
1 INTRODUCTION

The process of generating and modifying floor plans
is an important design activity in both architectural
and VLSI (Very Large Scale Integrated circuits)
domains. A significant body of knowledge has been
accumulated and various commercial systems have
been developed to provide computational support.
Liggett (2000) gives a survey of the approaches to
automated layout of facilities. Typical layout systems
have a modular structure and are based on a gener-
ate-and-test search paradigm (see, for example,
Flemming 1989). Generators usually implement a
floor plan representation based on the concept of dis-
section. Topological as well as geometric constraints
on dimensions, areas, or aspect ratios of rectangles
play an important role in filtering the number of
alternative solutions down to a number that is man-
ageable for human designers. Most of these con-
straints may be characterised as permanent, that is,
they are either included explicitly in a space program
or defined by a designer up-front, remaining rela-
tively stable throughout layout synthesis.

In this paper, we describe how less static, ad-hoc
constraints can be dealt with computationally. Also
we are interested in how these could be maintained in
the transition from schematic to detailed design.
Such constraints are specific to particular floor plans
and are informed by structural, energy use, or other
performance considerations. For example, in multi-
storey buildings it is often desirable to align load-

bearing walls vertically on top of each other (vertical
alignment constraint), or to eliminate minor vertical
recesses, which may occur due to discrepancies in
floor layouts (perimeter constraint). These con-
straints and related conflicts arise first in schematic
and later in detailed design. The transformation from
schematic (topology) to detailed (geometry) design
representations is non-trivial because the introduc-
tion of wall thickness information in detailed design
typically causes multiple violations of the mentioned
constraints. These might be satisfied in a schematic
design, where walls are merely represented as lines.

The paper is organized as follows. First, we
review related work, followed by a problem defini-
tion and an outline of an algorithm that addresses the
problem. We illustrate the description of the algo-
rithm with a concrete example and conclude with a
discussion of the limitations of the proposed algo-
rithm as well as potential enhancements.

2 RELATED WORK

The vertical alignment constraint introduced above is
related to ‘nail’ constraints in graphics systems,
where the location of an entity may be fixed. Harada
et al. (1995) use nail constraints to fix the location of
individual walls. Wall alignment across floors, how-
ever, is not considered. In the same work, numerical
continuous constraint solution is used to determine
exact locations, aspect ratios and areas of space rect-

ABSTRACT: Building floor plans are often outlined as schematics with zero wall thickness. Using shape func-
tions, wall dimensions and circulation areas can be inserted and more detailed drawings generated. This topol-
ogy-to-geometry transformation does not solve vertical constraints in multi-floor topologies, as for example the
alignment of load bearing walls. The paper shows how dissection based rectangular floor plans can be modified
by introducing space area extensions to resolve the vertical constraints. Penalty values can be introduced to con-
trol the distribution of area extensions. The algorithm is based on defining constraints between nodes of the dis-
section tree. In the presence of multiple constraints, several passes through the dissection tree may be necessary.
The topology-to-geometry transformation is used in every pass to check if the constraints can be fulfilled. The
algorithm is demonstrated with an example.

A multi-floor topology to geometry transformation procedure based on
shape functions

G. Zimmermann
University of Kaiserslautern, Kaiserslautern, Germany

G. Suter
Department of Building Physics and Building Ecology, Vienna University of Technology, Vienna, Austria

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

angles. This approach may be computationally
expensive, particularly in large, hierarchical layouts,
where analytical area calculations need to be aggre-
gated from leaf nodes upwards toward a root node.
The computational effort for the derivation of such
analytical equation systems appears realistic only in
small problems or in situations limited to local
search.

In contrast, shape functions could be useful for
more complex layout problems because their deriva-
tion and solution is more scalable. In the context of
VSLI design, a shape function has been defined "as
the lower area bound of all possible rectangles of the
cell" (Otten 1983, Zimmermann 1988). A more
detailed definition of shape functions and a discus-
sion of different types of shape functions in layout
planning is given in Chapter 4.2. Shape functions
have been implemented in VSLI and architectural
design environments (Zimmermann 1988, Zimmer-
mann and Suter 2004).

In stacking algorithms, the shapes associated with
allocating an activity to a floor are usually not con-
sidered. Bozer et al. (1994) introduce an algorithm
which generates multi-floor layouts. Among the
known algorithms for stacking or multi-floor layout,
none appears to address the types of constraints men-
tioned and the consistency problems that occur dur-
ing the transformation from schematic to detailed
design.

