

A SURVEY OF INTERNET-ORIENTED TECHNOLOGIES FOR

DOCUMENT-DRIVEN APPLICATIONS IN CONSTRUCTION OPEN
DYNAMIC VIRTUAL ENVIRONMENTS

Alain Zarli1, Yacine Rezgui2

1Centre Scientifique et Technique du Bâtiment
290, route des lucioles, B.P. 209, 06904 Sophia Antipolis, France

zarli@cstb.fr

2Information Systems Institute
University of Salford, The Crescent, M5 4WT, Salford/Manchester, UK

Y.Rezgui@salford.ac.uk

ABSTRACT: Recent years have seen the emergence and development of a plethora of
standards, tools, techniques, and methods for wide enterprise concurrent engineering. These
developments have enabled and promoted, in most industries, new forms of collaboration
between actors / companies, within and across geographically dispersed locations. While the
concept of a Virtual Enterprise (VE) is gaining an increasing popularity and acceptance, the
construction industry has adopted for decades its modus operandi, without taking much
advantage of the opportunities offered by current Information and Communication
Technologies (ICTs). This paper, based on research conducted within the frame of the
European OSMOS (IST-1999-10491) project, proposes a survey and first evaluation of open
Internet-oriented technology and standards for use in open dynamic virtual environments,
analysing the potential usefulness of technologies like STEP, XML, CORBA, and MOM. The
benefits of using XML, as a technology for flexible and dynamic representation of complex
objects (including documents) and their stream-based interchange, are highlighted along
with distributed object frameworks such as CORBA for remote access to data. The scope of
this evaluation addresses the specific needs and peculiarities of the construction industry.

KEYWORDS: Construction open virtual environments, information exchange and sharing,
application integration, middleware technologies, Internet technologies.

1. INTRODUCTION
From standards for product / process modelling and data exchange, to integration through the
use of message-oriented or object-oriented technologies, a lot of developments for enterprise
applications integration have been experimented and used in order to highlight the benefits of
information and communication technologies in the construction domain. Indeed, integration
and seamless communication between (proprietary and commercial) software applications are
increasingly becoming fundamental issues tackled by a variety of emerging technologies.
However, all these latest IT developments did not have so far the expected impact on the
construction industry, due to several factors, including poor investment in construction IT by
SMEs, and mismatch between IT innovations and construction industry needs. In fact, behind
the global issue of application integration within the (real or virtual) enterprise, appear a lot
of architectural problems (along with the “right” selection of tools, toolboxes and
infrastructures) that take a critical dimension in the case of open systems issues.

The building sector is essentially characterised by its fragmentation, with a high proportion of
SMEs involved in the design and build process of Construction projects. In fact, from a C

on
st

ru
ct

io
n

In
fo

rm
at

ic
s

D
ig

ita
l L

ib
ra

ry
 h

ttp
://

itc
.s

ci
x.

ne
t/

pa
pe

r
w

78
-2

00
0-

10
89

.c
on

te
nt

macroscopic point of view, Extranets and Virtual enterprises should be supported and
deployed easily in order to provide smooth co-operation between actors for all stages
involved in the design and delivery of the building product. Consequently, the problematic is
not only to ensure internal (intra-company) communication between systems as in a single,
even large, company, but to provide the required capacity to exchange information and
collaborate outside the boundaries of the information systems constituting the IT
infrastructure of a company, including means to organise the flow of information and the co-
ordination of tasks in the context of inter-companies communication. The main key points
that identify the differences between these two situations can be summarised as follows:
• While within a single company, the various applications can be strongly connected using

proprietary technologies (that can be possibly based on corporate standards), it becomes
mandatory to rely on industry standards within the VE. This is due to the most of the time
divergent environments and capabilities of the legacy systems that exist in the different
companies forming the VE and that have to be connected.

• Systems in a single company can be fully integrated, and made in some way deeply inter-
operable between each other. Within the VE, these systems are more or less easily
integrated, depending on whether they provide just some rough gateways, or that they
publish a full API (e.g. through IDL interfaces). Moreover, the VE often requires the
development of common repositories and datawarehouses in order to deal with
information that must be shared by the various information systems.

• The heterogeneous and unknown nature of the various systems to be inter-connected in a
VE makes it very difficult, if not impossible, to agree a priori on the level of information
and communication technologies to deal with, each time a new project starts. For
instance, in the case of data publication on the Internet, it may become necessary to deal
with clients desktops potentially having different data management capacities (e.g. a
simple Web Browser, or a browser powered with XML tools, or a CORBA-compliant
client, or a mobile phone, etc.).

