
1 INTRODUCTION

The construction planning process is characterized
by the synchronous cooperation of a distributed team
that develops a joint solution – the building instance.
In practice, document management systems (DMS)
are frequently used in this process to control the ac-
cess and the workflow of the documents of single
user applications.

Although the planning process has a lot in com-
mon with the software development process, DMSs
are almost completely irrelevant in the software de-
velopment process. Instead of that, cooperation in a
software development team is controlled by version
control systems (VCSs).

The kind of cooperation between a DMS and a
VCS is completely different: While the former only
supports the asynchronous cooperation the latter en-
ables a true synchronous cooperation, either parallel
or reciprocal (Fig. 1, Bretschneider 1998).

Parallel Reciprocal Sequential

Asynchronous

Cooperation

Synchronous

Figure 1. Classification of cooperation according to time

The goal of this contribution is to close the gap
between these two worlds and to allow the tool-

based VCSs to be used in conjunction with existing
single user applications in the distributed planning
process.

2 STATE-OF-THE-ART

It is distinguished between document based and text
based applications. For these two application classes
the local and the net-distributed processing are out-
lined according to the state-of-the-art.

2.1 Document-based applications
According to the state-of-the-art only applications
that deal with structured object sets are considered
(Fig. 2). The objects can only be accessed in the
process that created them. Therefore, the object set
has to be stored persistently in a document before
terminating the process. Other processes can later
reconstruct the transient object set via the contents
of the document. Typical examples of document
based applications are word processors, CAD and
FEM programs.

Currently, a net-distributed cooperation of docu-
ment based applications is enabled by a DMS
(Fig. 3). A DMS manages documents of any format.
Relationships between objects in different docu-
ments cannot be supported since the semantics of the
document content are generally not known to the
DMS. The goal of a DMS is the support of the work-
flow on the basis of a shared document pool. If a

Versioning structured object sets using text based Version Control
Systems

B. Firmenich & C. Koch
CAD in der Bauinformatik, Bauhaus-Universität Weimar, Weimar, Germany

T. Richter & D. G. Beer
Informatik im Bauwesen, Bauhaus-Universität Weimar, Weimar, Germany

ABSTRACT: With the availability of an affordable and ubiquitous network environment the distributed co-
operation of projects can be supported by computer software. Currently, the degree of support of a distributed
cooperation is very different in the diverse classes of applications. While in the field of text-based applica-
tions the synchronous distributed cooperation is already state-of-the-art, the users of document-based applica-
tions can currently only cooperate asynchronously in terms of a workflow by exchanging documents. This
contribution describes a solution approach for the re-use of existing document-oriented applications in net-
distributed processes. The synchronous cooperation is realized by a novel procedure that stores the structured
object sets of existing single user applications in version control systems, where the well proven tools of the
software configuration process can be used in distributed construction planning processes as well.

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

team member wants to edit a document a copy of
that document is transferred to the user’s local file
system. When the editing process is completed a
new copy of the document can be stored and pub-
lished in the shared document pool.

A X

a

b

c

Application

x

y

z

Application

Serialization

Figure 2. Document-based applications

Because existing applications tend to become in-
creasingly complex the stored documents have a
considerable file size as well. Differences between
documents are not stored explicitly in a DMS. The
users have to localize, visualize and merge differ-
ences by the help of very complex tools.

A DMS supports the asynchronous cooperation of
a team where in general the tasks must be performed
in sequential order. However, since no relationships
exist between objects in different documents a re-
stricted parallel cooperation is possible.

The DMS solution has the advantage that arbi-
trary document based applications can be integrated
without any program adjustment.

DMS

A X

Ai Xi

a

b

c

Application

x

y

z

Application

Network

Serialization

Figure 3. Document Management System (DMS)

2.2 Text-based applications
Text based applications are found in the software
development process where the source code is stored
as plain text in files. Figure 4 shows how the source
code is managed by text editors.

