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ABSTRACT: This paper explores Geometric Typed Feature Structures as a concept for carrying 
geometric information based on the theory of Typed Feature Structures[Carpenter, 1992]. 
Geometric Typed Feature Structures cover an important aspect of design space explorers in which 
the symbol level representation must carry 3D geometric information. Order Types are the devices 
in Geometric Typed Feature Structures that carry the continuous infinite domain information, that 
is, geometry. In this paper, theories and algorithms are applied to two kinds of Order type examples 
for carrying numerical values and geometric information. We describe the requirements as well as 
the conditions in which an Order Type can be specified and synchronized with other domain 
knowledge. 
 
We show two examples of Order Types: lifted reals and IGOSet intervals based on the theory of 
Geometric Typed Feature Structures. In each example, we outline the mathematics linking it to the 
theory of Order Types. 
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1. BACKGROUND 
Within the domain of computational design, exploration i

                                                

s one of the most widely respected and 
useful models. It is commonly referred to as the exploration model[Woodbury, 1987, Smithers, 
1992]. The exploration model is used as a prototype for exploring possible alternative designs 
arrayed in design spaces. The device for exploring large design spaces is called a design space 
explorer. One of issues that have not been resolved in design space explorers is the representation 
of 3D design instances. Geometric Typed Feature Structures[Chang, 1999] propose a solution to 
this research problem. 
 
In computational linguistics, a record-like data structure known as feature structures has been used 
by many researchers1, see [Kaplan and Bresnan, 1982 and Ait-kaci, 1984]. One of the feature 
structure formalisms, Typed Feature Structures developed by Bob Carpenter [Carpenter, 1992], is 
particular interesting in the context of design space explorers. It provides natural notions of 
information specificity and partiality essential to creating structured design spaces. 
 
Typed Feature Structures comprise four elements: a set of types organized in an inheritance 
hierarchy, a frame-like representation (feature structures), a description language and the algorithms 
above those. 

 
1. For a more general introduction about this field see[Shieber, 1986]. C
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1.1. The Architecture of Typed Feature Structures 
The three structured components of Typed Feature Structures are types, feature structures, and 
descriptions. Each component is in relation to others. The formal definition of each term borrowed 
from [Carpenter, 1992] is also given in each section. 

1.1.1. Types 

Types are a means of efficiently encoding information. They are organized in an unambiguous 
multiple inheritance hierarchy. In such an inheritance hierarchy, information associated with a type 
is extended in inheriting types, that is, an informational ordering. We say that type α subsumes type 
γ, if and only if type γ contains more information than type α (the actual algorithm is described later 
in this chapter). A bounded complete partial order (BCPO)2 condition is imposed in this 
information ordering described above. Reasoning operations over types are available as the lattice 
operations such as E (join, or most general common specialization) and F (meet, or the most 
specific common generalization). A universal type is described as Bottom (written as �), at which 
all the types meet. 
 

⊥ A type 
Figure 1. A Graph Notation of an inheritance Hierarchy 

 
All types are organized in so-called inheritance hierarchies based on the information inheritance of 
any two types, that is a subtype carries more information than its supertypes. With a graph-notation 
(as shown in Figure 1), inheritance hierarchies can be described as a directed acyclic graph. Each 

relationship of information inheritance between any two types. Cycles are not allowed in 
inheritance hierarchies. Without cycles in inheritance hierarchies, a subtype of a type can not 
become the super-type of that same type. 

vertex of this graph represents a type, and each edge between any two vertices represents the 

                                                

 

1.1.2. Feature Structure 

Feature structures are frame-like representations based on a set of existing types. A minimal feature 
structure simply contains a single node labelled by type information. An informal description of 
feature structures is that they are a representation for a labelled, rooted, directed, finite node and 
edge graph, which can be visualized in graph notation (as shown in Figure 2) or in AVM 
(attribute-value matrix) notation. Cycles are allowed in feature structures. With these characteristics, 
feature structures can easily organize domain information in an intricate structure. 

 
2. For the mathematic explanation of the BCPO conditions, see [Davey and Priestley, 1994]. 
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Figure 2. An example Feature Structure in Graph Notation 

 
Naturally, traversing feature structures is important. Thus the transition function has to be able to 
be composed. The path is needed for retrieving the value at the end of a path. “A path is a sequence 
of features and we let Path = Feat* be the collection of paths” [Carpenter, 1992, page 37]. In terms of 
graph-notation, a path comprises all the edges from its root node to the final destination node. Using 
the graph notation in Figure 42, a partial path of wall_geometry from house is either massing_of →
wall_of or enclosure_of→massing_of .  