• Projects in the construction industry are one-of-a-kind projects involving short-term
partnering between non co-located actors. This necessitates agile and flexible deployment
of ICT infrastructures to support the VE. These infrastructures should be set-up in a
matter of days or a couple of weeks, as opposed to several months (as it is the case today).

To address the issues of communication and interoperability, several routes have been
explored and are still under development. Moreover, after an initial phase related to bulk
exchange of models and documents, middleware has become the focus, with investigations
around CORBA or DCOM (for object-oriented middleware-oriented application integration),
and MOM (for message-oriented middleware and the routing and formatting “on-the-fly” of
messages). More recently, new architectures have been suggested, especially the now well
known 3-Tier based architecture and application servers (Client desktop – middle-tier Web or
application server – DBMS for persistent storage). Eventually, technologies dedicated to the
Web have emerged, particularly the XML technology and Java-oriented technologies (e.g.
servlets, JSP and the EJB).

This paper introduces to the initial architectural works that have just started within the frame
of the OSMOS1 project. Driven by the identification of intra- and inter-company business
processes and information / process requirements of the Construction domain, and also on

1 OSMOS is a European RTD project within framework V: IST-1999-10491, Open System for inter-enterprise
information Management in dynamic virtual envirOnmentS. The consortium includes construction IT service
providers: DERBi, JM Byggands, Olof Granlund, and European leading research centres and academic: CSTB,
Information Systems Institute of University of Salford, VTT.

case studies and previous experiments conducted in former European projects, including
VEGA, GENIAL and CONDOR, the main objective of OSMOS is to develop and promote
optimised solutions to support effective information sharing and smooth co-operation
between non co-located teams. This paper proposes a survey and first evaluation of open
Internet-oriented technology and standards for use in open dynamic virtual environments, and
analyses the potential usefulness of some current technologies, including STEP, XML,
CORBA, and MOM. It also highlights the benefits of using XML, as a technology for
flexible and dynamic representation of complex objects (including documents) and their
stream-based interchange, along with distributed object frameworks such as CORBA for
remote access to data. The proposed evaluation mainly concentrates on needs related to the
design of an infrastructure for application integration and tasks collaboration, and elaborates
on how recent ICTs fit into architectures required for the specific needs and peculiarities of
the construction industry.

2. STANDARDS AND TECHNOLOGIES
Recent and continuous investigations on the use of advanced computer-based technologies,
especially in ESPRIT funded European projects like VEGA (Stephens J. et al. 1999),
CONDOR (Rezgui Y. et al. 1999) and GENIAL (Radeke E. et al. 1999) among others, have
already shown promising results. However, the major issue, indeed not only within the
construction sector, but also within other industries, is to combine the foundation
technologies to realise the enterprise applications integration in Intranets, Extranets or even
over the Internet. As regards application integration within the VE, there are needs for:
• communication technologies, and especially middleware services, e.g. RPC, ORB, MOM,

etc., along with issues to consider for effective Client/Server computing like platform and
language interoperability, communication protocols, object management, security,
openness and availability of standards, etc.;

• co-operation technologies, with the use of standardised shared information repositories,
containing meta-information on documents and objects, as well as common structured
information that are useful to all the applications (based on data filtering, transformation,
aggregation, etc.);

• co-ordination technologies, including access control, events notification and tasks
collaboration and synchronisation;

• documentation technologies, including document routing and version control.

The paper does not get into the details of co-ordination and documentation issues. It rather
concentrates on the two first aforementioned items, providing with a first step towards an
approach to solving communication and co-operation questions in open virtual environments,
by establishing a common foundation to better take advantage of the benefits of distribution
and Internet-oriented technologies.

2.1 Information modelling, exchange and sharing for improved co-operation
Systems that are to be provided first must be based on standards for data modelling and
exchange. Besides the media used for communication between applications, those
applications need to have a common understanding of information (e.g. its semantics). Such a
common understanding will be more and more developed for each vertical industrial domain:
standardised vertical models will ease the interactions between systems in a business domain.
Two major types have to be envisaged: engineering product data, and metadata (i.e. data
about information or data).

As regards product data, it is today possible to rely on standardised works that have reached a
reasonable level of maturity. In the Construction industry, the current major works so far are:
• STEP (ISOa 1994), the ISO 10303 standard for the uniform representation and exchange

of product data, including the EXPRESS language (ISOb 1994), a format for STEP
physical files (ISOc 1994) and an API for common access and sharing of product
databases (ISOd 1995) via data and application independent mechanisms.