Text Editor

a x

Text Editor

Figure 4. Text-based applications

In addition to the text editors many other tools for

the processing of text editors exist. The availability
of many tools is typical for a text based environ-
ment. The discipline of software configuration man-
agement (SCM) deals with the process of creating
complex software systems. Figure 5 shows how the
distributed software development process is sup-
ported by a VCS. Since the syntax of the file content
– plain text – is known to the VCS many useful tools
like diff and merge are available.

A VCS typically manages a multitude of different
versions of text files that have a much smaller file
size compared to documents stored in a DMS. In-
stead of storing the complete file contents, only the
changes between file versions are very efficiently
stored. Due to the requirements of the software de-
velopment process the reciprocal synchronous coop-
eration is supported. Here, even tasks that synchro-
nously refer to source code in the same line of the
same file version must be allowed.

Repository
ai bi ci xi yi zi

Text Editor Text Editor

Sandbox
a b c

Sandbox
x y z

Network

Figure 5. Version Control System

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

All file versions of the project are stored in a cen-
tral Repository that is accessible to all team mem-
bers. Each file version can be added to an arbitrary
number of file version sets by the tagging mecha-
nism. Equation 1 below defines the file version set Ti
formally:

VifVfTi ⊆∈= } taghas |{: (1)

where V is the set of all file versions and i is a spe-
cific tag. The tagging mechanism allows the VCS to
manage configurations of file versions that belong
together.

Files cannot be directly edited inside the Reposi-
tory but must be previously transferred as a new
copy to the user’s Sandbox. The Sandbox is located
in a directory of the local file system. Since only one
version per file can be stored in the Sandbox existing
(unversioned) single user applications can be inte-
grated in the distributed process. The user’s work is
persistently stored as new file versions in the Re-
pository. The net-distributed cooperation depends
solely on the synchronization of the Sandboxes and
the Repository by the VCS that provides a set of
commands for this task. Conflicts are either solved
automatically or by actively involving the participat-
ing users.

3 SOLUTION APPROACH

The solution approach is targeted at the reuse of ex-
isting document based applications during synchro-
nous cooperation. This objective is achieved by stor-
ing the application’s structured object set in a text
based VCS. The procedure proposed is named ob-
jectVCS.

ai bi ci xi yi zi

a

b

c

Application

x

y

z

Application

Sandbox
a b c

Sandbox
x y z

Network

Repository

Serialization

Figure 6. objectVCS: object Version Control System

Contrary to the state-of-the-art the unit of repre-
sentation is not the document but the object with its
attributes and relationships. Storing the objects in a
VCS allows the tools of this VCS to be applied to
the stored object set. This is particularly true for the
tools that support the distributed synchronous coop-
eration and the versioned data management.

Figure 6 shows the system architecture of ob-
jectVCS.

3.1 Serialization
This mechanism establishes the interface between
the document based applications and the text based
VCS. The serialization is the method of representing
a structured object set as a character stream, the de-
serialization in turn is the method of creating a struc-
tured object set from a character stream. Unlike the
DMS approach objectVCS always requires a certain
extension of the participating applications. While the
former represents the object set in one single docu-
ment (available functionality of a document based
application) the latter requires that each single object
is stored in a separate text file.

objectVCS knows the mapping between objects
and files. A unique persistent name (POID: persis-
tent object identifier) is assigned to each object and
all its versions (Beer et al. 2004a,b). The object is
stored in a file named after the POID. Objects are in-
stances of different data types. It is distinguished be-
tween single valued and multi valued data types.

The serialization of an object of a single valued
type consists of writing the data type followed by the
object attributes as (type, name, value) tuples. There
is a difference between a primitive and a reference
attribute whose value is the POID of the referenced
object.

Figure 7a shows the parameters of a circle as an
example.

rad

ctr

Figure 7a. Parameters of the circle

The related Java classes are listed in Figure 7b:
The circle’s center is represented as a Point object
with two primitive attributes x and y. The Circle ob-
ject has a primitive attribute for the radius and a ref-
erence attribute for the center point.

