Construction Informatics Digital Library http://itc.scix.net/

paper w78-1999-2629.content

THE DYNAMIC DEFINITION OF DESIGN ELEMENT
SPECIFICATIONS VIA A PRODUCT SUPPLIER DATABASE WEB-SITE
Dynamic specification definition via the web

J. UNDERWOOD, M.A. ALSHAWI, G. AOUAD, T. CHILD and I. FARAJ
Department of Surveying, University of Salford, UK

Abstract

The AIC Research Group at the University of Salford have been involved in a
government funded project that aimed to develop an integrated multi-user
distributed construction project database - WISPER (Web-based Integrated
Shared Project EnviRonment). The objective of the project was to develop a
working system capable of demonstrating the future direction of information
integration with the project partners’ businesses. This paper presents the
development of the specification application that aims to demonstrate the potential
for design elements to be specified directly from a product database Web site.

Keywords: Design element specifications, IFC, integrated distributed construction
project database, three-tier client-server architecture, STEP Part21.

1 Introduction

The Internet with its open standards and accessibility is fast evolving into a
powerful environment for supporting distributed group work. Originally the Web
was a static two-tier client-server unidirectional environment for the publishing
and broadcasting of electronic documents. However, demands for dynamic content
is beginning to change that. The Web is being transformed from a publishing
technology into a full-blown client-server medium, with the potential to run line-
of-business applications and to deal with the complex requirements of multistep
business-to-business and consumer-to-business transactions (Orfali et al. 1997).

This paper presents the specification application that has been developed as
part of the implementation of a new generation of construction integrated
environments. The application aims to demonstrate the potential for next-
generation Web technology together with the IFCs to support the direct
specification of design elements from a product database Web site. Such an

Estimating Planning
(Excel) (MS Project)

Supplier
Information

Web User Interface (Browser) }

{ Textual Data DWF VRML Plugin

HTITP HTiTP HTiTP

/ Web Server \
Web Application Interface (CORBA/IIOP)
Web Server Extension Appllcatlons

CAD VRML DWF N
(Part 21) Generatlon Generation Estimating Plannlng Specmcatlon
— Z

NS
ObjectStore API

OO0 DataBase
IFC Project Model

Fig. 1: Overview of WISPER

application enables the designer to retrieve their defined specifications (including
technical information) in a standard format directly via the Web, and to upload
this information into the project database to be accessed by the other applications,
e.g. CAD, Estimating, etc. In addition, the paper provides a brief overview of the
integrated distributed construction environment, the implemented supporting
applications and the IFC object model architecture.

2 WISPER - Web-based integrated shared project environment

2.1 Three-tier client-server architecture

As shown in Fig. 1, the architecture of WISPER uses a three-tier client-
server infrastructure to demonstrate the integration between detailed design,
building element based cost estimating, and construction scheduling, in addition to
a VRML viewer that allows the graphical querying of a project database (Alshawi
et al. 1998; Faraj et al. 1998a, 1998b; WISPER 1998). Within a three-tier
architecture each facet of the application, i.e. user interface, logic, and database, is
isolated providing benefits such as maximum control, scalability, and flexibility
(Campbell 1997; Orfali et al. 1997).

2.2 IFC object-oriented project database

At the lowest level of the system architecture (Bottom Tier), the main project
database has been developed using the ObjectStore object-oriented database
management system together with the implementation of Java classes derived

directly from the Final Version 1.5 of the International Alliance for
Interoperability’s (IAI) Industry Foundation Classes (IFCs). The IFCs are an
initiative by leading construction software vendors to produce a standard data
model for interoperability of construction related software applications (IAI 1999).
The project model for the Final Version 1.5 of the IFCs has been published using
EXPRESS. EXPRESS is a formal language developed by the STEP community
for the description of data models (STEP Tools, Inc. 1999a; UKCIC 1999). To
map this schema to ObjectStore, ST-Developer was used to convert the IFC
schema from EXPRESS to a set of programming language classes (pure Java
classes). ST-Developer is a Step Tools product that provides a comprehensive,
stand-alone set of software development tools for handling the complexities of the
STEP standard, which can be used to build software that works with STEP data in
object-oriented databases, relational databases, and traditional files (STEP Tools,
Inc. 1999b). ObjectStore utilities are then used to read the Java classes to create
the IFC project database schema. This schema can then be used and instantiated
by the various construction applications.