• The IFC (Industry Foundation Classes) general model, developed by the IAI
(International Alliance for Interoperability) as a universal model for integration and
collaborative work in the AEC/FM industry (IAI 1997).

On the other hand, metadata are of primarily importance when dealing with common
repositories and/or datawarehouses. After defining a set of potential repositories for the VE,
workgroup can be realised on the basis of those repositories. Indeed, it is clearly
acknowledged that today, users of workgroup-based tools are finding difficult to co-ordinate
their software effort across the enterprise, especially due to the heterogeneity of enterprise
repositories. Thus, new solutions must be provided in order to simplify heterogeneous,
enterprise-wide interoperability among tools, object repositories and datawarehouses. Two
current ongoing works seem today very promising and are worth mentioning:
• The Resource Description Framework (RDF), developed in the context of the W3C, and

currently released as a W3C recommendation (RDF 1999).
• The Meta Object Facility (MOF), a specification coming from the OMG (MOF 1999).

Most information systems define their own combination of metadata and own facilities for
storing and managing them, most of the time with no facility for sharing or interchanging
metadata across systems. RDF is an attempt to deal with metadata and repositories that can be
exchanged and accessed over the Web, i.e. in a fully open context and independently of the
applications using them. Currently under development within the W3C, RDF provides with:
• A standard schema for general meta-information about documents, named the “Dublin

core”. This schema contains 15 properties such as title, creator, subject, contributor, date,
etc., that aim at characterising any document that can be published on the Web.

• A common model for describing medatata and representing knowledge in terms of
relationships between an object (any resource described by a URI - Uniform Resource
Identifier, e.g. a URL on the Web, a specific section within a document, etc.), a
PropertyType that identifies a resource (i.e. some piece of information) that has a name
and can be used as a property, and the link (called a property) between the object and the
PropertyType through a given value identifying an instance of the PropertyType. The
underlying algebra allows for manipulating data structures as directed labelled graphs
(which extends the basic tree-based structure of XML), and a specific XML grammar
gives ways to exchange such metadata via XML documents.

The MOF provides with a common basis for meta-models (i.e. models of meta-information)
so that applications dealing with different meta-models that are MOF compliant, can
exchange meta-information among them and can manage or access common repositories. The
set of core structures that form the MOF are independent of any specific standard model: for
instance, the MOF is independent of the Java meta-model, and so independent of the Java
language, it is independent of CORBA IDL as well, i.e. it is not linked to the specific
CORBA middleware meta-model. It is also independent of the UML meta-model (UML is
the OMG’s object-oriented design language), but the UML meta-model is MOF compliant,
meaning that UML tools have the potential to share integrated repositories.

An interesting associated development is XMI, that is a new OMG open industry standard
that combine XML’s ability to define, store and share documents formats on the Web with
the features of UML. For instance, XMI allows to interchange UML conceptual models
between modelling tools or repositories, the representation of an UML model in a given tool
being translated and kept in an XML Ascii file (with a specific UML DTD). Then, any other
XMI-compliant modelling tool can decode and recover the initial UML model. This enable
development teams, users and customers to use the more adequate tools (i.e. delivering the
more adequate features) from a variety of vendors, and developers will streamline their
collaborative application development efforts.

2.2 Communication services
With some common data semantics and shared repositories, applications then must inter-
operate despite the heterogeneity of systems. However, a major previously identified
constraint is that systems have more and more to be adapted to interactions in a context of
Extranets and the Internet as well, making the task fairly complex. The various technologies
that are candidates to support the future VE applications will need to have the ability to easily
integrate with other technologies. Moreover, they should be either, generic enough (and thus
probably “simple” enough) or they should provide adequate gateways, in order to allow the
selection of “best-of-breed” modules supplying the best solution to end-users needs.

