
A SEMANTICALLY RICH REFERENCE MODEL FOR BUILDING DESIGN
Reference model for building design

M.J. O’BRIEN and A. BAIG
The School of Computer Science and Information Technology, University of
Nottingham, Nottingham, United Kingdom

Abstract

Much effort has been expended by software developers attempting to build databases
suitable for use by those working within the construction industry. Various models
from the original RATAS relational database model through to sophisticated process
models have been proposed, developed and evaluated. It is probably fair to say that
these research efforts have only recently begun to effect the practices of professional
construction engineers. This, in part, is due to the need for more sophisticated
systems. This paper describes a database that is usable throughout the design and
construction processes in the construction industry. The method uses the well-
established idea of generic components that can be combined to create a large scale
artefact. The novelty of the approach described herein allows the components to
embody facts and rules that allow design knowledge to be modelled, captured and
retrieved. The facts and rules encapsulate not only the interactions of the various
products but also the processes involved in their use. In effect, the atomic primitive
elements (both components and rules) can be combined to create complex elements
which are semantically rich. The basic ideas and fundamental philosophy of this
approach have been described elsewhere. This paper is devoted to describing the
detailed implementation of this approach. The content is technical and thorough; it
describes how a passive relational database management system, Oracle, has been
used to create a new metadata structure for the creation, control and management of
the components - both simple and complex. In effect, the relational database becomes
active. Thus, the database reacts to design decisions by firing rules which then govern
the interaction of the components. The paper presents a detailed description of the
underlying architecture and the data model which has been developed. The paper is
interesting not only to construction engineers but also to software designers in that it
shows how existing database models can be extended by using their predefined data
types to create new, and more complex, ones. While this is an old, well-established
trick, this application to a real-world problem is a good test of its viability. Finally, a
brief review puts this particular approach into the context of the other myriad
attempts to create product and process reference models with an evaluation of its
strengths and weaknesses.

Keywords: Active database, Component model, Design database, Product model,
rules

Durability of Building Materials and Components 8. (1999) Edited by M.A. Lacasse
and D.J. Vanier. Institute for Research in Construction, Ottawa ON, K1A 0R6,
Canada, pp. 2609-2618.
 National Research Council Canada 1999

C
on

st
ru

ct
io

n
In

fo
rm

at
ic

s
D

ig
ita

l L
ib

ra
ry

 h
ttp

://
itc

.s
ci

x.
ne

t/
pa

pe
r

w
78

-1
99

9-
26

09
.c

on
te

nt

1 Introduction

The design, development, and evaluation of reference models has become a
popular activity amongst researchers working in the area of construction information
systems. Product models, process models, standardisation efforts, and system
architectures - all of these have become standard fare. One might cite the work of
Wix and Bloomfield (1997) and Wix and Liebich (1997) in the area of standards,
Brown et al (1996), Hazelhurst et al (1997), Björk (1997) and a host of others in
proposing various system architectures and paradigms. This paper is no different.
Yet, this somewhat flippant exposition should not hide the usefulness and necessity
of all these efforts. On the one hand, the realisation that this application domain is
one of the most difficult to computerise is now well established. Construction
projects combine a depth of complexity, a massive volume of data - and high volatile
data at that - and a fragmented organisation framework that have made it difficult to
build truly useful systems. Whereas self-contained systems have been successful in
their own limited domains, CAD in particular being such an example, the unification
and sharing of data across systems has yet to occur. On the other hand, there has been
a slow but growing realisation that the computer and software tools at our disposal
have been inadequate to the task. In this regard the application domain has acted as a
spur to the systems developers to come up with the tools that can do the job. If the
linkage is not direct one might posit that the growth of object-oriented systems, with
their emphasis on objects - that is to say, encapsulated abstract data types - has come
to the aid of construction system developers who have tried to reconcile the differing
approached characterised by the product modellers and the process modellers.

This paper takes forward both the ideas behind construction reference models
and those behind current thinking on databases. Thus as an application this paper
describes a reference model that is active and thus semantically rich. Whereas its
contribution to database theory is to show how triggers and actions can be used to
create an active database. While this latter achievement is rather clumsily engineered,
the ideas should prompt database designers to think of better ways to achieve the
desired effects.