2.3 Application servers

Using Web client-server technology, i.e. Web Server Extensions (Java WAI
applications), applications have been written in Java for the two-way exchange of
information between the project database and existing software, i.e. AutoCAD,
Excel, MS Project scheduling package, etc. (Middle Tier). WAI is a CORBA-
based (Common Object Request Broker Architecture) programming interface that
defines object interfaces to the HTTP request/response data and server
information. Via WAI, the Web applications accept an HTTP request from a client
(Web browser), process it, and return a response to the client.

2.4 User interface

Finally, the top tier of the system provides the interface to the overall
system. The user interface has been implemented as a set of Web pages and other
commercial applications to support the different construction experts that may
need to interact with the environment. The user interface enables the user to
submit, retrieve, process and manipulate data. Users can perform operations on the
project data by selecting the appropriate menu item on a specific Web page. Each
menu item references a URL that submits an http request to the server. The Web
server assigns the responsibility for processing the HTTP request to the CORBA
objects.

WISPER uses the concept of a ‘project Web site’ as a first point of access
for all shared project information. Each new project has its own Web site,
allowing project information to be accessed through an internal network (Intranet)
or through the wider global Internet. Furthermore, existing security mechanisms
such as; password protection, certificates, IP address filtering, etc., ensures the
security of the project information by controlling access to the project Web pages.

2.5 Implemented applications

. CAD (design): Due to the lack of availability of commercial IFC compatible
CAD systems, the research team has implemented their own CAD system
that uses the AutoCAD-14 geometry engine. The application supports both
newly created and existing projects. The ‘Newly Created Project’ application

enables the user to create new building designs and to share information with
other construction applications. Data in the application is saved in STEP Part
21 file format. The ‘Existing Project’ application allows the user to populate
the database from a STEP Part 21 file. Part 21 files of existing projects can
therefore be loaded to the database for amendment and saved as Part 21 file
format.

. VRML: The application generates the VRML model of the design and
displays the results within a Web browser. The user can interact with the
design and retrieve other construction data associated with the object or
project as a whole that are found in the database from the virtual reality
model.

. DWF: DWF (Drawing Web Format) is a graphics format for the transfer of
drawings over Intranets and the Internet. The application parses the database
for the building elements that exist in a project and generates the DWF
representation of each element.

. Estimating: Generates the elemental IFC cost group objects within the
central project database from the design, before returning this information
into Excel. The user add costs to the cost groups in Excel and uploads the
CSV file into the project database, i.e. adding costs, date and time, etc. to the
previously generated cost group objects. Finally, a cost summary of the
project can be viewed in terms of both element type and storey.

. Planning: Generates the work group objects within the central project
database from the design, before returning this information into MS Project
scheduling package. Next, the user adds duration and links/dependencies and
uploads the CSV file into the project database, i.e. adding the durations and
links, to the previously generated work group objects.

3 IFC property type definitions & shared property sets

3.1 [IFC object model architecture overview

The IFC Object Model architecture provides a modular structure for the
development of model components. The architecture consists of four layers, which
use a strict referencing hierarchy. Within each layer a number of grouped modules
exist (IAI 1999).

. Independent Resource Layer: Independent Resources are ideas that do not
rely on classes within the Kernel for their existence, e.g. geometry, cost, etc.
Resources form the lowest layer in the IFC Model Architecture and can be
used or referenced by all classes in other layers.

. Core Layer: The Core contains two sub-layers. The Kernel provides basic,
shared concepts in AEC/FM projects and determines the model structure and
decomposition. The Kernel includes fundamental concepts concerning the
provision of objects, relationships, type definitions, attributes and roles.
Kernel classes may only reference classes in the Independent Resources. A
Core Extension is a specialisation of classes defined in the Kernel such as
Product and Process. Primary relationships and roles are also defined within
the Core Extensions.

. Interoperability: The Interoperability layer provides specialised, well-
defined interfaces for one or more Domain Models. This provides for
outsourcing of Domain Model development whilst retaining control over the
key structuring and framework requirements of interoperability.

. Domain Specifications: Domain Models provide further model detail within
the scope requirements for an AEC domain process or a type of application.
Each is a separate model that may use or reference any class defined in the
Core and Independent Resource layers. Examples of Domain Models are
Architecture, HVAC, FM, Structural Engineering etc.

3.2 Type definitions

The IfcPropertyTypeResource defines the basic capabilities for Property
definitions that can be attached to objects and relationships. This Resource module
enables a "Type" of an Element to be defined, which in turn establishes a standard
to be used many times in a project. A standard type is established through the
definition of a set of Properties or Characteristics that will be held constant for all
occurrences in the project model. Therefore, a single record of these attributes is
associated with the Type Definition object rather than with each occurrence of the
element.