To address the issues of communication and interoperability, various developments have
emerged, with a particular focus that has been put on middleware technologies. The latter
include CORBA (today, the new 3.0 specification) and its family of various commercial or
free implementations, the Microsoft’s COM+/Active X model (with DCOM), Java/RMI, and
MOM (a technology supplying asynchronous mechanisms that can be found within tools like
IBM’s MQ-Series or Microsoft’s MSMQ). The aim of the paper is not to detail these
technologies, as they have been extensively described in the literature. In a parallel track, the
Web has had in recent years a tremendous impact on industry, in terms of new approaches for
communication. As regards Web clients, a plethora of tools and technologies has emerged:
stream-oriented languages like HTML, DHTML, VRML and now the XML family, scripting
languages like Perl, Javascript, etc., and server-side programming like CGI or ASP, and of
course Java. Initially a language developed so as to be light enough for small programs on
embedded systems, Java has grown to a set of programming techniques and tools that have
invaded the Web. The main Java-based technologies today are servlets, JSP, EJB, and JTS:
•

•

•

•

Java Servlets are programs running on the server side, acting in similar way than CGI
scripts and using the HTTP communication as well, but getting benefits of Java
technology (including multi-threading).
JSP, the Java Server Pages, is built on top of servlets. It can be viewed as a standard on
the server side for dynamic generation of HTML code, with Web pages embedding Java
code compiled in reusable servlets. Especially, JSP allow developers to separate functions
for creating content from those for presentation.
EJB is the components model developed by SUN, and that can be viewed as a
generalisation of the Java Beans, but on the server side, which means with all the
underlying infrastructure to deal with transactions access to data bases, etc.. EJB aims at
supporting business components on the server.
JTS is the Java Transaction Service, enabling transactions in Java-based environments.

Likewise, it is worth mentioning that the Java platform deals with its own CORBA
implementation, and ships with a lot of various APISs, including JMS, the Java Messaging
Service that provides asynchronous messaging in Java (i.e. a Java MOM).

3. A GENERAL ARCHITECTURE FOR CONSTRUCTION OPEN DYNAMIC
VIRTUAL ENVIRONMENTS

An attempt for a general architecture for construction VEs is suggested in Figure 1. Indeed, in
order to deal with any type of client, especially on the Internet, a loose coupling should be
provided that allows the enterprise business logic to be independent from any presentation
and client desktop issues. Note that the “Business Components” layer only manages what
refers to the business of the enterprise (e.g. a banking transaction, a digital simulation of the
behaviour of construction components based on a mathematical model, a notification module
in a document management system, etc.). The specific ways information is requested and
results are further visualised have not to burden the business process itself and to influence
the information resulting from it. A similar model of loose coupling can be envisaged
between the intermediate layer and corporate information warehouses, once again in order
not to mix the application logic with the specific rules to access a given database.

Enterprise data
storage level

Enterprise Data Management Enabler layer

VE client/Business logic
mediation level

VE Business logic / Data enterprise
mediation level

Business
Components

VE logic level
(Business application)

Information
Requesting

Information
multimodal

representation

Business models
- Information cross-referencing & filtering
- Dynamics of inter-organisation working
(workflow, co-operative planning &
notifications, etc.)
- VE controls for information access
(Internet/extranet-oriented security)
- Contractual, legal & IPR issues
- etc..

- Engineering data (IFC)
- Enterprise Documents
- Enterprise specific repositories

IntranetIntranet InternetInternet

Client Client ClientClient
VE Client level
(presentation/GUI layer,
client applications layer)

- Interpretation of
user events & flows
- Display of data &
“business” states

- Generic repositories &
document models
- Wrappers/Data flows/API

Loose
coupling

of the
3 Tiers

Figure 1. An architecture for construction open dynamic VEs.

As previously mentioned, a fundamental issue is information access and transfer between the
different layers of the proposed architecture, and between all the components that form each
of these layers. There are several blueprints that can be used in order to transfer data (and in
general information) from one system (in that context a server) to another system (a client):

Model-based transfer: in that case, when the client wants to get some information, the
whole model (e.g. a full STEP model) is transferred from the server to the client. This is a
total transfer, typically deployed with the STEP SPF technology.

•

• Object-based transfer: whenever the client needs an information, and that information is
not within the client yet, only the referred object (or set of objects) is transferred. This
leads to a minimal transfer of information, which can be implemented using XML.

•

•

•
•
•
•
•

Method-based access: whenever the client needs some data, it calls the right method on a
remote object (the method is declared within an interface for this object). This approach is
the classical one as used in CORBA.
Operations-based transfer: this last specific design consists in not transferring the data
themselves, but the sequence of operations that allow to rebuild the whole set of data on
the client side. It reveals useful in order to avoid transferring very huge sets of data.

According to the VE context, the expressed end-users requirements, and technical constraints,
each of these blueprints can have their own supremacy. Some of the criteria for the selection
of the appropriate method (and its counterpart in terms of technology) can be exhibited, e.g.:

Management of messages;
Protocol issues;
Shipping of large set of data versus small set of data;
Data duplication and control of the coherency (need for check-in/check-out mechanisms);
Synchronous versus asynchronous mechanisms.