The serialized XML files are shown in Figure 7b.
The POIDs are PointInst for the point and CircleInst
for the circle.

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

class Circle {
 Point ctr;
 double rad;
 Circle(Point p, double r) {
 this.ctr = p;
 this.rad = r;
 }
}

class Point {
 double x;
 double y;
 Point(double x, double y) {
 this.x = x;
 this.y = y;
 }
}

class Application {
 static void main(String[] args) {
 Circle cir = new Circle(
 new Point(1.2, 1.8), 1.5);
 }
}

Figure 7b. Java classes to represent the circle

<?xml version="1.0"?>
<CircleInst>
 <Point name="ctr" value="PointInst"/>
 <double name="rad" value="1.5"/>
</CircleInst>

<?xml version="1.0"?>
<PointInst>
 <double name="x" value="1.2"/>
 <double name="y" value="1.8"/>
</PointInst>

Figure 7c. XML files to represent the circle

Objects of a multi valued data type are repre-
sented as a sequence of elements, where an element
can either be a primitive value or a reference value
as a POID. The serialization consists of writing the
data type, a signature for the multi valued data type
and the sequence of elements.

Sets represent a special case: Even though the or-
der of elements is arbitrary, sets are always serial-
ized in a fixed sequence: This algorithm has been
convenient for the representation of sets in a text
based VCSs.

The Java language has been selected for imple-
mentation. The serialization could be realized with-
out any intervention of the application programmer
exclusively on the base of the reflection package.

XML was selected as text format. The implemen-
tation was very efficient thanks to available XML
tools like parsers. It should be noted that objectVCS
is not limited to text files. Since the serialization in-
terface is based on character streams, the object set
can be stored in data bases as well.

3.2 Repository
The text file versions of the project are stored in the
Repository. Between the file versions relationships
exist. objectVCS ensures the referential integrity by
adding object versions to the same version set if they
belong together.

r 1
r
2

c2

c1

Ti

Tj

p1

c1

c2

p1

Figure 8. Building object version sets

Figure 8 shows an example for building version
sets. The first version c1 of the circle has a primitive
radius attribute r1 and a reference attribute for the
center point p1. The second version c2 of the circle
has a changed radius r2 but still refers to the same
center point object p1. Equation 2 describes the defi-
nition of the two version sets by tagging:

}
1

,
2

{}j taghas |{

}
1

,
1

{} taghas |{

:

:

pcfVfT

pcifVfT

j

i

=∈=

=∈=
 (2)

where V is the set of all file versions, i and j are spe-
cific tags and Ti and Tj are the respective version
sets.

Available applications store their documents as a
single file in the file system. This is shown in Fig-
ure 9a where rectangles denote directories. This pro-
cedure is not appropriate for objectVCS that depends
on storing each single object in a separate file. As a
solution to this problem the document is not stored
as a file but as a directory representing at most one
single document. This procedure ensures that the
known mode of operation can be retained by the us-
ers.

Project . . . Doc

DocProject . . .

Obj1 * 1 * 1 *

1 * 1 *a)

b)

Figure 9. Storage of a document in the file system (a) and in
the Sandbox/ Repository (b)

In addition to the well known document based
approach a novel kind of processing across docu-
ment boundaries is possible. Links between objects
in different documents can be realized by adding the
referencing and the referenced object to the same C

o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

version set. For the theoretical foundations of the
management of structured object version sets the
user is referred to (Firmenich 2002a, b, Firmenich &
Beucke 2002). An approach for defining consistent
releases on a structured object version set has been
proposed by Beer & Firmenich (2003).

3.3 Sandbox
The sandbox is located in a directory of the user’s
local file system. The structured object set of the ap-
plication can be stored to and loaded from the Sand-
box. The Sandbox must be synchronized with the
Repository.