For example, in the case of doors and windows, an IfcPropertyTypeDef
object is created for each type of element and is referenced by those IfcObjects,
e.g. IfcDoor, IfcWindow, etc., to which it is associated. The IfcPropertyTypeDef
class provides for the capability to define a set of properties at runtime, since they
do not need a separate static class definition, and share the values of the set of
properties among multiple instances of the same class of objects. In addition, the
IfcPropertyTypeDef class possesses a number of attributes. ‘TypeDefName’
represents the name of the specific Property Type Definition, ‘TypedClass’ refers
to the name of the class for which the object defines a type, e.g. IfcDoor,
IfcWindow, etc. and ‘GenericType’ specifies the IFC generic type designation,
e.g. SingleSwing, FixedCasement, etc.

3.3 Shared property sets

Each Type Definition has a reference to an IfcSharedPropertySet. An
IfcSharedPropertySet defines a set of type driven properties (and is therefore
defined as part of the IFC standard) that are shared by multiple instances of a
semantic object, i.e. each semantic object instance (having the same property
values) shares by reference a single instance of the IfcSharedPropertySet with
particular property values.

The type definition for a single swing door has a reference (in the
Sharedproperties attribute) to a ‘Pset_DoorSglSwing’ shared property set, that in
turn, has references to two further shared property sets, ‘Pset_DoorType’ and
‘Pset_DoorPanel’, that are held in the ‘Hasproperties’ attribute list. The
‘Pset_DoorType’ shared property set contains the common shared
values/properties for the specific type of single swing door. These properties relate
to information such as the reference ID for the door type within a particular
project, specific description of the door type, manufacturer, nominal and rough
heights and widths, fire, thermal and acoustic ratings, whether the door is designed
for use in exterior walls, etc. Each property is created as IfcSimplyProperty object.
IfcSimpleProperty defines an attribute class in which the unique description/name

of the property (‘Descriptor’) and a reference to the property’s value
(‘ValueComponent’) is held. The actual value of the property is held in an
IfcMeasureValue object (part of the IfcMeasureResource module) based upon its
type, e.g. Ifcdescriptivemeasure, [fcnumericmeasure, etc.

The properties associated with the doorframe such as description, depth,
thickness, etc., are also contained within a shared property set
(‘Pset_DoorWinFrameType’), which is referenced in the ‘Hasproperties’ attribute
list of the ‘Pset_DoorType’ shared property set. Again, a simple property and
associated measure value object represents each of the properties. An IfcMaterial
object represents the material property of the doorframe. IfcMaterial is part of the
Material model within the IfcPropertyResource module that provides the facility
to specify the material from which an object is composed. The IfcMaterial
property together with the simple properties is referenced in the ‘Hasproperties’
attribute of the ‘Pset_DoorWinFrameType’ shared property set.

Finally, the ‘Pset_DoorPanel’ shared property set contains the properties (or
references to simple and material property objects) for the door panel/leaf
associated with the single swing door type definition, e.g. height, width, thickness,
material, etc.

In a similar manner, the type definition for a fixed casement window has a
reference to a ‘Pset_FixedCasement’ shared property set, that in turn, has a
reference to a further shared property set, ‘Pset_WindowType’. The
‘Pset_WindowType’ shared property set contains the common shared
values/properties (references to simple property objects) for the specific type of
fixed casement window, e.g. ID reference, description, manufacturer, dimensions,
etc. The ‘Pset_DoorWinFrameType’ shared property set for the window frame is
also referenced in the ‘Hasproperties’ attribute of the ‘Pset_WindowType’ shared
property set.

4 Product database

For the purpose of the prototype, a product relational database was
developed using MS Access. The information relating to each particular type of
component/element is held in a single table within the product database, i.e. Door
Frames, Door Leaves, and Windows. The structure of each table is primarily based
upon the properties specified in the IFC property sets, i.e. Pset_DoorPanel,
Pset_DoorType, Pset_WindowType, etc. For example, the Door Leaves table
comprises fields relating to information such as manufacturer, product name,
height, width, thickness, material, fire, thermal and acoustic ratings, suitability for
external or internal exposure, etc. In addition, the Door Leaves and Windows
tables have a field to hold a reference to an image file of each specific product.

5 Specification web server extension applications

The Specification application has been implemented as two Netscape Web
Application Interface (WAI) Web server extension applications written in Java.
WALI is a CORBA-based programming interface that defines object interfaces to
the HTTP request/response data and server information. Using WAI, Web
applications can be written to accept HTTP requests from a client, process them,
and return the response to the client. The end user does not need to know where
the data resides or which server is processing it (Netscape 1999).

