
 

 

1 INTRODUCTION 

The precast concrete industry is a major supplier of 
off-site prefabricated components to the construction 
industry. The construction of a building can be re-
garded as an assembly of hundreds of bespoke pre-
cast concrete components, some of which have dif-
ferent and unique designs and delivery dates. 
‘Bespoke’ precast concrete production has a major 
distinction from ordinary ‘mass’ production that is, it 
constantly requires new product design. Variations 
in the demand of precast components also create a 
complexity in the planning of concrete production in 
terms of efficient resources utilization (Ballard et al., 
2002). Since the production is less uniformity, the 
‘learning curve’ is hard to establish and the automa-
tion is hardly implemented to assist the process. 
Therefore, the production planning process requires 
sophisticated managerial skills and becomes a key of 
the success of the delivery program, customer lead-
time competitiveness, and the effective utilization of 
purpose-built moulds (Benjaoran et al., 2004).  

The aim of this research is to develop an innova-
tive (semi-automatic) planning system to manage be-
spoke precast concrete production called the ‘Artifi-
cial Intelligence Planner’ (AIP). The AIP system 
and the operations of its components are briefly de-
scribed in the next section of this paper. This paper 

is mainly focused on the application of the proposed 
system to a real case study, which is the bespoke 
precast concrete production of a UK leading manu-
facturer. 

2 ARTIFICIAL INTELLIGENCE PLANNER 
(AIP) APPROACH 

AIP’s operations start from preparing input data and 
finally arranging production schedules. The system 
adopted artificial intelligence technologies (neural 
network (NN) and genetic algorithm (GA)) to assist 
the process of production planning. Figure 1 shows 
the main components of the system, which are: in-
formation inputs, main production processes and in-
formation outputs.  

Primary information inputs of the proposed sys-
tem are generated from external sources (project de-
signers and contractors of construction projects). 
This can be project drawings, product specifications, 
and construction schedules. The main production 
process includes product design, productivity esti-
mation, production planning, and manufacturing. 
Three main AIP components have been developed 
namely: ‘Graphic data Extractor’ (GDE) to assist 
the product design; ‘Processing-Time Estimator’ 
(PTE) for the productivity estimation; and ‘Produc-
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ABSTRACT: Precast concrete manufacturers are highly involved in the construction industry through the 
supply of bespoke products. Their workload is a complex combination of different and unique designed prod-
ucts, which have various delivery dates. The production process from design to manufacturing is complicated 
and contains uncertainties due to many factors such as: multi-disciplinary design, progress on construction 
sites, and costly purpose-built moulds. An integrated, comprehensive planning system called Artificial Intelli-
gence Planner (AIP) has been proposed to improve the efficiency of the process by targeting on the production 
planning as a significant impact to the success of the business. Artificial intelligent techniques are used in AIP 
to enhance data analyses and decision supports for production planning. A case study for the implementation 
was conducted on a real bespoke precast concrete manufacturer. The difference between AIP and this factory 
setting was attended. Data from the studied were reformatted and the AIP configuration was customized. Fi-
nally, the successful implementation has showed the adaptability and flexibility of AIP to the real production 
conditions, and it has given the improvement of the resulted production schedules. The anticipated outcomes 
are the shortened customer lead-time and the optimum factory’s resource utilization. 
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tion Scheduler’ (PS) for the production scheduling 
(Benjaoran et al., 2004). Also, the AIP system im-
plements data integration technology through the 
central database to manage historical and current 
project data. The ultimate outputs of the system can 
be a high quality production schedule that satisfies 
short customer lead-time, effective factory resource 
utilization, and satisfaction of delivery requirements. 

2.1 Product Design with GDE 
The product design is a key task of the bespoke pro-
duction. It generates unique designs of products. 
This crucial information then is used by the down-
stream production process. The quantity taking-off 
task is considered as an intermediate process that 
transfers product information from designs to pro-
duction planning and the task itself is time consum-
ing (Ogunlana & Thrope, 1991). There are some re-
searchers who recognized this problem and 

developed a system for automating this quantity tak-
ing-off task. A study has applied AutoCAD features 
of organization of drawing elements to retrieve the 
product information from 2D drawings (Eben Saleh, 
1999). Another proposed a new method of modeling 
3D CAD product data from horizontal and vertical 
viewpoint 2D drawings for the purpose of material 
quantity taking-off (Kim et al., 2002). 