1.1.3. Description 

Descriptions provide a means to express a set of feature structures with respect to a given 
inheritance hierarchy. A type, a description at the end of a path, a path equation, a path in-equation, 

satisfied by a set of feature structures. This set of feature structures, however, might be empty if a 
description is unsatisfiable.  

disjunction of descriptions and conjunction of descriptions are all descriptions. A description is 

 
Every feature structure can be called out by some description that includes no disjunction. 
Conversely, every description might have an empty feature structure or more than one satisfied 
feature structure. The members of the set of satisfying feature structures are pairwise incomparable. 

1.2. The Algorithms 

1.2.1. Subsumption 

A feature structure represents partial information. The ability to specify that one structure is more 
specific than the other is important. The informational ordering over types is extended to feature 
structures by the subsumption ordering. An intuitive explanation of subsumption over two feature 
structures is “a feature structure F subsumes another feature structure F́ if and only if every two 
paths which are shared in F are also shared in F́, and every type assigned by F to a path subsumes 
the type assigned to the same path in F́ in the type ordering”[Carpenter, 1992, page 40].  

1.2.2. Unification 

The unification of two feature structures generates the minimal feature structure carrying more 
information than both argument objects together. Unification is a partial function, and where 
undefined, the two typed feature structures are said to be inconsistent. Linear time subsumption and 
unification algorithms exist, though typically a quasi-linear time algorithm it used. 

1.2.3. π-resolution 



Constraint resolution is a process by which a query, expressed as a description, is either satisfied or 
found to be unsatisfiable. The resolution mechanism proceeds, substructure (of a given feature 
structure) by substructure, until all the substructures satisfy (or fail) the constraint on their types. 
During the constraint resolution stages, the mechanism adds as just much information as is needed 
to the substructure in order to satisfy its constraints. This constraint resolution mechanism is called 
π-resolution. It captures a relationship between descriptions and feature structures and acts as the 
main exploration mechanism in the design space explorer.  

2. CARRYING GEOMETRIC INFORMATION USING TYPED FEATURE 
STRUCTURES 

We presume Typed Feature Structures are the only carriers of information in our design space 
explorer, then we must regard feature structures and their types as the lexicon within which we must 
work to devise appropriate representations. We choose feature structures representing geometric 
information to be instances of atomic types, that is, types carrying geometric information have no 
features. The type hierarchy itself thus must do almost all the duty of defining our geometric 
representation.  
 
In conventional treatments of feature structures types hierarchies are formed from finite sets of 
types, though this is not a formal restriction. Our type hierarchies are infinite and thus implicit. In 
essence, a type hierarchy carrying a set of geometric objects is a graph with the node set being the 
set of geometric objects and the arc set capturing a “natural” relation of information specificity over 
the geometric objects. 
 
There are lots of such “natural” relations, for example point set inclusion. Some of these relations 
have the BCPO properties required for inheritance hierarchies[Carpenter, 1992, page 13]. For 
example (Figure 3), in the domain of real intervals, the join of [-12.2, 17.74] and [5.023, 20.47] is 
consistent as [5.023, 17.74] under the point-set relation •, and a most general type (carrying an 
infinite interval �) is trivial to describe. 

5.023 17.74,[ ]

5.023 20.47,[ ]12.2– 17.74,[ ]

⊥  
Figure 3. Example of a Complete Partial Order of Three Real Intervals and a Bottom 

 
In summary, the problems of using types as carriers for domain relevant information are 
1)continuous domains are infinite—thus we need a finitely describable way of representing infinite 
inheritance hierarchies and 2) the relations between domain objects must conform to an inheritance 
relation between the types carrying these objects. 
 
Before describing of our solution to the problems described above, we need to address the 
terminology for the types we are using. The terms used here follow the literature [Carpenter, 1992, 
Burrow and Woodbury, 1998] very closely. First of all, the top of an inheritance hierarchy is called 
an absurd type, and the bottom is called a universal type. The standard types described in 
[Carpenter, 1992] are called Succession Types, as they succeed one another in an inheritance 



hierarchy specification. We describe a different kind of types called Order Types in which the 
ordering of types can be computed by direct comparison. The name for “Order Type” is given 
because of its ordering characteristic. 
 