In the context of performance-based bulding
design, Suter and Mahdavi (2004) describe a proce-
dure that is based on space-boundary offset parame-
ters to control the mapping from schematic to
detailed design representations. In that work, how-
ever, space area constraints are not considered.

In summary, the work presented in this paper
should be viewed as complementary to these related
efforts. We believe that the proposed topology to
geometry transformation algorithm could be a useful
enhancement to automated layout generators or
building editors for performance-based design. For
conceptual clarity, however, we will explain the algo-
rithm as part of a manual layout generation process.

3 PROBLEM DEFINITION

3.1 Terminology

We limit ourselves to orthogonal buildings. L-, U-
shaped buildings or other shapes we complement by
open spaces to achieve rectangular shapes. There-
fore, for the rest of the paper we will assume rectan-
gular buildings.

For floor planning purposes we distinguish two
models with different resolution: the schematic
model describes the topology of the spaces of a build-
ing with true net areas. The detailed model represents
spaces with true wall and other dimensions. Geomet-
ric representations of schematic models as for exam-

ple Figure 2 show dimensions for visualization
purposes and give an idea of a possible geometry. By
changing the aspect ratio, different geometries can be
derived from one topology.

We use an x-y-z coordinate system with z as verti-
cal axis. a expresses floor area. Suffix n denotes net
dimensions. Suffix p denotes space program dimen-
sions. The space program is a list of all ap of net
activity spaces plus circulation and other general
spaces. The latter spaces are typically not defined by
area but by one or two horizontal dimensions. In
Chapter 4.2 possible differences between an and ap
are explained.

All dimensions have two indices i, j. i denotes
major sections, e.g. wings, storeys, vertical shafts,
storey, j a space in a section. Figure 1 shows a single
room example.

3.2 Partitioning

To generate a schematic model of a building, we
interactively partition the whole space of the building
recursively by horizontal or vertical cut-sheets. We
also call this action a cut. The cut-sheets are denoted
by the direction of the normal vector. The vertical
sheets are denoted x and y, the horizontal z. Each cut-
sheet dissects a space into two spaces and
with

(1)

We call and siblings of parent . The two sib-
lings have a positional relation to each other, depend-
ing on the cut-sheet direction. The following list
shows the possible positions with abbreviations in
parenthesis:

x: left(l) right(r)
y: front(f) back(b)
z: down(d) up(u)

Partitioning continues until all activity spaces of
the space program are positioned. Through careful
planning of the positions and directions of the cut-
sheets, floor plans for all storeys can be achieved,
which even without wall dimensions give a good
impression of the final layout. Correct net areas for

Figure 1. Single room dimensions of a detailed model.

s2,5

xn2,5
x2,5

an2,5 yn2,5
y2,5

sa sb sc

ana anb anc+=

sb sc sa

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

all spaces can be entered into the dissection tool we
have described in Zimmermann & Suter 2004, creat-
ing a correct topology as starting point for the shape-
function based geometry transformation.

The partitioning process leads to a binary dissec-
tion tree representation. Each node in the tree repre-
sents a space. We distinguish internal and leaf nodes.
Internal nodes represent abstract spaces that are com-
posed of other spaces. Leaf nodes represent spaces
required by the space program. Each internal node is
also uniquely related to a cut-sheet. Leaf nodes have
no cut-sheets. Vertices represent parent-sibling rela-
tions. If we denote the nodes in the graphical repre-
sentation by the positions from the above list, as
shown in Figure 3, the cut-sheet direction of the par-
ent nodes can be derived uniquely. A node identifier
denotes the space as well as the associated cut-sheet.
Figure 3 gives an example. This tree is the basis for
all further procedures.