GDE is initiated to automatically extract targeted 
product information regarding products’ geometry 
and material properties from their drawings. Figure 2 
shows the operation procedure of GDE. GDE draws 
on the CAD objects identification technology of 
AutoCAD and rule-based object recognition that was 
assimilated from the quantity surveyors’ professional 
knowledge and experience. The methodology is to 
reorganize all CAD drawing elements into referable 
categories, which the object recognition rules can be 
applied. This extracted information will be used for 
the productivity estimation. 
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Figure 1: An Overview Flowchart of the AIP System 

 
2.2 Productivity Estimation with PTE 
The productivity estimation of precast concrete 
manufacturing routines is a necessary task before be-
ing able to arrange production schedules. A large va-
riety of bespoke product designs results in requiring 
their own different manufacturing time. The current 
practice of this task relies on estimators’ implicit 
knowledge which is experience and intuition based. 
It is difficult to share this valuable knowledge within 
the company. Within PTE, a neural network (NN) 
has been adopted to formulate a productivity estima-
tion model. The model is used to map the obscure 
mathematical relationships between the productivity 
of manufacturing tasks and their own influential fac-

tors. These relationships are built upon historical 
project data and are used to estimate productivity 
values of the new project. Figure 3 shows the opera-
tion procedure of PTE. It is difficult to exhaustively 
determine all factors affecting labor productivity. 
Many productivity models that have been proposed 
by previous literature have different sets of these fac-
tors. Previous studies (Sonmez & Rowings, 1998; 
AbouRizk et al., 2001; Thomas et al., 2003) have 
proposed their models for the on-site construction 
tasks considering influential factors largely based on 
the variation of the working environment regardless 
building designs. 
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Figure 2: An operation procedure of GDE 

However, bespoke precast concrete manufacturing is 
executed in a more controlled working environment 
but it has a very large variation of product designs. 
The difficulties in product designs should contribute 
important influences. This research study identified 
influential factors mostly based on the difficulty and 
variation in their custom designs regarding product 
geometry, materials, and manpower. The values of 
these influential factors are already extracted and 
prepared by GDE as stated before. The outputs are 
the estimated processing-time values for accomplish-
ing the manufacturing tasks. 

2.3 Production scheduling with PS 
The production planning is very complicated and has 
a high impact on time and cost of the production 
program. However, the current practice of produc-
tion scheduling is much simplified by applying the 
earliest due-date sequencing rule. Precast concrete 
manufacturing consists of many repetitive routines 
and each product is independent without obvious 
logical precedence. Pioneering researchers (Chan & 
Hu, 2002; Leu & Hwang, 2001) have proposed 
scheduling methods for the precast concrete manu-
facturing using the ‘flowshop scheduling model’ and 
the GA approach for the optimization.  

The principle of the flowshop scheduling (John-
son, 1954) has been adopted to formulate a schedul-
ing model particularly for ‘bespoke’ precast concrete 

manufacturing and using a genetic algorithm for the 
optimization. Figure 4 shows the operation proce-
dure of PS. This model has included mould reuse 
considerations since types and available numbers of 
moulds have impacts to the production cost and 
time. The moulds are costly and purpose-built in a 
limited number. Bespoke precast concrete products 
are tied to specific delivery dates which usually cor-
respond to the construction progress on sites. It is 
important that the production schedule must be at-
tempted to satisfy all product delivery dates. 

