
1 INTRODUCTION 

A very promising method in earthquake engineering 
for protection of height – risk and very important 
structures against destructive influence of strong 
motion seismic waves is developing systems for 
structural control. One of the critical problems there 
is the problem of forecasting the behavior of seismic 
waves, in particular in real time for implementation 
of these prognoses in devices for structural control. 
Prognoses for further development of the waves can 
be made from recorded in real-time data for certain 
part of destructive seismic wave registrated in three 
directions. These prognoses are based on general, 
tectonic, seismic and site parameters. During these 
prognoses is supposed that waves can be classified 
as destructive or non-destructive and can be taken 
decision for switching structural control devices. 

For such prognoses it can be developed different 
kind of models, for modeling the behavior of seismic 
waves main parameters during seismic waves spread 
in soil layers (Radeva and Radev, 2005). For practi-
cal purposes of possible records for displacements, 
velocities and accelerations as time history, most of-
ten accelerograms are used, which are characterized 
with certain duration, frequency and peak ground 
acceleration. They are involved in models and sys-
tems for estimation of elasticity response spectrum. 
For each point of registrated accelerogram the pa-
rameters of her displacement in soil layer are pre-
sented with three components in three directions of 
the orthogonal axes. The most practical usage in 
structural engineering and design has their peak val-

ues, independently of their sign and direction. That’s 
why the modeling of the behavior of seismic waves 
is used as input information in the process of calcu-
lation of the structural response spectrum (Radeva at 
all, 2004a). 

In this paper is suggesting an approach for real-
time prognoses of earthquake excitation, with fast 
estimation of seismic wave’s characteristics with 
implementation of classification methods and Ko-
chonen neural modeling for destructive part of seis-
mic waves. 

2 DETERMINING OF DESTRUCTIVE PHASE 
FROM ACCELEROGRAM 

The purpose of stochastic modeling is the defining 
of the three phases of the earthquake wave and iden-
tification of the main parameters for each phase, 
such as resonance frequency, damping ratio, peak 
value. According to implemented stochastic model, 
each wave is dividing into three separated phases: 
primary (P- waves), transversal or secondary (S- 
waves) – on the second phase, and converted and 
guided waves (C-/G- waves) on the third phase. For 
evolutionary power spectrum estimation were used 
the time dependent stochastic principal axes method 
(Scherer and Zsohar, 1998). According to this 
method earthquake accelerograms are delivered as 
representations of the three-dimensional acceleration 
vector in a Cartesian coordinate system, generally 
with axes parallel to east –west, north-south and ver-
tical direction, as is shown on Fig.1, where is pre-
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ABSTRACT: The paper is devoted on the problem of real-time earthquake prediction. An approach for real-
time prognoses, based on classification algorithm of strong motion waves with neural network and fuzzy 
logic models is suggesting. As input information for the neural network, build with Kochonen learning rules, 
are given the parameters of recorded part of accelerogram, principle axis transformation and spectral charac-
teristics of the wave. With the help of stochastic long-range dependence time series analysis is determined the 
beginning of destructive phase of strong motion acceleration. Developed seismic waves classification gives 
possibility to determine different kind prognoses models for different king of classified waves. The prognoses 
of destructive seismic waves are realized with learning vector quantization and self-organizing map. 

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s 

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net


sented registrated records from Loma Pierta Earth-
quake, 1989. 
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Figure 1. Recorded accelerograms with axes parallel to east 

–west, north-south and vertical direction. 
 
On Fig 1 is shown as well determining the 

boundaries of three separated phases, which is real-
ized with scene-oriented model. For determining 
boundaries between separated classes were analyzed 
4300 strong motion seismic records, registrated in 
Europe and North America and to these records 
were implemented different stochastic models. We 
are suggesting the scene-oriented model as best fit-
ting for determining boundaries of destructive S-
phase (Radeva at all, 2004b). The scene-oriented 
model is a modification of simple Markov chain 
model, where the time series {xt} was transformed 
into discrete states {yt}, where the number of states 
is the same as the number of target classes, and the 
size of the model yi for each state is determined. At 
the scene-oriented model as three scenes are sepa-
rated the three phases of the seismic waves. Con-
sider the S-phase as a second scene. The target val-
ues in classes of the second scene are determined 
with (1). 
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The next step is forecasting the resonance fre-
quency of S-wave on the base of prognoses made 
with the help of principle axes transformation and 
further estimation of probability density with neural 
network and vector quantization. 