3.4 Synchronization of Repository and Sandbox
The synchronization of the Sandboxes and the Re-
pository is the basis for the net-distributed coopera-
tion. The VCS is responsible for this task. The proc-
ess of storing the application’s object set consists of
two phases:
1 Each object is serialized into a separate file stored

in the Sandbox. Storing can be done online and
offline.

2 The changes become public by storing the files as
a new versions in the Repository.

Likewise, loading the structured object set is also a
two-phase process:
1 Selected files are transferred from the Repository

to the Sandbox.
2 The applications’ object set is deserialized from

the files stored in the Sandbox. Loading can be
done online and offline.

As a matter of principle, all tools of the underlying
VCS are applicable in an objectVCS environment.

3.5 Version Control System and API
The selection of the free Concurrent Versions Sys-
tem CVS (Fogel & Bar 2002, Vesperman 2003,
cvshome 2005) as the underlying VCS has proved of
value. The available Java CVS Client (javacvs 2005)
of Suns Netbeans IDE open source project was cho-
sen for the prototypical implementation of ob-
jectVCS. The CVS client allows the establishment
of a connection with the CVS Server and the execu-
tion of the subsequently described CVS commands:
− add: Adds a file or directory to the Repository.
− checkout: Creates a new Sandbox or actualizes an

existing Sandbox.
− commit: Writes changed files from the Sandbox

to the Repository.
− diff: Shows the differences between two file ver-

sions.
− log: Shows versioning and administration infor-

mation about files located in the Sandbox.

− remove: Removes a file or directory from the Re-
pository.

− status: Shows status about files.
− tag: Tags a file or a set of files with a unique

name.
− update: Transfers changed files from the Reposi-

tory to the Sandbox. This command allows the
reciprocal synchronous cooperation.

4 VERIFICATION EXAMPLE

The solution approach has been verified as an exten-
sion of an available single user CAD system that is
currently being developed at Bauhaus University for
education and research (Firmenich & Beucke 2005).

4.1 Implementation
The CAD system has been extended by a set of
commands for the synchronous cooperation of a
team. The implementation of these commands is
based upon our proprietary Java XML serialization
package and the available Java CVS Client package.

During development of objectVCS it turned out
that extended functionality concerning CVS was
needed. An example is the synchronization of a sin-
gle directory between Sandbox and Repository for
performance reasons. The extended functionality has
been realized as a wrapper class of the existing Java
CVS Client.

The following CAD commands refer to directo-
ries and files of the Sandbox only. Online or offline
execution is possible:
− Project settings: Defines a project as a CVS

module in the Repository.
− New: Initializes a new drawing in the application.
− Load: Loads a document from the Sandbox into

the application.
− Store: Stores the application’s object set in the

loaded document of the Sandbox.
− StoreAs: Stores the application’s object set in a

new document in the Sandbox.
The subsequently listed CAD commands refer to the
Repository and can only be executed online.
− UpdateNewDirectories: Updates the Sandbox by

directories stored in the Repository only.
− UpdateOverride: Replaces a document in the

Sandbox by the head version of the Repository.
− Update: Issues the update command and per-

forms a merge in case of conflicts.
− Commit: Synchronizes the Sandbox and the Re-

pository by an Update command. Both new and
changed files are stored in the Repository.

− Server settings: Sets the password, the local path
of the Sandbox and a diff and merge tool.

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

4.2 Scenario
Figure 10 is the schedule of the verification exam-
ple. The two Sandboxes A and B and the Repository
are shown as vertical bars very similar to a UML se-
quence diagram (Rumbaugh et al. 2001).

The time coordinate proceeds downward. Labeled
arrows describe the user action and the direction of
data transfer. For instance, arrows starting at the
Sandbox bar and ending at the Repository bar denote
operations that transfer data from the Sandbox to the
Repository. Arrows starting and ending at the Sand-
box bar denote operations referring to the Sandbox
only. Circles with text denote versions of Sandbox
or Repository data. For instance, A2 denotes the sec-
ond version of data in Sandbox A and R4 denotes the
fourth version of data in the Repository.