3.3 Constraints

Floor planning of multi-floor buildings may be per-
formed floor by floor and by finally matching the

layouts where necessary (see Figure 6). We call these
necessary matches vertical constraints. Horizontal
constraints are defined within one floor and are
resolved during the topology to geometry transfor-
mation (see Chapter 4.2). We distinguish three types
of vertical constraints:

The first constraint is caused by the need to align
the outer walls of all storeys of a typical building.
This means that the perimeters of different storeys
have to have the same dimensions. We call this the
perimeter dimension constraint. If we assume that
during floor planning the total area of a storey is
determined by the space program for this storey and
by the additional areas for walls and other structural
objects, the resulting perimeter dimensions will dif-
fer from storey to storey, even if a carefully balanced
partitioning of the total space program into programs
for each storey has been performed. What looks per-
fectly aligned in Figure 2 will change when the sto-
rey spaces s9,0, s11,0, and s12,0 are partitioned and wall
dimensions inserted. In this example the constraint
can be expressed as:

(2)

A similar constraint could be expressed between the
three storeys to the left of the example building.

The wall alignment constraint stems from the
necessity to align load bearing and other internal
walls between storeys. Typically the dimensions of
such spaces has to be the same in all storeys. In the
example this could mean that between the storeys on
the left and on the right load-bearing walls exist. The
alignment constraint would be expressed as:

(3)

Shaft constraints guarantee the vertical alignment
of shafts for staircases, elevators, chimneys, or utility
networks. In the example in Figure 2 the alignment is
automatically guaranteed by making the staircase a
leaf-space s2,0. In other cases this constraint has to be
expressed by equations.

It should be pointed out that in all constraint
examples dimensions of internal nodes or spaces
have been used. The same could be expressed by leaf
node dimensions, but the number of equations would
increase drastically for most constraints. This is an
advantage of the dissection approach and the result-
ing tree representation. In the following, we outline
an algorithm for topology to geometry transforma-
tion. The algorithm is especially suited for configura-
tions with floors separated by single cut sheets, such
as the configuration shown in Figure 6.

0
5

10
15

20

0

2

4

6

8

10

0

2

4

6

8

10

y

x

z s12,5
s12,6

s12,3

s12,1

s11,0

s9,0

s7,0

s6,0

s4,0

s2,0

Figure 2. Topology example of a building space s0,0 with 3 sto-
reys and a staircase shaft s2,0. The top storey s12,0 is partitioned
into a hallway s12,3 and 3 rooms s12,1, s12,5, and s12,6

Figure 3. Dissection tree example of the building example in
Figure 2

s0,0

r s8,0l s1,0

f s2,0 u s10,0b s3,0 d s9,0

l s12,5 r s12,6

f s12,3 b s12,4

d s4,0 u s12,0u s5,0 d s11,0

d s6,0 b s12,2u s7,0 f s12,1

x9 0, x11 0, x12 0,= =

y9 0, y11 0, y12 0,= =

x4 0, x6 0, x7 0,= =

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

4 SOLUTION OUTLINE

4.1 Idea and basic equations

If the space program would be strictly enforced, the
constraints may not always be fulfilled. Some slack
is necessary to enlarge or shrink total floor areas or
other dimensions. For the purpose of this work we
assume that the space program defines minimal net
areas or dimensions that have to be fulfilled in any
case. On the other hand, spaces can be enlarged if
necessary. This will increase the cost but also the
utility. We assume that the cost will exceed the utility
increase, but this relation will depend on the activity
of a space. We will introduce penalty factors p for
leaf spaces to control the increase. In general, the
total area increase should be minimized.

The basic idea is best explained with the perimeter
constraint. Let us assume the example building with
three storeys. The equalities of Equation 2 have to be
fulfilled. The space areas are nearly balanced across
storeys, but the floor plans are different. For each
storey the topology has been transformed into a
geometry with the same dimension y. This condition
fulfills two of the equalities. But the x dimensions
differ by a small percentage. If the difference is
larger, the space program partitioning should be
modified.

Since we assume that all dimensions are minimal,
we can not shrink the largest x. We can only extend
the x of the smaller storeys. We do this relative to the
area of each space and also controlled by the penalty
factor p.

Let us assume two adjacent spaces that are sepa-
rated by an x-cut-sheet, as shown in Figure 4. If a+

denotes the extended area, then we define the exten-
sion di by

(4)

If yi is fixed, the following also holds (for x respec-
tively):

(5)

Let s0 be the parent s1 of and s2 with

(6)

then for the extended areas we postulate

 and (7)

(8)

If is known, we can calculate

(9)

and from Equation 7. This allows us to calculate
all extensions starting from the top or from any inter-
nal node of the dissection tree down to the leaves of
the corresponding subtree. We can imagine this pro-
cess as a penalty controlled propagation of parent
extensions to child extensions. Both children
together provide the necessary extension for the par-
ent.