In the remainder of the paper, we first briefly introduce XML, and then try a first comparison
of the respective benefits and shortcomings of STEP, CORBA, MOM and XML taking into
account the aforementioned criteria.

4. XML IN THE CONTEXT OF A VIRTUAL ENTERPRISE

4.1 Main concepts of XML
SGML (SGML 1986), the Standard Generalised Markup Language (ISO 8879) has for a long
time been a major reference to deal with structured documents, as a language for describing
and inserting in a neutral way tags within any type of documents. As the Web appeared these
last years as the major upcoming media in order to broadcast SGML-like document
repositories, XML has been developed by the W3C originally for exchanging structured
documents within Intranets or on the Internet, in a simpler way than when using SGML.
XML is text-based, self-describing, and, above all, gaining acceptance as a global standard.
The XML language is indeed a meta-language, allowing to create any (XML-based) new
language, and especially what can be called “data presentation language” (for displaying,
exchanging, storing data, etc.): this enables the definition of new file formats that can be
instantly parsed by any XML-compliant application. Thus, for a particular domain, it is quite
possible to create a new presentation (or exchange) semantics, which is however different of
the semantics of the data themselves (i.e. the content of the XML message).

XML is a universal, easy to comprehend and very adaptable file format, well adapted to on-
line catalogues and product configuration information. It manifests quite interesting features
to support Web-based information servers, as a technology dedicated to large-scale Web
content providers for industry, media-independent publishing, vendor-neutral data exchange,
workflow management in collaborative (authoring) environments, and processing of Web
documents by intelligent agents. By providing a standardised way of structuring data within
Web-based information systems (when HTML only enables to mark-up the information for
presentation), it allows to rely on this structuring for queries, thus leading to much more
value-added results. XML also has been designed for quick client-side processing consistent
with its primary purpose as an electronic publishing and data interchange format. Indeed,
XML is rapidly gaining wide acceptance regarding two main potentialities:

• Cataloguing and further distributing and recovering information on the client side.
Various components of the XML galaxy have been developed for that purpose, including
XML-compliant browsers, XML documents searching tools, DTDs for design and control
of various Web documents, style sheets for representation (with XSL: eXtensible Style-
sheet Language), and the XML DOM (Document Object Model) standard object API
specified by the W3C, that aims at giving developers programmatic control of XML
document content, structure, and formats.

• Data exchange and application integration at the enterprise level services, where XML
can be viewed as a standard way of passing data between many heterogeneous distributed
application servers, as well as across multiple operating systems. We now detail this
second XML target in the next section.

4.2 XML for Information exchange and applications integration
XML is both a technology for documents manipulation, and a technology for flexible and
dynamic representation of complex objects and their interchange, along with insertion in
distributed object frameworks, as XML documents can be exchanged using any underlying
protocol. XML can be used to define the container for a message content, for any type of data
provided by a repository. As regards data exchange and interoperability, XML can be used:
• Between datawarehouses and the middle layer (3-Tier architecture), for data integration

and linking through XML documents conveyed or generated from multiples sources.
• Between the middle layer and the clients, for data delivery (XML over HTTP for Web

clients, or delivery to other applications for further processing), data manipulation (via the
DOM), creation of multiple views for XML data (e.g. with XSL), etc..

Thus, XML provides with data portability as a platform-neutral document description meta-
language that offers means for data serialisation. It is worth noticing, at that point, that it can
be quite beneficial to associate XML with Java, which offers code portability, as supporting
the development of platform-neutral applications. The main points to be highlighted are:
• XML appears to have a potential role as a universally accepted format for the exchange of

information between heterogeneous applications. XML is expected as one of the primary
means for developers to design multi-tier applications in heterogeneous environments.

• XML is suitable for co-operative applications since dealing with documents and means to
convey business knowledge. Especially, meta-information about the structuring of Web
sites, databases, repositories and datawarehouses can be exposed through XML messages.

• XML provides a way of tagging data and objects as they are called for on a network,
which provides as well with an automatic way of populating databases on the fly with
XML (especially local databases for specific applications connected to Intra/Extranet).
Besides, in order to deal with the semantics of data that compose the content of XML
messages, current efforts are undertaken, among others in the W3C with DCD (Document
Content Definition) and XML schemas, to define more semantics attached to an XML
document content, including element names and rich data types. It is indeed now
established that the concept of DTD, initially originated from SGML, presents
shortcomings regarding the shipping of semantics about the contents of messages.