The elements of a set of types comprising both Succession Types and Order Types are called 
regular types, to distinguish them from absurd types. Consequently, regular types and the absurd 
type are from the universe of types. A detailed definition of the set of Order Types is given in the 
following section. The theory following that of Typed Feature Structures with the necessary 
extensions to include regular types is called Geometric Typed Feature Structures. 

2.1. The characteristics of Order Types 
Several differences between Order Types and Succession Types are identified. Those differences 
form the characteristics of Order Types below, which includes 1) Order Types are un-evaluated, 2) 
Order Types have no feats, 3) descriptions of Order Types have no paths, 4) Order Types carry no 
constraints and 5) some Order Types are intentional. 

2.1.1. Order Types are un-evaluated 

Regular types, that is, both Succession Types and Order Types, are defined by inheritance. In 
Succession Type finite inheritance hierarchies are explicitly constructed, either directly or through 

store a type hierarchy. Instead we determine information consistency by direct examination of type 
tokens. Therefore, if the value has not been evaluated, the Order Type carrying this value will not 
exist in the type system. This reflects Order Type hierarchies are un-evaluated until users need to 
describe certain domain information that is implicit in them. 

closure operations over ISA networks [Carpenter, 1992]. In the Order Type we do not explicitly 

 
As a result, Order Types need not be evaluated until a description specifies a particular value, i.e., 
Order Type hierarchies are presumed to exist but remain un-evaluated until needed in the universe 
of types.  

⊥

a b c Objec ts∈, ,
a b⊆
a      b c=

For  a ll  objec ts,
 there is a uniform procedure 

An Order Type

 
Figure 4. Example of an Order Type Hierarchy 

2.1.2. Order Types have no feats 

The main motivation for employing Order Types is to represent continuous domain objects, such as 
point-sets, numbers, and intervals. These objects have no sub-structures. If we want to represent the 
structure of domain information, we need to utilise higher-level structures. For example, in Figure 5, 
the topological relation between a solid and its faces can be organized in a feature structure-fashion, 
such that each feat of this feature structure carries a face as its value. Thus, there is no need to 
provide a sub-structure for Order Types and consequently, Order Types need no feats. 



Cube

face and solid 

FACE_1: face

F 

G

F

GEOM: solid

FFACE_2: face
F FFFACE_3: face
F FFFACE_4: face
F FFFACE_5: face
F FFFACE_6: face

A cube

are order types

A feature structure representing the cube 
Figure 5. An Example Represents the Properties of a Cube with a Higher Level Structure 

2.1.3. Descriptions of Order Types have no paths 

Descriptions contain four key components: types, values at the end of paths, path equations and 
and/or expressions of descriptions. Without feats of their own, Order Types have no path values and 
no path equations. Thus a description of Order Types comprises only a set of Order Types. 
 
Let us recall that the definition of a path value F#π is the value of the feature structure F at a path  
(which must be defined). If F is typed by an Order Type in Geometric Typed Feature Structures, 
there will be no path for F as F will have no feats at all. Thus, there will be no path values for F. 
Consequently, there are no path equations and path description for Order Types either, since Order 
Types have no path values. This means that the descriptions over Order Types are merely 
descriptions of those types, along with the disjunctions and conjunctions over them.  
 

σ Desc if   σ Type∈ ∈

π : φ  Desc  if    π Path, φ Desc∈ ∈ ∈
π1  π2 = Desc  if   π1 , π2  Path∈ ∈
φ ψ φ ψ ∨,∧ Desc  if    φ ,ψ  Desc ∈ ∈

 Desc    ∈⊥

σ Desc if   σ Type∈ ∈

φ ψ φ ψ ∨,∧ Desc  if  φ,ψ  Desc∈ ∈

 Desc   ∈⊥
Typed Feature Structures Description Geometric Typed Feature Structures 

Description

 
Figure 6. The Definitions of Order Types have no Path Values. 

 
In Figure 6, we compare Carpenter’s definition of description[Carpenter, 1992, page 52] with 
Geometric Typed Feature Structures. Without path values, the definition of description becomes 
only the type description and the conjunction/disjunction of types, which are also types (or sets of 
types). A definition of a Geometric feature structure is given in Figure 7. 
 

º 

A Geometric feature structure over   Order Types is a tuple  F Q q θ δ, , ,〈 〉where=

º Q: a singleton, rooted at q

q Q∈ : the root node, and the sole member of Q

º θ :Q  Type :→ a total node typing function
 

Figure 7. Definition of a Geometric Typed Feature Structures Over Order Types. 
 