In order to simplify the calculation of the di during
resolving constraints, the fraction in Equation 9 is
calculated and stored in the geometry translation pro-
cess for all nodes. Since an and at can be shape
dependant, we use ap for these calculations. In the
case of spaces with x or y dimension constraints,
these are used instead of ap.

Since we have defined the penalties for the leaves
only, we have to give a rule for calculating internal
node penalties. We do this from the leaves up, using
the same indices as above

(10)

This basic approach works fine as long as only
one constraint is defined in a subtree. If more than
one is present, we have to refine our idea. Here we
will just outline the idea and explain details in Chap-
ter 5. We start with fulfilling the highest constraint in
the subtree. Then we propagate the extensions d with
Equation 9 and Equation 7 breadth first down the tree
until we meet the next node with a constraint. This
may require a larger d than was assigned to the node.
In this case we propagate this new d up until it can be
met. To get more slack, the extensions are no longer
distributed according to the above proportions, but
one-sided to the node that requires the larger d. In the
extreme case this can mean to even extend the largest
storey in the example. Once a node is found with suf-
ficient slack, the top-down propagation continues
until the next constraint is found. We assume that
during early design phases the number of vertical
constraints is small and this “Jo-Jo” process termi-
nates quickly.

4.2 Shape function based floor plan generation

Before we can explain the algorithm for vertical con-
straint resolving, shape functions and their role in
floor planning have to be explained. Shape functions
have been introduced by Otten (1983) to define the
relation between shape and layout area in VLSI
designs. Zimmermann (1988) used this definition to

Figure 4. Area extension example

s1 s2

x1

x1
+ x2

+
x2

y2y1

ai
+

ai 1 di+()⋅=

xi
+

xi 1 di+()⋅= for yi const=

a0 a1 a2+=

d1

d2

p2

p1
-----=

a0
+

a1
+

a2
+

+=

d0 d1

d1 d0

a1 a2+

a1 a2 p1 p2⁄⋅+
------------------------------------⋅=

d2

p0

p1 p2+

2
-----------------=

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

estimate the effects of routing areas on layout area
for chip planning purposes. This technique is closely
related to considering wall and other areas in floor
planning and led to the current research.

A shape function is defined as the relation of y to x
for all possible aspect ratios y/x. Even if an is con-
stant (horizontal constraint), a normally varies with
different aspect ratios, because the volume of the
walls changes with length. Figure 5(a) shows an
example of this type.

Shape functions can also express other horizontal
constraints. Hallways have typically one dimension
fixed and the other variable. Figure 5(b) shows the
shape function of a hallway that extends in the x-
direction. Other constraints define minimum dimen-
sions of rooms. For example, no office dimension
should be smaller than a certain value. Figure 5(c)
shows the corresponding shape function. In this case,
an exceeds ap when one of the limits is reached.
Instead of hard limits, an can also be continuously
increased outside of an ideal aspect ratio. Finally, a
space with fixed dimensions is defined by the shape
function in Figure 5(d). An example is an elevator
shaft. In order to fit such a space to a more flexible
space, L-shaped spaces would be created. Here we
will introduce empty space by extending the fixed
space in one dimension as shown by the dotted lines.

All shape functions have a limited definition
range. This is an additional constraint on possible
aspect ratios. Also, discrete rather than continuous
dimension increments can be expressed. During the
topology to geometry transformation, aspect ratio
constraints can lead to unsolvable problems. In such
a case, the topology, the space program, or the over-
all aspect ratio have to be changed.

As explained in Zimmermann & Suter (2004), for
the purpose of generating floor plans, shape func-

tions have to be defined for all leaf nodes of the dis-
section tree. This is done automatically by using the
space program data and the wall type information.
Wall types are either assigned as defaults during the
interactive dissection process or can be modified by
the designer at any time. External walls are assigned
fully to the adjacent space. Internal walls are nor-
mally split into two layers and these are assigned to
the two adjacent spaces. For this purpose all walls are
automatically partitioned into sections with exactly
two adjacent spaces. For external walls the surround-
ing space is the second space.

Shape functions of internal nodes are calculated
by adding the shape functions of the siblings. This is
a bottom-up process that continues in all branches of
the tree until a horizontal cut-sheet is reached. This
limit is necessary because the height od spaces (z)
can not be traded with x or y. Thus shape functions
are always 2-dimensional.