5. COMPARING MAJOR TECHNOLOGIES FOR USE IN AN OPEN CON-
STRUCTION VIRTUAL ENVIRONMENT

This section exhibits some of the strong and weak properties of today technologies towards
the basics required in the VE for information presentation, access and exchange, comparing
these technologies with XML, in accordance with the criteria identified in section 3.

5.1 XML - HTML/DHTML
The positioning of XML against HTML and DHTML has been described extensively in the
literature. HTML is used only for information presentation on the Web client desktop.
DHTML (Dynamic HTML) is an improvement of HTML, that enables to consider a
document as a set of independent elements (when HTML considers a document as a whole).
This means that DHTML is able to deal with an underlying document model (the DOM) that
identifies independent objects, the graphical properties of which can be modified using
scripting programs. Operations on these objects are realised locally on the client side, thus
leading to a reduction of the traffic on the network. Despite these extension supplied by
DHTML over HTML, XML offers characteristics quite more powerful, allowing to deal with
structure and semantics of the information, and to de-couple the form of the visualisation
from the server where the data come from.

5.2 XML – STEP technology
XML is primarily a message-centred technology. It is adapted to the exchange of
information, allowing to deliver various formats of documents presentation (or messages
structuring), while the STEP standard, especially through EXPRESS, offers a technology for
the description and data representation of product information including their semantics, and
a lot of normalised models. Regarding pure information exchange as considered in STEP
within Part21 (SPF), some of the benefits of XML are the following:
• SPF requires the exchange of a complete STEP model, where XML enables for

exchanging parts of information whenever only this is required;
• Transmission of information to applications can be done over the Internet (e.g. using

HTTP), which allows to cross firewalls, that is obviously not directly the case with SPF;
• A lot of XML parsing tools already exist, some of them being free software, while the

parsing of SPF files calls for specific developed parsers.

On the other hand, XML messages do not vehicle semantics for their contents. This is also
the case for SPF files, which need to be shipped with their corresponding EXPRESS schema
(at least the first time). However, a fundamental issue with XML is that it does not allow to
specify a given semantics for each tag used to structure documents. For instance, there is no
automatic way in XML to specify a common semantics for the tags <facility> and
<equipment> manipulated in distinct documents generated from separate applications. With
XSL, it is simpler to create conversion between tags so as to convert a document using one
DTD in another document using another DTD, provided that it is possible to relate tags
between themselves. But in order to avoid such conversions (that could reveal costly at
runtime), the best is clearly to agree on a common DTD: the objective is then to guarantee a
common understanding of the message structure before any operation. Several groups in
industrial vertical sectors are currently investigating or already defining such agreements.
Then, two approaches can be envisaged in large-scale projects:
• exchange between a lot of applications through common agreed message formats (i.e. a

single DTD);

• exchange and XSL-based transformation whenever required between few applications,
and preferably when the frequency of exchange is low.

This states that STEP and XML clearly must be viewed as complementary technologies, and
it appears valuable to specify and develop gateways allowing to exploit STEP (EXPRESS-
based) information through dedicated technologies (like XML) dealing with heterogeneous
and adaptive environments. In the AEC field, different work recently emerged, as AEC-XML
(AECXML 2000), bcXML (bcXML 2000), a starting initiative within the IAI (named IAI-
XML), and the work undertaken within the ISO STEP for an XML representation of
EXPRESS-driven data (ISOe 1999). These works tend to define DTDs and XML-based
mechanisms for STEP-based information exchanges. The future is probably for STEP to
concentrate on semantics and structuring of product information (i.e. data models for the
whole product life cycle), while taking benefits of technological developments around
message brokering and the Internet, especially XML, thus providing a logical separation
between semantics on one hand, data access, transfer and presentation on the other.

5.3 XML – CORBA and MOM
This section essentially deals with interoperability issues, where today information systems
are heterogeneous (incorporating ERP tools, groupware tools, client/server applications, etc.),
have to be opened (Extranets, Internet), and will be more and more integrated with enterprise
workflow and processes within the VE. A key challenge indeed is not only internal
communication between the enterprise systems, but the ability to easily and quickly exchange
information with the outside. This is even more crucial in dynamic virtual environments as in
the Construction industry, where partners are almost never the same from one project to
another. These partners make use of either “fat” clients with large applications (along with
their own data models, databases, etc.) or “light” clients (with at least a Web browser, and
only small applications on the desktop), that will have seamless access to core business
processes through Web sites. We hereunder review the criteria identified in section 3.