The satisfaction of Order Types is also simplified by such a characteristic. As shown in Figure 8, 
the definition of satisfaction of Geometric Typed Feature Structures covers the absurd type, type 
satisfaction and conjunction/disjunction of satisfaction of two types.  
 



F      σ if  σ Type  and  σ     θ q( )∈

Typed Feature Structures Satisfaction Geometric Typed Feature Structures 

F         for  any F )∈

�

F      π : φ if  F     π       φ#

F      π 1
 =  π2

 if  δ π1
q,( )   =   δ π2

q,( )

F      φ ψ   if  F       φ  and  F      ψ∧

F      φ ψ   if  F       φ  or   F      ψ∧

F      σ i f  σ Type  and  σ     θ q( )∈
F         for  any F )∈

�

F      φ ψ   if  F       φ  and  F      ψ∧

F      φ ψ   if  F       φ  or  F       ψ∧

Satisfaction

⊥ ⊥

 
Figure 8. Comparison of Satisfaction of Typed Feature Structures with Satisfaction of Geometric 

Typed Feature Structures. 

2.1.4. Order Types carry no constraints 

As the domain described comprises a set of objects under a natural relation such as point-set 
containing, there is no need for further structure. What needs to be represented is nothing more or 
less than a chosen relation over a chosen set of domain objects. The only restriction is that the 
relation has to have the BCPO properties to form a well-behaved inheritance hierarchy, so that it 
can stand in an isomorphism to that hierarchy. Introducing cons(t)≠φ will change that desired state. 
For example, in Figure 9, three solids are under a point-set superset relation. If the constraints over 
these Order Types are allowed then there will be no way of representing the cuboids marked c.  

a b

c 

cons (c) = a b∧   ⇒

c  =

&

c  =

(a) (b)  
Figure 9. Order Types Need No Constraints. 

2.1.5. Some Order Types are intentional 

We shall now discuss some other properties of Order Types. Although it seems natural to think of 
an integer interval as an extensional type, it can be a nuisance since it generates structure sharing 
which prevents us from specializing a value by unification. For example, using Burrow and 
Woodbury’s feature structure example3[Burrow and Woodbury, 1998]: 

        human 
        FOODSTUFF: animal 
                    LEG_COUNT: interval_0_4 
        PET: animal 
              LEG_COUNT: interval_0_4 
If intervals were extensional the above is the alphabetic varia

                                                

nt of the following: 
        human 
        FOODSTUFF: animal 
                    LEG_COUNT: [1] interval_0_4 
        PET: animal 
              LEG_COUNT: [1] 
Then if a constraint identifies that we only eat four legged animals, we get 
        human 
        FOODSTUFF: animal 
                    LEG_COUNT: [1] interval_4_4 

 
3. The syntax of this example follows that used in the description of Kryos: an implementation of Typed Feature 
Structures. 



        PET: animal 
              LEG_COUNT: [1] 

 
Such structure is preventing us from owning snakes! If instead, we treat these types as being 
intentional, we avoid this problem. 

2.2. The Model Space of Order Types 
There are three criteria regarding of Order Types: domain relevance, the chosen relation has to be a 
BCPO, and efficiency of the computations corresponding to subsumption and unification. The 
values carried by the instances of Order Types must be domain relevant as the relation over these 
values that must be the inheritance hierarchy. One example of such objects regarding of geometry is 
two-dimensional rectangles. This 2D rectangle representation is used for several domain 
representation. Efficient constraint resolution algorithms computed over those rectangles are well 
developed. Another example is the 3D point-set, which is also of great interest in this dissertation. 
Relevant relations over those objects are also essential for Order Types. The example of the 3D 
point-sets, point-set containing is one relevant relation, that devoting all the points of PsetA are also 
points of PsetB if PsetA is contained by PsetB. 
 
A BCPO contains these conditions: partial order condition (reflexivity, anti-symmetry, and 
transitivity), type consistency and a unique bottom. In addition, the existence of consistent joins is a 

types is consistent, there is a single most general satisfied type that is subsumed by them all. This 
type subsumes all other types subsumed by all members of the set. A unique bottom is ensured by 
enforcing a universal type as described before. These two conditions associated with the partial 
order condition are the key of describing Order Types. In other words, Order Types and their 
associated relations have to confront the BCPO conditions for being included in inheritance 
hierarchies. A simplest BCPO is a tree. 

defining characteristic of inheritance hierarchies for Typed Feature Structures. Informally, if a set of 

 
Considering a mapping from a continuous domain, such as real intervals, an efficient domain 
representation is required. When one specifies an Order Type to carry certain domain information, 
such information has to be efficiently represented for a straightforward reason: computability.  
 
