this article, we present a facility location model for elastic, size-attracted, gravity-type 
demand, where a minimum level of demand is needed in order to locate a facility (below that 
level the facility would not be economically viable). Taken together, these features make the 
model non-linear (in addition to being mixed-integer) and extremely difficult to solve. 

The plan for the article is as follows. The assumptions and the formulation of the model 
are described in Section 2. Section 3 presents the solution methods (both classic and modern 
heuristics) developed to solve the model, and a discussion of the methods from the standpoint 
of solution quality and computing time. Section 4 looks at the model results. Concluding 
remarks are given in Section 5. 

MODEL PRESENTATION 
We consider a set of N discrete population centres, each one of them being a candidate site 
for locating a facility. The potential number of facility users (or potential demand) in centre j 
∈ N is given by uj. The summation of the potential demand over all centres is represented by 
U. The travel distance (or time, or cost) between centre j and centre k is designated by djk. 

 
We address the problem of determining the best location (yk = 1 if a facility is located at 

centre k, yk = 0 otherwise) and size (zk), for the facilities assuming that: 

1. The demand from centre j for the services of a facility located at centre k (hjk) is a 
decreasing function of the travel distance (Perl and Ho, 1990; Antunes et al., 2004): 

( )βα jkjjk duh ⋅−⋅= 1  

where α, β >0 are calibration parameters. 

2. Users patronize facilities according to a gravity-type pattern. Following the spatial 
interaction literature, the utility for a user in centre j of a facility at centre k (wjk) is 
given by the ratio of the attractiveness Ak of the facility to a function of the travel 
distance (O’Kelly, 1987; Berman and Krass, 2002): 
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where γ>0 is a calibration parameter. 

The probability of users in centre j travelling to centre k to obtain service (pjk) equals 
the relative utility of facility at centre k compared to other available facilities: 
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This can also be interpreted as the proportion of users in centre j that obtain service 
from a facility located at centre k. 

All in all, the probability/proportion of users visiting some facility decreases with the 
distance to the facility and increases with the attractiveness of the facility. As stated 
before, in our model the attractiveness of a facility is measured by its size.  

3. The size of a facility is proportional to the number of users obtaining service from 
that facility. In order to be economically viable, a facility can only be located if the 
number of users it serves is equal to or above a minimum level zmin. 

4. The unit facility costs are assumed to be constant for facilities larger than zmin. 

5. The objective is to maximize the total served demand (that is, to maximize the 
number of users obtaining service from all facilities). 

 
Given these assumptions, our model can be formulated as follows: 
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Nkzy kk ∈∀≥∈ ,0,}1,0{  (5) 
 
The objective function (1) maximizes the total size of facilities. As stated before, we are 

assuming that the size of a facility is proportional to the number of users obtaining service 
from that facility. Therefore, the objective function maximizes the total served demand. 
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Constraint set (2) ensures that users will only be served at centre k if a facility is located at 
that centre, otherwise, when yk = 0 then zk = 0. Constraint set (3) requires that the size of a 
facility located at centre k exceeds the minimum level zmin. Constraint set (4) specifies that 
the size of a facility located at centre k is proportional to the total number of users obtaining 
service from that facility. This is a non-linear constraint (due to the division of a zk decision 
variable by the summation over k of zk decision variables). Constraint set (5) reflects the 
binary nature of the location decisions and the non-negative nature of the size of a facility. 

MODEL SOLVING 

INTRODUCTION 
In this section we present the approach adopted to solve the model. Because of its non-
linearity, the model can not be solved to optimality by exact methods. Consequently, the only 
manner for one to be certain of finding an optimum solution is through complete 
enumeration. Obviously, this approach is unsuitable for large- and even moderate-size real-
world applications because it would take an enormous amount of computing time to list and 
evaluate all possible solutions (starting from locating a single facility to locating the 
maximum number of facilities allowed by the minimum size constraint). Therefore, we tested 
some heuristic methods, both classic and modern (Gendreau and Potvin, 2005). Heuristic 
methods are approximate methods for solving optimization models. They usually involve a 
short computing time but there is no guarantee that the resulting solution is the optimum 
solution (they only guarantee to find a local optimum, not the global optimum). When 
deciding which heuristic method to use, it is necessary to ponder on both the computing time 
it takes and the quality of the solution it provides (that is, how close to the optimum the 
solution is). A large set of instances was created for testing the methods. We applied the 
classic Add+Interchange method and a simulated annealing algorithm (Dowsland, 1993; 
Antunes and Peeters, 2001). The former often failed to single out optimum or near-optimum 
solutions, while the latter often provided such solutions. Whichever the method, an important 
issue when solving the model is: once we have a solution vector for the location variables 
how can we compute the zk variables? This can be done by reaching equilibrium in 
Constraint (4). We describe an iterative approach for doing it. 