1st anagement of messages. point: m
XML provides with explicit messaging between applications. An XML document can be
viewed as a message that has to be parsed in order to identify the various elements of the
document, then specific actions can be realised on elements, relying on a tree-based model
(DOM) or an event-stream model (SAX). On the other hand, CORBA deals with implicit
messaging: the messaging is transparent and managed at level of the ORB, it is automatically
analysed in order to deliver the final result, under an object-oriented form that can be directly
used by the target application. This could be interpreted as simplifying the organisation of the
VE infrastructure, but CORBA does not stipulate anything about the internal mechanism used
for communication: in general (except if using IIOP, see next point), this messaging is
dedicated to the ORB in use, and only applications that have been explicitly connected to this
ORB can inter-operate, through internal ORB’s messages. This point reveals to be a strong
constraint when considering access to applications in Extranets or over the Internet.

2 point: protocol issues.nd
The XML documents can be exchanged no matter the underlying protocol. Indeed, XML is of
higher level, providing with a language which is not a protocol, but can be used to define any
protocol. On the other hand, CORBA is defined with the IIOP protocol. IIOP is a
standardised protocol for exchanging messages independently of ORBs: this is a key point, as
this allows to plug a new application theoretically without having an explicit knowledge of

the internal ORB messaging mechanism. Moreover, IIOP messages can be exchanged over
the Internet, provided that potential firewalls that can be met on the way are able to deal with
IIOP proxies (and not only with HTTP streams). Nevertheless, even in that case, management
of IIOP messages is intrusive at level of applications codes as it need to be explicit, i.e. the
application must say if it deals with IIOP messages, and consequently does not really fit with
environments that should accommodate frequent changes of applications.

3rd point: shipping of large set of data versus small set of data
The construction sector often requires the shipping of large volumes of data (e.g. for a CAD
tool or a full IFC-based application). XML is better adapted to manipulate such volumes,
while probably CORBA best fits with application accessing few remote data. IIOP is not
configured for dealing with large messages, it has been developed following a method-based
access model, and deals with messages containing methods calls with their typed parameters.

4 point : Data duplication and consistency control (i.e. need for check-in/check-outth
mechanisms).
The main issue raised here is to know if checking/validating the type of information is
required at the source or the target application, and is to some extent related to a quality of
service. Here, distributed object computing technologies, to which CORBA belongs, ensure a
deep type checking that is fully object-oriented, and reveal to be more effective. If the
receiving application (the one dealing with its local proxy object and that makes the request)
needs to check or validate the type of information it gets, CORBA ensures with IDL the well
typing of the returned result, at least at level of all the types as manipulated in IDL, i.e. basic
types (integer, string, etc.) as well as typed object structures (indeed, any object whose class
has an IDL structure mapping). Moreover, CORBA, as the information is accessed/modified
remotely, enables to deal with a unique point of conservation of valid information (on the
server), consequently leading to what can be called a permanent data coherency.
Additionally, this can be augmented with powerful transactional mechanisms.
On the other hand, XML only deals with strings, as DTDs define a hierarchical structure for
composition of strings. Consequently, data serialisation with XML files leads to provide the
target application with string-based information, where the semantics (as defined in the
source application) of the serialised data is lost. Indeed, the only point is that a DTD provides
with a tree structure that is a basis to then potentially rebuild a set of typed object-oriented
structures that can partially mirror on the target application side a similar semantics for data
coming from the source application side. Moreover, shipping the information through XML
messages from one application to another in order to really operate on this information
locally on the target application means that on the way back, there is a need to check and
accept modifications on large volumes of data, i.e. to manage potential data inconsistencies.

5th point: asynchronous mode of Building Construction process models
Most of the building construction process models are based on an asynchronous mode for
communication, i.e. the availability of the addressee where a request is emitted is not
mandatory, at least in real time. From a more general point of view, it is highly preferable to
reduce the needs for synchronisation between applications in order to improve their
availability and their performance, which seems applicable in the construction sector. Whilst
CORBA (as well as DCOM or HTTP) deals with synchronous communication types, XML
and MOM-like middleware appear as essential technologies to tackle applications integration
and workflow-based co-operation issues within the Construction industry.