Order Types are specified under domain relations with given mechanisms, so that the 
subsumption/unification relations are defined in each Order Type. Consequently, each Order Type 
is responsible to the algorithms over that specified type. Thus, when one defines a useful Order 
Type, extra care has to be put on the efficiency of subsumption/unification algorithms defined over 
that Order Type simultaneously. In addition, without path values, unification of two Order Types is 
simply based on the subsumption relations that are defined within the domain of interest. 

3. TWO EXAMPLES 

3.1. The lifted reals 
-10 3.0 23.3 -1212302.14391218

⊥  
Figure 10. A part of Lifted Reals as an inheritant hierarchy 

 



Given the ordered set ℜ � �ℜ, �, where a  b iff a�b, we form ℜ�, which we call the “lifted” 
reals by adding an element �, ℜ� :�ℜ�{�}. We define an order relation ‘ ’ (ℜ is an antichain4) 
on ℜ� as ℜ� � �ℜ�, �. The definition is 

a  b  if  a  b in ℜ          (EQ 1) 
a  b  if  a＝＝ and in b�ℜ＝         (EQ 2) 

Usually we refer to ℜ� simply as ℜ�. A partial inheritance hierarchy formed by �ℜ�, � is 
shown in Figure 10. With this definition, the four conditions described above apply as follows: 

1.  �ℜ�, � is a partial order.  
Let a, b, c�ℜ�, 
reflexivity: a  b is true by definition (see EQ 1) 
anti-symmetry: a  b and b  a imply a�b 
by exhaustive enumeration, if a  b, either a = b or a =�, b≠a,  
in the former,  a  b and b  a � a  a and a  a� a  a �a = b  
in the latter, a  b but �b  a �(a  b) and (b  a) and b≠a are false. 
  � (a  b and b  a imply a�b) is true.   � 
transitivity: a  b and b  c imply a  c 
by exhaustive enumeration. 

If a  c, either a=b or a=＝, a≠b,        (EQ 3) 
in the former,  a  b and b  c � a  a and a  c� a  c 
in the latter,  a  b and b  c � �  b and b  c � 
 Note that b=c, as b≠a from [EQ3]. 
  �  b and b  c ��  c and c  c ��  c  
  but a=�, so a  c. 

� (a  b and b  c imply a  c) is true.   � 

2.  �ℜ�, �is a BCPO. 

  � 

 
As mentioned before, a tree is a BCPO. A “lifted” anti-chain is a tree, thus, �ℜ�, �is a 
BCPO.   

3.  There must be an efficient means of computing subsumption and unification. We take �ℜ�, � 

 

as an 
inheritance hierarchy such that  a � b = a  b.  
Subsumption  

 �� a, a �ℜ, and a � a, a�ℜ� 
 The subsumption algorithm is trivial and computed based on its simple symbol comparison. 

Unification
 �� a = a, a �ℜ�, and a � a = a, a�ℜ 
 The unification algorithm is trivial and computed based on its simple symbol comparison. 

4.  There must be a way to specify members of the set. Elements of ℜ� stand as names for themselves. 
Explicit expressions over ℜ with the usual operators of from { �, �, ×, ÷}, can also stand as names 
for elements of ℜ�

                                   

. 

3.2. The IGOSet intervals 

bb a 
4. “The o
             IOPSet 

rdered set P is an antichain if x<y in
IOPSet 

 P only if x�y.” [Davey and P
A cell complex comprises both a and 

riestley, 1994]. 



 
Figure 11. Example of Two IOPsets a and b, Such that a � b 

 
The ordered set PSet� = O[PSet⊆, PSet ], �Pwhere PSet is the set of all point-set and � denotes 
inner growing outer shrinking relation. W
we define pset(n) as a polymorphic func

PSet⊆ or PSet⊇. Pset(a) and pset(b) are c
of a and b in PSet⊆ and PSet⊇ . We disti
PSet as the null set. 