TEST INSTANCES 
The solution methods were tested in a large set of instances. Those instances regard a region 
of 100×100 length units, and differ on the number of centres (recall that centres coincide with 
sites), the location of the centres, and the number of potential users at each centre. We 
considered fifty 20-centre instances and twenty 50-centre instances. The centre coordinates 
were created by generating random numbers uniformly distributed over [0, 100]. The number 
of potential users at each centre was generated in the same way, but this time considering the 
interval [10, 100]. The minimum level of demand was assumed to be 200. 

Regarding the model parameters, we considered a linear decay function with α = 
1/√20000 (the inverse of the diagonal of the region under study) and β = 1, and a spatial 
interaction function with γ = 0.05 (a current value for Portugal). 
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HEURISTIC APPROACH 

Our approach on solving the model presented above was to test at first the classic 
Add+Interchange method (even though we were not expecting to obtain very good solutions 
using this method we thought it would be useful for getting some insights). The main reason 
was that this method is fairly simple to program and known for providing rather good 
solutions in a short time. In addition, classic heuristic methods such as Add+Interchange 
have been applied successfully in many location models.  

The Add heuristic allows building a solution from scratch. It starts by evaluating which 
site is the best, among all candidate sites, to locate a single facility (in our case, the best site 
is the one that entails the most served demand). Then, in successive iterations, it locates a 
facility at a time, by choosing among the closed sites, the one which allows the best feasible 
increase in the objective function value, until no further increase is possible (note that a site 
is called closed when there is no facility located there). The Interchange heuristic starts with 
the Add solution and, in successive iterations, considers moving a facility from any open site 
to any closed site, choosing the combination of site interchange which allows the best 
feasible increase in the objective function value, once again until no further increase is 
possible. 

The simulated annealing (SA) algorithm is a modern improvement heuristic based on the 
physical process of cooling a material to low-energy states. This algorithm begins with a 
good (or, at least feasible) solution and, in successive iterations, accepts (or not) solutions 
generated in the neighbourhood of the current solution according to the Metropolis criterion 
(all solution improvements are accepted, solution deteriorations may be accepted with some 
probability depending on a parameter called temperature) until no further increase in the 
objective function value is possible. 

The algorithm we developed uses the Add solution to begin the SA procedure. Then, in 
each iteration, it can either locate one more facility at any closed site (Add neighbourhood), 
or remove an existing facility from an open site (Drop neighbourhood), or move a facility 
from an open to a closed site (Interchange neighbourhood). There is an equal probability of 
visiting any one of these neighbourhoods. The choice of the neighbourhood to visit is made 
through the generation of random numbers. After the SA procedure, an exhaustive 
neighbourhood search is performed through Drop, Add, and Interchange procedures (Figure 
1). The algorithm uses a range of parameters, designated as IT, TR, ME, MI and PW, which 
must be calibrated. The first parameter is necessary to determine the initial temperature – we 
assumed a certain probability (IT) of accepting a 10% deterioration in the starting solution 
(Add solution). The TR parameter gives the temperature reduction rate in each iteration. ME 
stands for the maximum number of solutions evaluated in each iteration without improving 
the objective function value. The stopping criterion is the maximum number of iterations 
without improving the objective function value (MI). We assumed a PW weight to penalize 
solutions that violated the minimum level of demand assumption (Constraints 3). The 
calibration of parameters was performed in two phases. In the first phase, we assumed a base 
value for each one of the parameters and then changed a single parameter at a time (either a 
decrease in the parameter value or an increase). In the second phase, the best set of 
parameters obtained from phase one was improved by decreasing each parameter at a time. 
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We performed a total of 50 runs for each set of parameters (ten 20-centre instances times five 
seeds to generate the random numbers). The solutions were analysed regarding the number of 
optimum solutions found, the average difference to the optimum solution, the maximum 
difference to the optimum solution, the average computing time, and the maximum 
computing time. The results are shown in Table 1. The best set of parameters obtained from 
the second phase was: IT = 0.3; TR = 0.9; ME = 20; MI = 5; and PW = 100.  

Initial Feasible Solution
(Add solution)

Simulated Annealing
Procedure

Exhaustive Neighbourhood Search

Drop Add Interchange

Did best solution
improve?