L1: addLine 1 1 4 3
storeAs doc1

load doc1
L1: setLine 1 1 4 1

store

L1: setLine 4 1 4 3
store

L1: translate 2 0
store

A1

B2

A2

A3

B4

A4

A5

R1

R3

R2

R4

commit R1 updateNewDirectories

commit R2update doc1
merge A2 R2

commit R3
update doc1
merge B2 R3

L1: remove
L2: addline 1 3 3 1

store

commit R4
update doc1

merge A4 R4

Sa
nd

bo
x

A

R
ep

os
ito

ry

Sa
nd

bo
x

B

B3

B1

Figure 10. Schedule of the verification example.

Version A1
User A adds a line component to the database and
stores version A1 of document doc1 in Sandbox A.
The document contains a single line L1 at (1, 1, 4,
3).

Version R1
User A commits the document as version R1 from
the local Sandbox to the Repository.

Version B1
User B updates his local Sandbox B by new directo-
ries created in the Repository. This operation stores
version R1 of the document in his Sandbox.

Version B2
User B loads the document version B1 and changes
the endpoint of line L1 to (4, 1). The document is
then stored locally as version B2. It contains a single
line L1 at (1, 1, 4, 1).

Version A2
After committing the document as version R1 user A
has continued the editing process. Thus, user A and
user B are cooperating synchronously on different
versions of the same document.

After changing the start point of the line to (4, 1)
the document is stored as version A2 containing a
single line L1 at (4, 1, 4, 3).

Version R2
User B commits the document version B2 as version
R1 to the Repository.

Version A3
The synchronous cooperation of document versions
A2 and R2 resulted in a conflict that has to be solved
by user A. In the update operation the two versions
have to be merged to a resulting version A3.

As a first implementation the authors have de-
cided to generically merge the two object versions
by the help of a simple text based diff tool referring
to the serialized XML files. Figure 11 shows the diff
tool in use. As was expected, the approach had some
shortcomings since the semantics of private attrib-
utes are not clear to the users. In the example shown,
instead of the familiar user coordinates internal
world coordinates are presented to the user. The in-
terpretation of the data shown requires a deep under-
standing of the underlying data structure.

The right panel in Figure 11 shows the textual
representation of version A2: The coordinates (4, 1,
4, 3) of L1 are shown as normalized world coordi-
nates (scaled by a factor of 1 / 1000 in the specific
case).

The left panel shows the differences between the
two versions. The conflicting values of the start
point’s x-coordinate are shown in line 6 (original
value ‘4’ of version A2) and line 9 (selected value
‘1’ of version R2). The conflicting values of the end
point’s y-coordinate are not marked: Since the value
‘3’ has not been changed in version A2 the merge
tool automatically selects the value ‘1’ of version
R2.

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

Figure 11. Text based merging of version A2 and R2

In the merge procedure user A has decided to re-
tain his version unchanged. Therefore, version A3 of
the document contains a single line L1 at (4, 1, 4, 3).

Version R3
User A commits document version A3 to the Reposi-
tory as version R3.

Version B3
User B updates and merges versions B2 and R3. No
conflicts are detected because user B has not
changed his document version in the meantime. The
resulting version B3 consists of line L1 at (4, 1, 4, 3).

Version B4
User B removes L1 form the database and adds the
new line L2 at (1, 3, 3, 1). The database is stored as
version B4 of the document.

Version A4
At the same time user A has transformed line L1.

<?xml version="1.0"?>
<java.util.HashSet—A-1
 <cib.db.cmp.ComponentLine2D
 name=""
 value="cib.cmp.ComponentLine2D-A-1"
 />
</java.util.HashSet-A-1>

Figure 12a. Serialized XML document with version A4 of the
database.

<?xml version="1.0"?>
<java.util.HashSet-A-1>
 <cib.db.cmp.ComponentLine2D
 name=""
 value="cib.cmp.ComponentLine2D-B-1"
 />
</java.util.HashSet-A-1>

Figure 12b. Serialized XML document with version B4 of the
database.