3 DETERMINING OF DESTRUCTIVE PHASE 
DURATION AT AXIS TRANSFORMATION 

Principle axes transformation is based on composing 
the components corresponding to the maximum, 
medium and minimum eigenvalues from all time 

windows. Consider each accelerogram with her three 
transformations. Let determine duration of destruc-
tive phase according to previous paragraph. Each 
transformation is a result from different accelero-
gram time histories that are ordered by seismic en-
ergy for every chosen time interval, (Scherer and 
Bretschneider, 2000). Principle axes transformed ac-
celerograms can be visualized in the coordinate sys-
tem of the original record. These transformed com-
ponents, called stochastic principal axis 
accelerogram T1, T2 and T3 have different duration 
of destructive phase, as is seen on Fig. 2. 
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Figure 2. Determining of S-phase boundaries for principle axes 
transformed records. 

 
Because of this different duration of destructive 

phase in each transformation, if we will implement 
one-dimensional vector quantization, it will give dif-
ferent results. That’s why for prognoses model here 
is suggesting two-dimensional vector quantization, 
based on this time-series transformed records. 

This process of time-series transformation gives 
possibility to use for empirical hazard analyses 
transformations T1 and T2. As most significant in 
seismic hazard analyses, for two-dimensional vector 
quantization and determination of basic classes fur-
ther are used transformed accelerograms T1 and T2. 

4 KOCHONEN NEURAL MODEL FOR 2D 
DESTRUCTIVE PHASE ESTIMATION 

The suggested method for real-time prognoses is de-
veloped for fast estimation of strong motion seismic 
waves on the base of their main characteristics. The 
fast estimation of seismic waves is based on belong-
ing of prognoses waves to certain class and subclass 
(Radeva at all, 2004b). The classification helps to 
select proper prognoses stochastic model for each of 
selected classes or subclasses. 

The proposed real-time classification and progno-
ses are realized with neural models build on princi-
ple of Kochonen learning rules. For different classes 
and subclasses of seismic waves is suggesting two C
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basic kinds of neural modeling - Learning Vector 
Quantization (LVQ) and Self-Organizing Map 
(SOM). 

For probability density estimation of destructive 
phase in this research is suggesting a modification of 
two-dimensional vector quantization, where on axes 
are absolute values of transformed accelerograms T1 
and T2. The main goal of a learning neural model 
for vector quantification is to determine the prob-
ability density function for T1 and T2. 

The two-layered neural network for two-
dimensional vector quantization consists of competi-
tive and linear layers. LVQ learning in the competi-
tive layer is based on a set of input/target pairs (2), 

{ } { } { } { }NNjj CxCxCxCx ,,,,,,,,, 2211 KK  (2) 

with the help of which is trained the neural network. 
Here xj are two N-dimensional input vectors, and the 
M- dimensional vector Cj describes the condition of 
target classes, presented at (3). 
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Each target vector has a single 1 and the rest of 
its elements are 0. The 1 tells the proper classifica-
tion of the associated input. The hidden neurons 
from first layer compete via initializing of the 
weight matrix Wkj and are determining the winner. 
This is the neuron, which has minimal Euclid dis-
tance dk to the input vectors xj. Then the correspond-
ing target class receives value 1 and the rest target 
classes receive 0, as is presented by (4). 
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The neuron-winner has feedback negative links to 
the rest of neurons and strong positive link to him-
self, which is used for learning in linear layer. Dur-
ing the training in the next q epoch are changing the 
coefficients of all neurons according to Kochonen 
learning rule, which is summarized at (5). 
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The coefficient ξ depends on the number of train-
ing epochs q and can be adjusted in advance in in-
terval [0,1], where standard is determined equal to 
0,1. The sign before the training coefficient ξ is 
positive for the neuron-winner, and negative for the 
neighbor neurons. As a result during the process of 
the training is changed the area of neighbor neurons 
for the neuron-winner, e.g. decreases the Euclid dis-
tances. 

With LVQ we determine the function of density 
distribution with amplitudes, received from the real 
accelerograms. The vector quantization gives den-

sity distribution for each class and redistributes the 
target values in such a manner to have the same 
number of target values in each class (Radeva et all, 
2004b). The density distribution of the values of 
time series was received via approximation of the 
linear target layer of the vector quantization. 

For the proper determining of the function of den-
sity distribution is necessary to optimize the ap-
proximation of the target layer. The network was 
trained to classify the input space according to pa-
rameters of scene-oriented model. With the help of 
LVQ was determined the optimal number of target 
classes for destructive phase and prognoses were re-
alized with this number. 