STOP

Yes

No

 

Figure 1: Flowchart of the Simulated Annealing Algorithm 
 

Table 1: Calibration of Simulated Annealing Parameters 

IT TR ME MI PW
0.3 0.7 20 10 100 48 1.0% 1.7% 19 101
0.1 0.7 20 10 100 44 1.3% 1.7% 7 22
0.5 0.7 20 10 100 48 0.3% 0.3% 60 173
0.3 0.5 20 10 100 44 1.2% 1.7% 14 99
0.3 0.9 20 10 100 50 0.0% 0.0% 43 166
0.3 0.7 10 10 100 33 1.0% 1.7% 3 6
0.3 0.7 30 10 100 50 0.0% 0.0% 150 641
0.3 0.7 20 5 100 48 1.0% 1.7% 18 100
0.3 0.7 20 15 100 48 1.0% 1.7% 20 101
0.3 0.7 20 10 50 48 1.0% 1.7% 20 104
0.3 0.7 20 10 150 48 1.0% 1.7% 19 101
0.1 0.9 20 10 100 44 0.7% 1.3% 14 37
0.3 0.9 10 10 100 35 0.8% 1.7% 5 14
0.3 0.9 20 5 100 50 0.0% 0.0% 37 148
0.3 0.9 20 10 50 50 0.0% 0.0% 44 165

Average 
computing 
time (sec.)

Maximum 
computing 
time (sec.)

Maximum 
difference    

to optimum
Phase

1

2

Number of 
optimum 
solutions

Average 
difference    

to optimum

Parameter

 
 

In order to analyse the Add+Interchange method and the SA algorithm from the 
standpoint of solution quality and computing time, we performed a complete enumeration 
over each one of the 20-centre instances. 

As expected, the Add+Interchange method did not prove efficient for solving the model – 
for the set of 20-centre instances, it provided only 16 optimum solutions and, in the 
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remaining 34 instances, the maximum difference to the optimum solution was 10.2% (Table 
2). Nevertheless, it showed extremely fast, with an average computing time of one second 
and a maximum of three seconds (while the complete enumeration took an average of nearly 
five minutes and a maximum of 25 minutes). The computations were made with a Pentium M 
processor, running at 1.73 GHz. In some cases, the Add+Interchange solution located the 
same number of facilities as in the optimum solution. When this occurred, the heuristic 
solution was optimum or close to optimum. However, in most of the cases that did not 
happen (it located either a larger or a smaller number of facilities than in the optimum 
solution), and so the Add+Interchange solution was quite different from the optimum 
solution. On the other hand, the SA algorithm provided optimum or very close to optimum 
solutions – it was capable of finding 42 optimum solutions for an average computing time of 
27 seconds and a maximum of two minutes. In the remaining instances, the maximum 
difference to optimum was only 1.9%. 

Table 2: Summary of Results for the 20-Centre Instances 

Complete Enumeration 50 - - 277 1524

Add+Interchange 16 2.2% 10.2% 1 3

Simulated Annealing 42 0.7% 1.9% 27 129

Average 
difference to 

optimum

Maximum 
difference to 

optimum

Average 
computing time 

(sec.)

Maximum 
computing time 

(sec.)

Number of 
optimum 
solutions

Method

 
 
The SA algorithm also performed globally better than the Add+Interchange method for 

the set of twenty 50-centre instances. It was not possible to perform a complete enumeration 
for these large instances. Consequently, it is impossible to know whether the heuristics 
solutions are optimum and, if not, how close to optimum they are. Therefore, the heuristic 
methods can only be compared with each other. The SA algorithm provided 14 better 
solutions than the Add+Interchange method (Table 3). The opposite happened only 3 times, 
and in the remaining 3 instances the methods provided equal solutions. In the cases where the 
SA algorithm performed better, the average difference of the Add+Interchange to the SA 
solutions was 0.4% and the maximum difference was 1.5%. The computing time increased 
considerably for the 50-centre instances. The Add+Interchange method took, on average, 63 
seconds to solve the model, and a maximum computing time of 97 seconds, while the SA 
algorithm took an average computing time of about 40 minutes, and a maximum of one hour 
and fifteen minutes. 

Table 3: Summary of Results for the 50-Centre Instances 

Add+Interchange 3 0.4% 1.5% 63 97

Simulated Annealing 14 0.1% 0.2% 2444 4595

Number of best 
solutionsMethod

Average 
difference to 
other method

Maximum 
difference to 
other method

Average 
computing time 

(sec.)

Maximum 
computing time 

(sec.)
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USER-TO-FACILITY ASSIGNMENT 

The user-to-facility assignment is the key innovation in our model. We assume that the 
demand for service decreases with the distance to the facility where it is provided (elastic 
demand) and that, when a user requires service, the probability of visiting some facility 
decreases with the distance to the facility and increases with the size of the facility (gravity-
type assignment). Furthermore, we consider that the size of a facility is proportional to the 
total number of users obtaining service at that specific facility. In conclusion, the size of a 
facility depends on the number of users visiting the facility, and the number of users visiting 
a facility depends on the size of the facility. That is, zk is a function of zk: zk = f(zk), as stated 
in Constraints (4). It can be proved that there is always one and only one solution for the zk 
variables, with each zk non-negative. 