Version R4
User B stores version B4 of the document as version
R4 in the Repository.

Version A5
User A now updates and merges. The two versions
of the serialized database HashSets are shown in
Figure 12. The diff tool does not detect a conflict. In
the resulting version A5 line L1 has been automati-
cally been removed and line L2 has been automati-
cally added. It should be noted that this is not the
expected result from the user’s view!

Conclusion
In the opinion of the authors, the example shows the
general applicability of the proposed solution ap-
proach in the planning process. However, a lot of re-
search topics remain open.

5 PERSPECTIVE AND CONCLUSIONS

With the proposed solution approach object-oriented
applications of the planning process can benefit from
tool-based version control systems. The potentials of
this approach would exceed the possibilities of cur-
rently used DMSs. Since the versioning granularity
is changed from documents to objects, subsets of ob-
jects can be flexibly composed and loaded. The ex-
plicit storage of object versions considerably simpli-
fies the process of locating, visualizing and merging
differences. Finally, available VCSs ensure a very
effective storage of the object versions.

The verification example revealed that important
aspects of the solution approach remain to be inves-
tigated. Future work will address the problems of
visualizing the differences and merging object ver-
sions as well as the problems of selecting, loading
and storing consistent subsets from the versioned
model. Another research directive will be the consis-
tent management of cross-document and cross-
project relationships.

The proposed solution approach could be a step
towards a true synchronous reciprocal cooperation in
the planning process.

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

REFERENCES

Beer, D.G., Firmenich, B., Richter, T. & Beucke, K. 2004a. A
Concept for CAD Systems with Persistent Versioned Data
Models. Proceedings of the Tenth International Conference
(ICCCBE-X). Weimar: Bauhaus University.

Beer, D.G., Firmenich, B., Richter, T. & Beucke, K. 2004b. A
Persistence Interface for Versioned Object Models. Pro-
ceedings of the 5th European Conference on Product and
Process Modelling in the Building and related Industries:
eWork and eBusiness in Architecture, Engineering and
Construction. Leiden: Balkema

Beer, D.G. & Firmenich, B. 2003. Freigabestände von struktu-
rierten Objektversionsmengen in Bauprojekten. Digital
proceedings of Internationales Kolloquium über Anwen-
dungen der Informatik und Mathematik in Architektur und
Bauwesen (IKM). Weimar: Bauhaus University.

Bretschneider, D. 1998. Modellierung rechnerunterstützter, ko-
operativer Arbeit in der Tragwerksplanung. Düsseldorf:
VDI Verlag.

cvshome 2005. https://www.cvshome.org/
Firmenich, B. 2002a. CAD im Bauplanungsprozess: Verteilte

Bearbeitung einer strukturierten Menge von Objektversio-
nen. Aachen: Shaker.

Firmenich, B. 2002b. Operations for the distributed synchro-
nous cooperation of a shared versioned data model in the
planning process. Proceedings of the Ninth International
Conference (ICCCBE-IX). Taipei: National Taiwan Univer-
sity

Firmenich, B. & Beucke, K. 2002. Consistency problems in a
distributed CAD environment. Proceedings of the IABSE
Symposium Melbourne 2002. Zürich: ETH Hönggerberg.

Firmenich, B. & Beucke, K. 2005. CAD in Computer Aided
Civil Engineering: a Particular Approach for Research and
Education (under preparation). International Journal of IT
in Architecture, Engineering and Construction. Rotterdam:
Millpress.

Fogel, K. & Bar, M. 2002. Open Source-Projekte mit CVS.
Bonn: mitp.

javacvs 2005. http://javacvs.netbeans.org/
Rumbaugh, J., Jacobson, I. & Booch, G. 2001. The Unified

Modeling Language Reference Manual. Boston: Addison-
Wesley.

Vesperman, J. 2003. CVS. Beijing: O’Reilly.

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