A number of papers have already been published that are based on the
underlying research for this paper. This paper takes a small step into the build of the
proposed system and defines its structure, inspiration and an overall decomposition of
the system that is build based on the research.

This paper provides an overview of the model proposed and the scope of the
research undertaken to develop the active component model. It then shows an overall
functional decomposition of the model. The paper is based upon an earlier one
(O'Brien and Baig, 1998) which laid down some of the guiding pronciples behind this
work. Much of the justification for this work has been previously published; this
paper therefore describes some of the more technical aspects of the work. However, a
full description of the model and the system that has been developed based on the
model is outside the scope of this paper.

1.1 Overview
The proposed model illustrates how components are structured, built and

managed, how semantic rules about the design components are incorporated into a
database and how these rules can be used to elicit active database behaviour. The
model defined here relates to the construction of a building, the principles underlining
the model can however be applied to any database that is used for design purposes.
The model is not a full-scale design database; a prototype system has been developed
to create a scenario for developing semantically rich components that can be used to
elicit active database behaviour.

1.2 Design overview and requirements
The aim of this section is to provide the overview and requirements document

from which the first cut of the ERD can be developed. Concepts mentioned in this
section are discussed in details in the thesis by Baig to be published in the near future.
A systematic approach is developed that allows the creation of components, which
hold not only their properties but also the rules that effect their behaviour. These
components are then used to build a semantically rich design model. (From hence
fourth a design will refer to building construction design unless otherwise stated.). In
order to achieve this the following facilities need to be developed.
• A way of defining atomic components,
• a process of assigning properties and rules to the components,
• a way of associating lower level components to build higher level components,
• methods of defining the general environment within which the components are

placed and interact, such as site conditions, space and time, and
• method for hold design history and permitting changes arising from future

eventualities or pre timed events.
A component is either an object or a construct it has factual properties and

forms a part of the physical world. A construct is an abstract component that also has
properties or features. The factual features can be inherent to a component or
interdependent between many components. Fore example the features of an office
building and all its parts can be considered to be internal while the relationship
between the office and the workers is an interdependent relationship.

The features themselves can be internal or external. The internal features are
independent of any outside influence where the facts are applicable to the component
and only the component. External features are dependent on the component
interaction with the outside world. Fore example the stress tolerance is an internal
feature of a construction beam while its inability to rest directly on a wall is an
external feature because it refers to the components interaction with the outside
world. The external features can be objective or subjective. Subject features refer to
feelings, opinions and intuition. To say that a straw roof ‘feels warmer’ on country
cottage than a roof made from black slate is a subjective feature. External features are
rules that apply to a particular component they determine its behaviour and its
relationship with other components and the environment within which it resides.
Rules are based on the internal features of components. They can be constant or
dynamic. Dynamic rules vary and adapt according to their interaction with other
components. The fact that the energy requirements from a hot water tank to heat the
water to 30°c will vary according to the external temperature of the tank means that

the rules must consider dynamic factors in their evaluation before carrying out the
appropriate action.

Fig. 1: General design concept using components

A component will change either due to some interaction with other components
or with time, thereafter its properties will change accordingly. This refers to the state
of the component, hence, the state of a component is the factual data and state
changes can be bought about by a change in the rules. The firing of legitimate rules
can create a state change. For example a door has different states of openness that can
be represented by the function for the angle between the wall and door. The function
can take values from 1-180°, other values are not allowed because the relationship
rules of the door and wall, hence, any other state of openness is not permitted. The
state change can be easily controlled and measured but in some cases a state change
that would normally not be allowed may be required. In this case the properties of the
components need to change to accommodate the fulfilment of the new state, however,
the percussion for ‘impossibility states’ must exist. In the above example it is
impossible for a door to open beyond 360°. The impossible state could also be
governed by the rules of the environment. The process of a state change is considered
as an event, multiple events or an operation. The firing of events and operations lead
to ‘indirect’ state and/or property change to other components, and some that may not
be obviously related. A class is the collection of all properties that make up the
component. A component is a member of a class if it has properties, which define a
class. A component ‘kind’ is determined by a set of properties. Fore example a house
is a member of the class residential duelling and it also belongs to a kind of
accommodation. Classification is a way of grouping the external features into
equivalent classes but varying degree of granularity. Within the process of

Environment

= Environment Component= Design Components

classification individual members are related to some common set and set are related
to sub-sets.