�

 
We refer to PSet� as IOPSet (inner-oute
and use ai and ao to denote the inner and
pset(ai)⊆pset( ao). A partial inheritance 
definition of PSet� is  

Let a ∈ PSet⊆ ,  b∈ PSet⊇ ,[a,b] ∈ PS
a ＝ b if ai ⊆ bi and ao ⊇ bo  

1.  PSet� is a partial order.  
Let a, b, c ∈ PSet� 
reflexivity: a � a 
As a special case shown in equatio
anti-symmetry: a � b and b � a i
The definition of a � b relies direc
respectively. Both PSet⊆ and PSet⊇
anti-symmetric as its definition (se
conditions.   � 
transitivity: a � b and b � c impl
By the argument used for anti-sym

2.  PSet� is a BCPO. 
Bottom. [�PSet⊆, �PSet⊇] � a, a ∈ PSet�
A least upper bound.  
Following the definition of upper bound

Let S∈ ℘(PSet�), and let S be con
Informally, two point-set intervals 
intersection of their outer sets. The

 [�si, ∩so], s∈S, if (�si ⊆

                                                

 ∩so), 

3.  There must be an efficient means of co
inheritance hierarchy such that a � b 

 
5. “Let P be an ordered set and let S⊆P. An elem
upper bounds of S is denoted by Su”[Davey and 
⊇

e call the elements of PSet� the IGOSET intervals. First 

tion giving the point-set corresponding to an element in 

omparable by ⊆ and ⊇ irrespective of the set membership 
nguish the set ∞∈ PSet as the set of all points and the set φ∈ 

r point-sets). We write an IGOSet interval a as a = [ai, ao] 
 outer bound of the interval respectively, such that 
hierarchy formed by PSet� is shown in Figure 12. The 

et◎, if pset(a) ⊆pset(b).     (EQ 4) 
      (EQ 5)  

n: 5, a � a is true by definition.  
mply a� b 
tly on the relations ⊆ and ⊇ over the sets PSet⊆ and PSet⊇ 
 are partial orders and anti-symmetric. Therefore, PSet� is 
e EQ5) is simply the conjunction of the above two 

y a � c 
 metry, PSet� also satisfies the transitivity condition. � 

 
 

 

. 

5 from [Davey and Priestley, 1994],  
sistent, that is, there is some x∈PSet� such that s�x, s∈S.
are consistent if the union of their inner sets is inside the
 least upper bound of S is
undefined otherwise.  �  

mputing subsumption and unification. We take PSet� as an 
= a � b. An example is shown in Figure 11. 

ent x∈P is an upper bound of S if s�x for all s ∈S. ... The set of all 
Priestley, 1994]  



Subsumption  
The subsumption algorithm is computed based on its lower bound (PSet⊆) and upper bound
(PSe

 
 t⊇) subsumption algorithms, which is linear in the non-manifold representation.

Unification 
The unification algorithm is computed based on its lower bound (PSet⊆) and upper bound 
(PSet⊇) unification algorithms, which is linear in the non-manifold representation. 

4.  There must be a way to specify members of the set PSet�. Primitive parametric objects, transformations 
of these and combination of both under the un-regularized or regularised Boolean operation can stand 
as names of inner/outer bounds of elements of PSet�.  

Let’s define two operations: � and  as: 
 a � b = [(ai�bi), (ao∩bo)], a, b∈ PSet�,( ai�bi) ⊆ (ao∩bo) 
 a  b = [(ai∩bi), (ao�bo)], a, b∈ PSet ( ai∩bi) ⊆ (ao�bo) 
Thus, the set of such expressions using these two operations be called Exp. Exp is not close. Other 
algebras, for example, sweeps are also possible. An advantage of using these two operations is that 
it is possible to write expressions that name subsumed elements of a∈ IPPSet. These comprise any 
expression that can be reduced to a � b, b∈Exp.  

,

I φ O, ∞= =  
Figure 12. A Part of IOPSet as an Inheritance Hierarchy 

4. CONCLUSION 
Following the examples above, two kinds of Order Types are revised. Each provides a certain 
structured continuous information and a meaningful relation. This feature demonstrates the key 
approach of Geometric Typed Feature Structures and their usability. Following this approach, a new 
group of geometric objects are discovered and their characteristics remain unidentified. The benefits 
from the design space explores are clear—structured geometric information. With specifying in a 
certain relation such as point-set inclusion, the geometric information can be organized in a 
structured way—Order Types. It’s the same in the continuous domain such as reals and real 
intervals. 
 
In addition, as based on the same objects (Order Types), geometric information and continuous 
domain are treated as the same data structure. Therefore, the unification and subsumption 
algorithms can be applied to both uniformly. This provides a different approach for carrying 
non-geometric information within the geometric objects and simplifies the unifcation process of 
design space explorers notably. With these significances, Geometric Typed Feature Structures 
resolve an important issue in the field of construction information—carrying geometric information. 
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