Afterward with one layered neural network and 
self-organizing map (SOM) was determined the 
function of density distribution with amplitudes, re-
ceived for transformed accelerograms T1 and T2. 

Self-organizing neural networks have one-layered 
neural competitive structure, which can learn to de-
tect regularities and correlations in the input pat-
terns. The neural maps learn both, the distribution 
and topology of the input vectors, to recognize 
neighboring clusters of the attribute space. 

Kochonen‘s network algorithm provides a tessel-
lation of the input space into patches with corre-
sponding code vectors. It has an additional feature 
that the centers are arranged in a low dimensional 
structure (usually a string, or a square grid), such 
that nearby points in the topological structure (the 
string or grid) map to nearby points in the attribute 
space. 

The Kochonen learning rule is used when the 
winning node represents the same class as a new 
training pattern, while a difference in class between 
the winning node and a training pattern causes the 
node to move away from training pattern by the 
same distance. In training, the winning node of the 
network, this is nearest node in the input space to a 
given training pattern, moves towards that training 
pattern. It drags with its neighboring nodes in the 
network topology. This leads to a smooth distribu-
tion of the network topology in a non-linear sub-
space of the training data. In two-dimensional output 
space is expected a map, corresponding to the k - 
dimensional array of output neurons Cj, which can 
be one or two-dimensional. The connection between 
n-dimensional input vector and k-dimensional output 
neural vector is realized with the weight matrix W. 
At competitive learning for winner is selected the 
output neuron j*, which weight vector is closer to the 
current input according to (6). 
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The Kochonen learning rule is differ from vector 
quantization rule and is determine by (7). 
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The neighborhood function ∧(j, j*) is equal to 1 if 
j = j*, and decreases with increasing of distance be-
tween neurons j and j*in input space. The neurons 
closer to the winner j*, changes their weights more 
quick than remote neurons, for which the neighbor-
hood function is very small. 

The topological information contents in the fact, 
these closer neurons, which are changing almost in 
the same way and in this manner corresponds to 
neighbor input patterns. The learning rule (7) attracts 
the winner’s weight vector to the point Xm. 

The self-organizing map is supposed to be an 
elastic set in input space, which wants to be moved 
maximal closer to the input values. The set has to-
pology of attribute space and it points have as coor-
dinates weight vectors. 

Here is suggesting a modification of VQ, with 
implementation of logarithmic scale and absolute 
values for T1 and T2. On Fig. 3 is shown modified 
two-dimensional vector quantization where with 
black points are depicted weight centers of target 
classes. We are interesting of last three classes (10, 
11 and 12), because for them is observed higher de-
viation. With Manhattan distance are determined 
deviations from trajectory of axis and points in cor-
responding class according to (8). 
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Figure 3. Two-dimensional vector quantization in 12 classes 
with Self-organizing map (SOM). 

 
In Table 1 is shown estimation of the probability 

density distribution in each class for S-phase with 
two-dimensional learning vector quantization and 
self-organizing map. 

 

Table 1. Estimation of probability density distribution 
(in percent) with LVQ and SOM _________________________________________________ 

Classes  LVQ   SOM   Classes  LVQ   SOM _________________________________________________ 
1     2.56   7.69    7   12.42   7.18 
2   14.72  18.19   8   14.45  14.53 
3    4.67    5.05    9    7.62   11.90 
4   13.98   7.62    10    3.23    6.01 
5   17.95  11.18   11    1.05    2.42 
6    7.23    8.14    12    0.12    0.09 

_________________________________________ 
 
From Table 1 is seen, that for last three classes 

(10, 11 and 12), which are more interesting for prog-
noses model, there are observing similar results with 
both neural networks. 

5 CONCLUSIONS 

An approach for real-time prognoses of destructive 
phase of strong motion seismic acceleration was 
suggested, based on classification algorithm of 
strong motion waves with neural network with Ko-
chonen learning rules. On the base of principle axis 
transformation and spectral characteristics of the 
wave, with stochastic long-range dependence time 
series analyses are determined the boundaries of de-
structive phase of strong motion acceleration. 

For selected diapason of transformed accelero-
grams was implemented two-dimensional vector 
quantization with Kochonen learning rules. The 
prognoses are realized with the help of two-
dimensional vector quantization and with self-
organizing map. The probability density function for 
destructive phase was determined with both neural 
networks. 

Received results can be used for analyses of 
structural response spectrum and in devices of struc-
tural control for very important and high-risk struc-
tures. 
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