An initial conclusion is that presumably CORBA (or DCOM) technologies are well adapted
to local (even large) Intranets, but not easily customisable over the Internet, and probably
will reveal oftentimes as an infrastructure offering too powerful mechanisms for client
desktops (e.g. CORBA is not required so as to only deal with presentation concerns, where
HTML and DHTML fit well). Java applets are an alternative, but have not been considered as
fully satisfactory so far, possibly due to some trouble with code portability. XML then
emerges as a solution for conveying data in a structured way, still relying on HTTP at level of
transport for accessing any client platform. A future step then could be to access distributed
objects from a Web browser using XML for sending requests and receiving answers, as this is
currently investigated like XML-RPC (XML Remote Procedure Call), for instance.

6. CONCLLLUSION
This paper has introduced a survey of some Internet-oriented technologies for document- and
message-driven applications in construction open dynamic virtual environments, as currently
undertaken within the OSMOS project. It has highlighted some of the advantages of the XML
language, supplying cost-effectiveness for implementing Internet and distributed applications
based on XML software tools and components (both on client and server sides), and showed
how XML seems to offer promising perspectives, at least in terms of interface with the
outside of the information system, especially the Internet. Regarding the software market, it is
worth noticing that a lot of actors (IBM, Oracle, Sun, etc.) integrate the parsing and
generation of XML documents within their platforms. Numerous application servers use the
XML format for sending information, and databases integrate as well an XML parser. In
addition, freeware tools are accessible through the Web. Thus, as soon as an application is
powered with XML, this should lead to minimal (or at least reduced) effort to exchange data.

The OSMOS consortium is taking an iterative and incremental approach to the development
and deployment of the tools and infrastructure supporting the construction virtual enterprise.
Three iterations will be conducted leading to the setting-up of teamwork service provider
prototypes. The first iteration will implement techniques that enable teams to share and
exchange unstructured documents (ranging from text-based to CAD drawings) using HTTP-
based protocols over Intranets as well as the Internet. The second iteration will tackle XML-
based structured documents, exchanged through HTTP, and will adhere to the approach
described in the paper in relation to accessing product-based data representations (STEP,
IFCs, etc.). Finally, the last iteration will validate the techniques used in the two previous
ones, and will explore object-oriented communications on top of CORBA-based middleware.

However, the construction business processes need to be refined and re-adapted in order to
deliver the expected benefits of the construction VE. In that respect, new models for business
processes, working methods, organisation, contracts, and legal responsibilities related to
computer support for co-operative work in a VE are being investigated and developed.
Finally, the authors would like to thank the OSMOS consortium members for their
contribution to the research, and would like to acknowledge the financial support of the
European Commission.

REFERENCES

AECXML (2000). The Architecture, Engineering and Construction XML, Web site:
http://www.aecxml.org/

BcXML (2000). The building construction XML, Web site: www.eConstruct.org

IAI (1997). Industry Foundation Classes, Version 1.5. Web site: http://iaiweb.lbl.gov/

ISOa (1994) Industrial automation systems and integration - Product data representation and
exchange Part 1. Overview and fundamental principles. 1994. N° ISO/IS 10303-1.

ISOb (1994) Industrial automation systems and integration - Product data representation and
exchange Part 11. Description methods: the EXPRESS language reference manual. 1994. N°
ISO/IS 10303-11.

ISOc (1994) Industrial automation systems and integration - Product data representation and
exchange Part 21. Implementation methods: Clear text encoding of the exchange structure.
1994. N° ISO/IS 10303-21.

ISOd (1995) Industrial automation systems and integration - Product data representation and
exchange Part 22. Standard Data Access Interface. 1995. N° ISO/DIS 10303-22.

ISOe (1999) Industrial automation systems and integration - Product data representation and
exchange Part 28. Implementation methods: XML representation of EXPRESS-driven data.
1999. N° ISO/WD 10303-28 (ISO TC184/SC4/WG10 N285).

MOF (1999). The Meta Object Facility Specification, OMG Document Version 1.3 RTF, 27
September 1999, Web site: http://www.omg.org/

Radeke E. et al. (1999). GENIAL: Final report, ESPRIT 22 28, 51 p. Web site:
http://wwwgen.uni-paderborn.de/GENIAL/index.html

RDF (1999), The Resource Description Framework, Web site: http://www.w3c.org/RDF/.

Rezgui Y. et al. (1999). CONDOR: Final Report, ESPRIT 23 104, University of Salford.

SGML (1986). Information-processing -- Text and office system -- Standard Generalized
Markup Language (SGML). - ISO 8879 document, 1986.

Stephens J. et al. (1999). VEGA Public Final Report, PFR-01 report, ESPRIT 20408 VEGA.
Web site: http://cic.sop.cstb.fr/ilc/ecprojec/vega/home.htm

	Y.Rezgui@salford.ac.uk