New component created by combining existing components has rules that
belong to it self even though its properties are based on the properties of the existing
components. The environment also influences the emergence of rule within the new
component which means that design can not be considered without considering its
environment (Ackoff, 1979). An overall design is a collection of the necessary
components, an environment that acts upon the design and is acted upon by the
design and a method of organising and relating the design.

As shown in Figure 1. The overall design also behaves like a complex
component that has internal and external features and states. The word overall design
is used loosely as it can itself form a larger design. In this case it is referred to as a
sub-design or even a sub-components, the higher level design is referred to as a
super-design or super-component in relation to its sub-components. The ‘whole
design’ can therefore not be a sub-component of any thing. A sub and super design
introduces the concept of levels. Unlike a hierarchy the higher level design is not
linked to a lower level design they are all designs in themselves. The higher level
design is made from lower level design and its components. The lowest level design
is called an atomic design. Any particular level does not act on its parts. The elements
used to link components are regarded, as components them selves and will be referred
to as linking components (links), which also have internal and external features. The
linking components can be those that physically join two components and generic
components that associate components these will be referred to as ’specific fasteners’
and ‘generic fasteners’. Operations such as moving, close, new may be regarded as
generic fasteners. In object oriented terminology these may be referred to as
polymorphic objects. The use of a link will produce a new component. This may be
of a components-link-component relationship or component-link relationship the
latter will normally produce a variation to the participating component. In Figure 2
component ‘A-fixed to-B’ consists of Component A, Component B and a ‘Fixed to’
link component. The type of link will determine the result and hence the nature of the
new component

Fig. 2: Component A-fixed to-B

Association

Component
 A

Component
 B

Link component

1.3 Rules in the active component model
The rules within the active component model are ECA production type rules

and are based on the component facts as discussed in the thesis to be pubised by Baig.
The events, conditions, and actions are explicitly declared and are encapsulated into
the rule. In addition rules can have attributes and carry other context information,
such as coupling mode. Separation of the events, conditions and actions and the use
of declarative rule management on the RDBMS have several advantages these are:

1. Provides a unique interpretation of the rule,
2. permits the coupling of rules with triggering transaction in several ways:

event-condition, condition-action, and event-condition-action grouping is
possible,

3. knowledge of the action portion of the rule as well as the event portion of the
rule can be used for optimising the rule,

4. perform transformations by pushing computations from action to condition and
from condition to event without changing the execution semantics,

5. two or more rules can be combined into a larger rule,
6. rules can be related to application areas, hence, grouped by context, thus

reducing the scope of searches. It is also possible to create sub classes of rules
that have their own attributes, and

7. rules can be modified, inserted and deleted in the same way as other data in the
database. They are subject to the same transaction semantics as other data
objects, such as concurrency controls, therefore rule that is being fired by one
transaction cannot be modified, deleted or disabled by another.

1.4 Other systems and product models
This section provides a brief outline of three related systems that relate to the

design for the active component model proposed in the underlying research. These
are General AEC Reference Model (GRAM), The AEC building model and the
RATAS model. These are all rather venerable predecessors but they have effectively
established the various developmental lines of research.

1.4.1 GRAM
GRAM is a method of defining a product model and its decomposition for the

purposes of design. Within GRAM a product is represented as a PDU, Product
definition Unit (Gielingh, 1988). A PDU can be a whole product, sub-system,
element, component, part or a feature of a product. The information is given as a
collection of attributes of the product. Each attribute of a PDU is related to an aspect.
An aspect may be cost, tolerance, and functionality. The description of a PDU is
created from four basic aspects called ‘abstraction mechanisms’ and they are as
follows:
• Specialisation. This separates different application areas like building, civil

engineering, process plant, shipbuilding and terrain mapping.
• Decomposition. Represents how a product can be decomposed into smaller

units.
• Life cycle. Distinguishes the stages into requirements, design, planning, build,

usage, alterations, and demolition.

• Classification. Identifies occurrences, specific and generic PDUs.
GRAM has had considerable influence as an example of a product modelling

method and has been considered as an ISO standard. A full description and evaluation
of GRAM is outside the scope of this paper, for more details refer to Gielingh (1988).