The equations in Constraints (4) must be solved iteratively (Figure 2). Assuming that the 
facilities are all of the same size (zk), we first calculate for every j and k the proportion of 
users in centre j that obtain service from a facility located at centre k (pjk). Then, in each 
iteration, we re-calculate the size of facilities (zk*) using the previous pjk and determine the 
new proportions (pjk*). This process loops until equilibrium is reached. We assume to have 
reached equilibrium when the absolute value of the difference between pjk* and pjk is smaller 
than 0.01. 

 

Select initial size zk for facilities (same size)
Calculate initial pjk

Repeat
calculate zk* (using pjk)
calculate pjk*
Δ = |pjk*-pjk|
pjk = pjk*

Until Δ < 0.01
zk=zk*  

Figure 2: Algorithm for the Computation of Equilibrium Assignment 

 

MODEL RESULTS 
In this section we illustrate the type of results that can be obtained through the application of 
the model. We consider a region with 6 population centres (Figure 3), model parameters       
α = 1/√20000, β = 1, γ = 0.05, and a minimum size of 100. 
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Centre Population
1 52
2 94
3 93
4 37
5 56
6 73

Total 4052

3

6

4

1

5

Centre Population
1 52
2 94
3 93
4 37
5 56
6 73

Total 4052

3

6

4

1

5

2

3

6

4

1

5

 

Figure 3: Example Input Data 
 

The optimum solution consists of locating two facilities, at centres 2 and 6 (Figure 4). In this 
solution, 86.7% of the potential demand is served (Table 4). It would be possible to locate 
one more facility, but the optimum solution for locating three facilities would only serve 
79.6% of the potential demand. 

Optimum solution
for a single facility.

Optimum solution
for two facilities.
(global optimum)

Optimum solution
for three facilities.

Centre FacilityKey:

Optimum solution
for a single facility.
Optimum solution
for a single facility.

Optimum solution
for two facilities.
(global optimum)

Optimum solution
for two facilities.
(global optimum)

Optimum solution
for three facilities.
Optimum solution
for three facilities.

Centre FacilityKey: CentreCentre FacilityFacilityKey:  

Figure 4 – Optimum solution and best locations for a single facility and for three facilities 

 

Table 4: Solutions results 

Total Ratio
1 317 78.3%
2 351 86.7%
3 322 79.6%

Number of 
facilities

Served demand
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This example shows how the model globally works: (1) the best site to locate a single facility 
is usually a very central one; (2) as more facilities are added, the open sites tend to be 
scattered over the region, what happens until the number of facilities comes close to the 
maximum number of possible facilities; (3) from that, the location of facilities tends to be 
more central again. While in the classic facility location models seeking the maximization of 
served demand the more facilities are located the more demand is served, in our model this is 
not necessarily true. For some instances, it is better to locate fewer facilities than the 
maximum possible number. The reason for this to occur is because the user-to-facility 
assignment is not straightforward. Demand depends both on the distance to the facility and 
on the size of the facility. Adding one more facility affects the size of the pre-existing ones. 
This means that the new facility may increase the demand from surrounding centres but, at 
the same time, it may have a global negative impact on the total demand served. 

CONCLUSION 

In this paper we presented a facility location model for elastic, size-attracted, gravity-type 
demand. The model assumes that the demand for service decreases with the distance to the 
facility where it is provided (elastic demand) and that, when a user requires service, the 
probability of visiting some facility decreases with the distance to the facility and increases 
with the size of the facility (gravity-type assignment). In the model, the attractiveness of a 
facility is measured by the size of the facility. This feature makes the model non-linear (in 
addition to being mixed-integer) and extremely difficult to solve. We also considered that a 
minimum level of demand is needed in order to locate a facility (below that minimum level 
the facility would not be economically viable). The objective is to maximize the total served 
demand. The model addresses a type of problem arising with the location of facilities such as 
libraries, cinema complexes, etc. 

Because of its non-linearity the model must be solved by heuristic (approximate) 
methods. We tested the classic Add+Interchange method and a simulated annealing 
algorithm. The former often failed to single out optimum or near-optimum solutions, while 
the latter often provided such solutions. 

We showed how the model globally works with a small example. An extremely important 
issue when solving the model is to find the optimum number of facilities to locate. In most 
facility location models seeking the maximization of served demand, the more facilities are 
located the more demand is served. In our model this is not necessarily true because the 
demand depends both on the distance to the facility and on the size of the facility. That is, the 
opening of one more facility may increase the demand from surrounding centres but, at the 
same time, it may have a global negative impact on the total served demand. 
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