The subtrees that are reached at this point are the
major sections that are denoted by the first index (see
Chapter 3.1). For each section one total dimension
(xt or yt) for the top node has to be chosen. In the
case of several vertically stacked storeys, the same
dimension and value will be selected to align one
direction of outer walls. With this selection all other
dimensions in the subtree are derived from the shape
functions and a floor plan geometry without holes or
overlaps results. This is a top-down process. The
algorithms have been described in Zimmermann &
Suter (2004).

The problem remains that the section may not fit
together in the free dimension and that other vertical
constraints are violated. The basic idea for a solution
has been explained in Chapter 4.1 and will be
extended in Chapter 5.

5 ALGORITHM

After the introduction of the basic idea and the for-
mulas in Chapter 4.1, the alignment process is
straight-forward. We will describe the individual
steps of the algorithm in textual form, because a for-
mal language would hide more than it would explain:

Step 1: Plan major sections. Partition space pro-
gram with the goal to evenly distribute net areas to
stacked sections. Sketch floor plan for each section.

Step 2: Mark the cut-sheets in the sketches, com-
pute sums of space areas, calculate total volume and
net dimensions of the building. Dissect the building
space, major sections first and then each section.
This results in a geometric representation of the
topology as for example in Figure 2 and the dissec-
tion tree as in Figure 3.

Step 3: Identify nodes that result from z-cuts, but
do not contain z-cut-sheets in the associated subtree.
For each subtree perform the shape-function based
geometry transformation. Try to reduce the number

0

2

4

6

8

10

12

0 2 4 6 8 10 12
xt/m

yt
/m

0

2

4

6

8

10

12

14

16

at
/m

^2

Figure 5. Different shape functions (dashed line = a): (a) con-
stant an, (b) constant yn, (c) constant an in a limited range, min-
imum dimensions outside the range, (d) fixed xn and yn, the
dotted line defines empty space

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12
xt/m

yt
/m

0

5

10

15

20

25

at
/m

^2
0

2

4

6

8

10

12

0 2 4 6 8 10 12
xt/m

yt
/m

0

5

10

15

20

25

30

35

at
/m

^2

0

2

4

6

8

10

12

0 2 4 6 8 10 12
xt/m

yt
/m

0

5

10

15

20

25

30

(a) (b)

(c) (d)

x/m

a/
m

2

y/
m

y/
m

a/
m

2

a/
m

2

a/
m

2

x/m x/m

y/
m

y/
m

x/m

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

of vertical constraints by using identical dimensions
where possible. Assign penalty factors to leaf nodes.

Step 4: Identify vertical constraints. Enter rela-
tions between affected spaces and add constraint
equations to the relations. Avoid redundant con-
straints (if a=b and b=c, a=c is redundant).

Step 5: Traverse the tree breadth-first until the
first constraint is found. Find the second node of the
constraint relation. Select the node with possible
slack. Calculate the extension d for this node as
defined in Equation 4 and apply d to all nodes of this
subtree. If d extends x, Equation 9 and Equation 7 are
used for nodes that result from x-cuts only. For nodes
resulting from y-cuts, d is copied. For extensions in
y, the above is applied respectively. Execute the
geometry transformation to check if with the new
dimensions a valid solution can be found. If not,
which can happen if the valid range of a shape func-
tion is exceeded, other modifications as proposed in
Chapter 4.2 have to be made.

Step 6: Repeat Step 5 until all vertical constraints
at the highest level in the tree have been resolved.
This can require repeating the process for nodes that
have already been visited, because of the order of the
visits. Because we do not reduce the minimal dimen-
sions of the space program and if more than two
nodes are directly related, the node with no slack
may be visited after the first resolution step.

Step 7: Additional constraints are detected when
the subtrees below a resolved constraint are also tra-
versed breadth first. As in Step 5, the second node of
the constraint relation has to be selected. Since all
subtrees have been processed in Step 5, the exten-
sions d of both nodes are known. They can be manip-
ulated by modifying the distribution of the parent
extension to the children. In Figure 4, for example,
the cut-sheet position can be moved left or right
within limits. If both participating nodes have exten-
sions, both will contribute relative to their d value
and penalty, using Equation 9 accordingly, replacing
a by d. Otherwise, only one d is manipulated. In both
cases, the d of the other child has to be adjusted
accordingly.