The directive routines of bespoke precast concrete 
manufacturing process which are activities associ-
ated with the casting procedure are included into the 
flowshop scheduling model. They are namely mould 
modification, mould preparation, concrete pouring, 
curing, mould stripping, and finishing. These rou-
tines have their own special characteristics and work 
logics which are modeled accordingly with a set of 
complicated mathematic equations (Benjaoran & 
Dawood, 2004). The GA-based optimization then 
randomly arranges job sequences and evaluates them 
with the multi-objective function. This procedure is 
repeated numerous times until optimum solutions (or 
near) are found. The optimum job sequences are al-
located into a factory’s timetable with regard to the 
existing workload. The outputs of PS are efficient 
production schedules and a decision support for util-
izing factory’s resources such as moulds and man-
power. 
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Figure 3: An operation procedure of PTE 
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Figure 4: An operation procedure of PS 

 
3 A CASE STUDY OF AIP APPLICATION 

A case study was conducted on a bespoke precast 
concrete company in the UK referred as ‘X’. The ob-
jective of the case study is to evaluate the possibility 
of the implementation of the proposed AIP system 
on this company and to benchmark the system re-
sults. The difference between the model assumptions 
and the real implementation is expected on any de-
velopment. Therefore, this trial implementation is 
needed to be conducted. AIP is put to the test here. 

3.1 Background of the company 
Real life production data was collected from com-
pany ‘X’ for being the system inputs. Some adjust-
ments for this case study have been made and de-
scribed as follows. Company ‘X’ uses semi-dry 
cement mix in the casting and therefore moulds can 
be stripped off their side forms immediately after the 
final compaction. The cast-units can support their 
own weight and maintain their shapes. The finishing 
or surface repairing process will be proceeded 
straight away. Therefore, the side forms of the 
moulds can be reused on the next unit and the new 
casting cycle begins. The manufacturing model of 
AIP was formulated from the traditional casting 
process which is using ordinary concrete and re-
quires concrete hardening time. Moulds reuse con-
sideration in the scheduling logic is not applied on 
this case study because of the advantage of immedi-
ately mould stripping. The mould availabilities of all 
types were set as infinite numbers in PS. The waiting 
time due to mould occupation is eliminated. 

Another area of the differences, the manufactur-
ing model of AIP includes three crews working to-
gether to complete the whole manufacturing process. 
There are six consecutive manufacturing routines 
that form scheduling logics of the model. In this case 
study of ‘X’, these manufacturing routines are re-
duced to two: mould preparation and casting. They 

are executed by two crews: joiners and casting 
workers. These two routines form a working cycle 
that complies with the flowshop scheduling concept. 
PS input for the other four routines was left blank. 
None or simple reinforcement can be inserted in be-
tween of the pouring routine so that there is no rein-
forcement cage installment before pouring. The cur-
ing routine which could have taken a long time in 
the middle of the manufacturing process is not ap-
plied in the scheduling logics because moulds are 
not occupied during the curing routine. 

Also, ‘X’ records their casting crew productivity 
in term of man-days while PS requires this in term of 
hours. there is no detail record of each casting rou-
tine because any worker completes all the routines 
individually and continuously. The productivity rates 
of manufacturing routines are estimated by experi-
ence using constant factors to covert job quantities 
(tons) into required man-day unit. Given their prod-
uct designs are in general simple shapes, the differ-
ence and difficulty of designs which could affect the 
productivity rate is not concerned. From the histori-
cal data analysis (two months period of actual pro-
duction), the error from this estimation is small (less 
than 5%). PTE is considered as unnecessary for this 
case study. 

3.2 Application of AIP  
The production data are prepared in a two-week pe-
riod (collected from historical records from 30 Au-
gust to 13 September 2004). There were 46 bespoke 
jobs released in this period. After the system cus-
tomization and data preparation, all data input are 
fed into PS to start the scheduling optimization. 
There are three sets of schedules to be compared as 
shown in Figure 5 and 6. The first schedule is ar-
ranged from the Earliest Due Date (EDD) rule which 
is the current standard scheduling technique. The 
second schedule is from the actual production record 
and the last one is the optimum from the AIP result. 
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Figure 5: Completion Time Comparison of Scheduling Results 
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Figure 6: Earliness and Tardiness Penalty Comparison of Scheduling Results 