The user interacts with each application through a specific set of Web pages.
The first of the applications enables the user to define the necessary door and
window specifications from the suppliers database, which are returned to the user
as IFC type definitions, shared property sets, etc., in the form of a STEP Part 21
file. Once the Part 21 file has been returned, the user can upload this file into the
IFC object oriented project database, via the second of the WAI applications.

Each WALI application creates and registers CORBA objects (OMG 1999)
with the respective Web server, i.e. suppliers database and IFC project database.
The Web server associates each of these objects with a specific URL of the form:
http.//server//iiop/object_name. The server part of the URL identifies the name of
the machine on which the Web server runs, while iiop (Internet Inter ORB
Protocol) passes request or service replies through the internet, and the
object_name is the name by which the application is registered and identified by
the ORB (Object Request Broker). Once the URL is accessed the Web server
delegates the responsibility for processing the HTTP request to the CORBA
objects.

5.1 Specification definition WAI application
Fig. 2 shows an overview of the specification definition WAI application.
The application receives an initial request from the hyperlink of a selected menu

_ IFC EXPRESS
Specificatio Schoma
n *
ST-Developer
HTTP IIOP (STEP Tools)
Preferred
Supplier HTML HTTP IIOP WAI IFC Database
Web Page ‘ Schema
Web Server
Product Extension PRODUCT

Applicati
Catalogue HTML HTTP ch ppiication RELATIONAL DATABASE
eb Page
“Type s
HTML HTTP H:OP>

Definition’

Web Page

Part 21 ™

Fig. 2: Schematic overview of the specification definition WAI application

item (‘Single Swing Door’ or ‘Fixed Casement Windows’) on the specification
Web page (Fig. 3). Using the value of a parameter received from the hyperlink, i.e.
using the HTTP GET protocol, the application connects to the product database
via JDBC and ODBC, and retrieves the names of suppliers of the type of element
selected. JDBC 1is a Java API for executing SQL statements on relational
databases. Via the ODBC API, JDBC enables Java programs to establish a
connection with a relational database, send SQL statements, and process the
results (Sun Microsystems, Inc. 1999). The supplier names received from the SQL
query are placed as options within a selection list of a dynamic HTML page,
which is then returned to the user. By submitting the selection of a particular
supplier/manufacturer from the list, using the HTTP POST protocol, a further
request is sent to the application. Upon receiving this request, the application
connects to the products database, retrieves the necessary information such as
element description, image file name, etc., and dynamically generates a catalogue
HTML page of specific elements for the selected supplier, before returning the
page to the user.

In the case of windows, a catalogue of window units is returned to the user.
However, from the point of view of doors, the application initially returns a
catalogue of door leaves (Fig. 3). Within the HTML catalogue page, each specific
element’s description is created as a hyperlink to a client-side JavaScript function.
Client-side JavaScript statements embedded in an HTML page can respond to user
events. When a user selects a particular element in the catalogue HTML page, the
JavaScript function copies the element’s description into the respective text input
form element on the definition Web page, i.e. “Window’ or ‘Door Leaf” input box.
Following the selection of a door leaf, and the subsequent copying of its

[ie Bl Y (G Cowwrmsa Haip

3P aEps

L Y T e

T ook Bkt B e e ki s b T T St e ol =
I L T i e

Wi g 'PREMDOR| |
[
|
& Croshy
@ II}T-:.T: T]rr! Reference: Daoor Leaves
3% seiected Deor Lear EXTERIOR
@ Timber
Selected Door Frame: -
| Fearme Hardaood & Paral
Dfing Frop t5ai Bt Elu I'|.--|‘-E'||‘.:'-'.“.-I;.'.::
m \ Festure Hasheesd Chrkcra

C-E R E R

RN oy \
Specification Main Menu Definition Web Page Catalogue Web Page

Fig. 3: Specification web pages

description into the ‘Door Leaf” text box, the JavaScript function triggers a request
to the application to return a catalogue HTML page of door frames suitable for the
door leaf selected. Using the door description passed in the request, the
application retrieves the descriptions of the suitable door frames from the
database, dynamically generates the catalogue HTML page, including client-side
JavaScript, etc. and returns the HTML page. When the user selects a door frame
from the catalogue Web page, the description of the door frame is copied into the
‘Door Frame’ text input form element of the single swing door type definition
Web page (Fig. 3). Within the type definition Web page, the user specifies the
element type reference in the ‘Type Reference’ input box, i.e., the reference 1D
property of the ‘Pset_DoorType’/’Pset_WindowType’ shared property set. Once
the user has completed defining a type definition/specification, i.e. specified the
element type’s reference and selected the element/components associated with the
element type, a request is sent to the application via the ‘Define Definition’ submit
button on the type definition Web page. The application responds to the request by
holding the type reference and the associated element/component description(s)
passed in the request, which provides the opportunity for additional type
definitions to be defined.