If the range for modifying the d’s is large enough,
the process stops here and all involved subtree are
recalculated. Otherwise, if the required d is larger
than what both parent nodes together can provide, the
d is also distributed to both participating nodes as
above, but the parents propagate this extension up the
tree until it can be met by a node.

If during this up-propagation other constraint rela-
tions are met, these have to be reevaluated in the
same way as before.

Step 8: Repeat Step 7 until all constraints have
been found and resolved or no valid geometry can be
generated.

6 EXAMPLE

In order to be able to show enough details, we had to
make the example extremely simple. Let us take a
building with 2 storeys, 8 rooms, and a load bearing
internal wall in both storeys that have to be aligned.
This creates a perimeter dimension and a nested wall
alignment constraint.

Step 1: The space program consists of 3 rooms
with 20, 30, and 50 m2 in the first floor and rooms
with 25, 30, and 3 rooms with 15 m2 on the second
floor. This sums up to 100 m2 in each floor. Outer
walls are 40 cm, inner walls 26 cm thick. Floor plan
sketches are not shown here.

Step 2: The topology result of floor planning is
shown in Figure 6 seperately for each storey.

Figure 7 shows the resulting tree structure.

Step 3: For the two storeys s1,0 and s2,0 in the
detailed model, the same x=12m is chosen and the
geometry constructed with the results as shown in
Figure 6. The transformation results in different y-
dimensions of the storeys: and

. We can also extract the position
and dimension of the spaces to the left of the load-
bearing walls in the first storey between s1,1 and s1,2
as and in the second storey between
s2,2 and s2,3 as , both measured from
the left side of the building. In this step we also

0 2 4 6 8 10 12
0

2

4

6

8

10

12

20
A.2.2

30
A.2.1

50
A.1

0 2 4 6 8 10 12
0

2

4

6

8

10

12

15
A.2.2.2

25
A.1.2

15
A.2.2.1

30
A.1.1

15
A.2.1

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Figure 6. Test building before constraint resolution. a. First
floor (schematic). b. Second floor (schematic). c. First floor
(detailed), d. Second floor (detailed).

s1,1

s1,3

s1,4 s2,2 s2,3

s2,8s2,7s2,6

50m
2

an1,1
20m

2

an1,3

20m
2

an1,4

15m
2

an2,6

15m
2

an2,7

15m
2

an2,8

25m
2

an2,3

30m
2

an2,2

a. b.

d.c.

Figure 7. Dissection tree of test building. Arcs with arrow
heads denote vertical constraint relations.

s0,0

u s2,0d s1,0

l s1,1 b s2,4r s1,2 f s2,1

l s2,6 r s2,7

f s1,3 r s2,3b s1,4 l s2,2 r s2,8l s2,5

y1 0, 10.076m=
y2 0, 10.304m=

x1 1, 5.921m
·

=
x2 2, 6.497m

·
=

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

assign penalty values for the rooms (leaf spaces):
; ; ;

. This means that necessary
area increases will mostly apply to the larger rooms.

Step 4: We define two vertical constraints: The
perimeter dimension constraint and the
wall alignment constraint . In Step 3 we
have shown that both are violated in the geometry in
Figure 6. The constraints are shown in Figure 7 as
arcs.

Step 5: Traversing the tree in Figure 7 top down,
we first find a constraint at node s1,0 and the related
node s2,0. Since , s1,0 is the node with
slack. With Equation 5 we get . By
applying Equation 9 and Equation 7 to nodes that
result from y-cuts below node s1,0, s1,3 and s1,4 in this
case, we finally get new dimensions for these nodes
and can apply the geometry transformation again.
The result is y1,0=10.304m and thus the first con-
straint is met.

Step 6: No more constraints at the top level are
found.

Step 7: Traversing further down from s1,0, we find
a constraint at node s1,1. This is still violated because
the x-dimensions have not changed. Since node s1,0
has been extended, there is slack in this storey and
we try first to use this slack to extend x1,1. By mini-
mizing the net area of node s1,2 to ap1,2, we get
x1,1=6.061m. To get this result we have to use the
shape function of s1,2. Figure 8 gives an idea of this
process. Still, the constraint is not met. Therefore, we
extend y1,0 and y2,0 in parallel not to violate the first
constraint. Again, we have to use the shape functions
of the appropriate nodes as above. As a result we get

the new dimensions:
y1,0=y2,0=10.555m
x1,1=x2,2=6.204m

This result shows that both constraints are met.
Step 8: Traversing further down the tree, no more

constraints are found, as expected. Since the gener-
ated geometry is valid, the algorithm terminates.