 
Six objective functions are used to evaluate and 
compare the three schedules. Total-flowtime is a 
summary of all product completion time. It can show 
how well the factory resources have been utilized. 
Machine-idle-time is a total waiting time of all 
working stations. Total-penalty of earliness and tar-
diness is a total penalty of early or late completion of 
products from their due dates. Makespan is the 
length of production to complete all released jobs. 
The others are the number of products which are 
early and late finished, respectively. All the objective 
functions are subjected to the minimization which 
means the less values of the multi-objective function 
the better the schedule is. However, some of these 
objective functions are in reverse relationships. It is 
impossible that any schedule will achieve all func-
tion values at minimum. The result graphs (Figure 5 
and 6) show that the optimized schedule has the least 
makespan and total-penalty but it has a slightly 

higher total-flowtime. These result values are oppo-
site to the values of the actual-done schedule. 

The summary of three scheduling results is shown 
in Table 1. The EDD schedule does not give the best 
results as the values of objective functions are in-
between values of the other two schedules. It also 
does not guarantee the lowest number of late finish 
units because this value is still high as 13. It reveals 
that to execute the jobs in EDD sequence may result 
in a high total-penalty (even not the highest) with 
many early or late jobs. In addition, many jobs are 
executed too early and unnecessarily waiting in the 
stockyard. 

In comparison, the actual-done gives relatively 
poor schedule result. The actual-done schedule tends 
to execute easy jobs (without waiting and required 
less processing time) first. This results in the small-
est total-flowtime value but a very high (the highest) 
total-penalty value. In addition, its makespan is the 
highest. The actual-done schedule is considered a C
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less effective one. The optimized schedule gives a 
considerably low and the least total-penalty. It tends 
to execute most jobs just slightly earlier than their 
due dates but some of them are still late finish. This 
results in a slightly higher total-flowtime. Although 
the optimized schedule gives the highest number of 
late finish units, it can still give very low and the 
least the total penalty. On average this optimized 
schedule is the best result out of the three because its 
all objective function values are relatively low to the 
lowest. 

This successful AIP application on ‘X’ has shown 
the adaptability and flexibility of AIP and its possi-
bility of real implementation. Benefits of AIP still 
can be seen on this case study. The important back-
bone part of the AIP is the data integration through 
the central database. That helps to automate the pro-
duction planning process. Interoperability between 
the coordinated departments that involved in the 
production process can be achieved. Improved 
schedules result with more efficiency in term of time 
resource. 

 
Table 1: A Summary of Scheduling Results 
 Objective functions EDD Actual done Optimised
Total Flowtime 11673 10626 12990
Machine Idle Time 584 604 555
Total Penalty 11156 15683 5003
Makespan 415 435 386
No. of early finish 33 35 32
No. of late finish 13 11 14  

4 CONCLUSIONS 

The paper proposes an innovative production plan-
ning system for bespoke precast concrete products. 
The proposed AIP is a decision support system, 
which adopts artificial intelligence techniques: ge-
netic algorithm (GA) and neural network (NN) to al-
leviate the complexity in bespoke precast concrete 
production. The system consists of three components 
for assisting different tasks namely: GDE for the 
product design, PTE for the productivity estimation, 
and PS for the production scheduling. They are inte-
grated together through the central database. 

After AIP has been developed, a bespoke precast 
concrete company (referred as ‘X’) was selected to 
be a case study of the trial implementation. This 
company has different details of production process 
from the configurations of AIP model but they are 
sharing the same bespoke production style. The dif-
ferences of them were described and attended. Gen-
eral comparison concluded that this company is a 
simplified version of AIP. The collected actual pro-
duction data were reformatted before being input of 
AIP. The result showed that GDE can extract the 
targeted product information well from the reorgan-
ized product drawings as it has been designed and 

developed for. While the schedule results from PS 
(or the optimized schedule) were compared with the 
EDD and the actual-done schedules. The result from 
PS showed relatively better than the other two. This 
case study shows the successful AIP application on 
another company settings and it helps evidence the 
generalization of the AIP for the real implementa-
tion. 

The optimum production schedules that are re-
sulted from AIP can increase the reliability of deliv-
ery services of precast manufacturers and shorten the 
lead-time of bespoke products. Consequently, con-
struction operations which require offsite-
components can reduce their wasting or buffer time 
and progress more efficiently. 
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