Following the definition of the required door and window type definitions, a
final request is passed to the application to generate and return the type definitions
previously specified in Part 21 exchange file format, i.e. an EXPRESS-driven data
exchange file specification (STEP Tools, Inc. 1999b; UKCIC 1999). The
application acts upon this request by connecting to the product database and
retrieving the various properties associated with the element(s)\component(s)
specified for each type definition, e.g. dimensions, supplier, fire rating, material,
etc. ST-Developer uses the EXPRESS IFC schema and the corresponding IFC
Project Database schema (Java classes), together with the properties retrieved
from the product database to generate the complete IFC Type Definitions for those
specified. The complete IFC Type Definitions are written out to a Part 21 physical
file, which is returned to the user.

5.2 Type definitions upload WAI application

The second WAI application resides on the project database Web server. By
sending the Part 21 physical file of the previously defined type definitions, via a
file input form element using the HTTP POST protocol, the application is
delegated the responsibility of uploading the file to the IFC project database. ST-
Developer uses the IFC schema and the corresponding IFC project database
schema to create the Java objects that correspond to the project instances defined
in the Part 21 file. Using ObjectStore utilities, the Java objects are instantiated in
the IFC project database. Once uploaded to the IFC project database, the CAD
application can download the Type Definitions and attach them to the relevant
design elements as they are being designed.

6 Conclusions

This paper has presented a specification application that has been developed
as part of the implementation of a new generation of computer integrated
environments. The integrated multi-user distributed construction project database
environment, WISPER, is based on a three-tier client-server architecture, in which
the user interfaces, business logic and database are all kept separate. The
development of the object-oriented project database has been achieved via the
implementation of the IFC Final Version 1.5 project model. In addition, Web
technology was used to develop the user interfaces and enable the communication
of distributed applications, i.e. Web pages and Web server extensions,
respectively.

The specification application aims to demonstrate the potential for design
elements to be specified directly from a product database Web site. From the
specification Web pages on the project Web site, the user can access the product
catalogues of their preferred suppliers. The user is able to select products directly
from the catalogue and define the required specifications. Finally, the user
requests the product database WAI application to return a Part 21 file of the IFC
Type Definitions for the specifications defined, which is subsequently uploaded
into the IFC project database to be downloaded by the CAD application and
attached to the respective design elements. Such an application would create a
closer link between suppliers and the design process - bringing supplier
information early into the design process. This would also potentially enable
suppliers/manufacturers to influence the design.

7 References

Alshawi, M., Aouad, G., Faraj, 1., Child, T. and Underwood, J. (1998) The
Implementation Of The Industry Foundation Classes In Integrated
Environments, CIB W78 Conference, Sweden, August.

Campbell, R. (1997) Middleware & Architecture: It All Ends in Tiers, Application
Development Advisor, Vol. 1, No 2. pp. 56-8.

Faraj, I., Alshawi, M., Aouad, G., Child, T. and Underwood J. (1998a) Distributed
Object Environment: Using International Standards For Data Exchange,
Computer-Aided Civil and Infrastructure Engineering, accepted.

Faraj, 1.Z., Alshawi, M.A., Aouad, G., Child and Underwood, J. (1998b) The
Implementation of the IFC in a Distributed Computer Integrated
Environment, Second European Conference on Product and Process
Modelling in the Building Industry, Watford, UK, October 19-21.

IAL (1999) International Alliance for Interoperability,
http://www.interoperability.com/.

Netscape. (1999) Writing Web Applications with WAI,
http://developer.netscape.com/docs/manuals/enterprise/wai/index.htm.
Orfali, R., Harkey, D. and Edwards, J. (1997) CORBA, Java, and the Object Web,

BYTE, Vol. 2, No. 10. pp. 95-100.

OMBG. (1999) OMG: Object Management Group, http://www.omg.org/.

STEP Tools, Inc. (1999a) The ISO STEP Standards, http://www.steptools.com
/library/standard/.

STEP Tools, Inc. (1999b) ST-Developer,
http://www.steptools.com/products/stdev/.

Sun Microsystems, Inc. (1999) JDBC — Connecting Java and Databases,
http://www.javasoft.com/products/jdk/1.1/docs/guide/jdbc/index.html.

UKCIC. (1999) STEP — ISO 10303, http://www.ukcic.org/step/step.htm.

WISPER. (1999) Welcome to WISPER: Web IFC Based Shared Project
Environment, http://www.aic.salford.ac.uk/pit/.