In order not to confuse the reader with too many
details we have not shown all intermediate calcula-
tions. In practise these are executed by tools, here we

used a spreadsheet to do the calculations. The
designer only needs a basic understanding of the pro-
cess to interpret the results and propose modifica-
tions.

Matching of the two constraints requires an
increase of total building floor area of originally
200m2 by 8.75m2. The designer can now decide, if
he finds this result satisfying or he can either change
the space program, the topology, or the penalty fac-
tors to improve the result. With tool support these
operations can be performed rapidly and allow the
designer to experiment in a large design space.

7 CONCLUSION

Mapping procedures such as the topology to geome-
try transformation algorithm introduced and illus-
trated above are aimed at improving the information
flow in the building design. Although our algorithm
is based on several restrictions and assumptions, it is
already fairly complex. To further improve its gener-
ality, we anticipate work in three areas.

So far, only the 3-dimensional topology planning
and the 2-dimensional topology-to-geometry trans-
formations are supported by a prototype tool based
on Matlab. Since all extensions are based either on
analytical functions or on shape functions that are
generated with the existing tool, the extension to full
tool support is only a matter of programming effort.
No basic problems have to be solved.

We also plan to experiment further with shaft con-
straints. The idea of the outlined algorithm seems to
solve this problem, but we are not certain yet that it
works under all conditions. For this purpose we first
have to introduce empty spaces into the topology-to-
geometry transformation.

Restricting the domain to orthogonal geometries
is a significant limitation of the proposed algorithm.
This is important particularly in the context of
detailed design. We thus intend to incorporate geom-
etry refinement operations, perhaps similar to those
described in Suter and Mahdavi (2004). These opera-
tions extend the domain to certain classes of non-
orthogonal geometries common in building design.
Issues related to extending the domain, such as pre-
serving constraints, or adapting shape functions,
need to be addressed as well.

REFERENCES

Flemming, U. 1989. More on the representation and generation
of loosely packed arrangements of rectangles. Environment
and Planning B (16): 327 - 359.

Harada, M., Witkin, A., and Baraff, D. 1995. Interactive physi-
cally-based manipulation of discrete/continuous models. In
Computer Graphics Proceedings, Annual Conference Series
199-208.

p1 1, 1= p1 3, p1 4, p2 2,, ,() 2= p2 3, 3=
p2 6, p2 7, p2 8,, ,() 4=

y1 0, y2 0,=
x1 1, x2 2,=

y2 0, y1 0,>
d1 0, 0.0226=

x

y

Figure 8. Dimension change in shape function: 1st modifica-
tion y->y+; 2nd modification x->x-

x

y

y+

x-

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

Kundu, S. 1988. The equivalence of the subregion representa-
tion and the wall representation for a certain class of rectan-
gular dissections, Communications of the ACM 31 (6): 752 -
763.

Liggett, R.S. 2000. Automated facilities layout: past, present
and future. Automation in Construction 9: 197-215.

Bozer, Y., Meller, R. Erlebacher, S.1994. An improvement-type
layout algorithm for single and multiple-floor facilities,
Management Science 40 (7): 918–932.

Otten, R. 1983. Efficient floorplan optimization. In Proc. Int.
Conference on Computer Aided Design (ICCAD): 499 -
502.

Suter, G., Mahdavi A. 2004. Elements of a representation
framework for performance-based design. Building and
Environment 39 (8): 969-988.

Zimmermann, G. 1988. A new area shape function estimation
technique for VLSI layouts. Proc. 25th Design Automation
Conference, Anaheim, USA: 60-65.

Zimmermann, G. & Suter, G. 2004. A model for hierarchical
floor plan generation based on shape functions. Proc.
ECPPM 2004, Istanbul, Turkey.

C
o
n
st

ru
ct

io
n
 I

n
fo

rm
at

ic
s

D
ig

it
al

 L
ib

ra
ry

 h
tt

p
:/

/i
tc

.s
ci

x.
n
et

http://itc.scix.net
http://itc.scix.net