1.4.2 AEC building systems model
The AEC Building System Model has been developed within the IGES/PDES

ACE Committee, which is a part of the US-national Graphical Exchange
Specification (IGES) committee within the Product Data Exchange Specification
(PDES) project. The aim of the model is to present high level conceptual schema of
an AEC product model. In this case product data refers to the totality of data
elements, which completely defines a product for all applications over its expected
life cycle (Turner, 1990). The basic concepts of the model are the object. An object
may have one or more properties. Most objects go through three phases.
• Generic phase. Exact attributes are not specified.
• Specific phase. Most attributes are known.
• Occurrence. When the location and orientation of a specific object has been

determined, exactly or approximately.
An AEC product model is a representation of an AEC project. AEC project

types include buildings, process plants, ships, civil projects, and space habitats. AEC
project phases include programming; concept design, preliminary design, or planning
or design development; detail design; construction documentation; construction
planning or construction scheduling; construction; maintenance and operation;
redesign, or design for re-use; demolition. A full description and evaluation of ACE
is outside the scope of this paper. Refer to Turner (1990) for more details.

1.4.3 RATAS model
The RATAS project attempts to develop a national Finnish system for computer

aided design in the construction industry in Finland. The RATAS building model was
developed as part of the project to achieve a national building product data model
standard. Refer to Björk (1989) and Björk and Penttiala (1993). The RATAS Model
describes a building using objects and relations between objects. Two types of
relations are involved, the “part-of” -relation and the “connect-to” -relation. An
attribute represents properties of the building or parts of the building. An attribute has
a domain of values. Objects belong to classes specified with attributes. Lower level
classes inherit attributes from higher level classes. To limit the need for data in a
representation specific views of the model can be taken. A full description and
evaluation of RATAS is outside the scope of this paper. Refer to Björk (1989) and
Björk and Penttiala (1993) for more details.

1.5 System Scope
This section places boundaries on the requirements of the active component

model. The purpose of the research on which this paper is based is to illustrate how
semantics are incorporated within a construction design project by using semantically
rich components and, how these components can induce active database behaviour.
Ideas developed within the underlying research can be extended to develop a working
system. The research carried out focuses on developing: a) an infrastructure to create

and manage components, b) an infrastructure to create and manage rules, c) a method
of assigning rules to components, and, d) build a design using semantically rich
components. Since any object in a construction project can be considered as a
component, it is necessary to define the lowest level of granularity for components
defined in the underlying research. It is possible to consider the sand, cement and
water that make up the bricks and mortar as components. However, to illustrate the
active component model on a more practical level the lowest level of component will
be lowest level of manufactured object that are used to develop a building such as
windows and doors.

1.6 Functional decomposition
Figure 3 shows the functional decomposition of the active component model.

There are five main functional areas: manage design details (MDD), manage
component information (MCI), develop design using components (DUC), manage
rule information (MRI) and transaction audit logging (TAL). MDD and TAL
functions are not implemented but are recommended for future development.

2 Conclusion

This paper has described a successful research effort to build an active database.
The database was built on top of an existing mainstream database management
system: Oracle. The effort has been mainly directed towards showing that such an
approach is indeed feasible. In this regard it has been successful. It must be admitted
that it has never been the intention to produce a fully fledged system which could be
used in the offices of working construction engineers: principles and theory have
been the motivating forces rather than practice and pragmatism.

Finally, this exercise has shown the form that future developments in database
theory that will be needed to satisfy complex problems domains such as the
construction industry. In this regard this paper points the way forward not only for
construction engineers but also for computer scientists.

DAC

MDD

MHL

DDD

MAL

DDL

DDL 01

DDL 02

Key:

Code Description
DAC Develop active component
MDD Manage design details
DDD Define design details
DDL Define design levels
MAL Manage abstract levels
MHL Manage hierarchy levels

MCI Manage component information
MCI 01 Define facts for component
MCI 02 Associate component to design
MCI 03 Create/update/delete component
MCI 04 View component information

DUC Develop design using component
RUP Rule propagation
RUP 01 Atomic rule propagation
RUP 02 Composite rule prorogation
AAC Associate atomic components
ACC Associate complex components

MRI Manage rule information
CDR Create dynamic rules
CDR 01 Create dynamic rule views
CDR 02 Dynamic event management
CDR 03 Dynamic condition management
CDR 04 Dynamic action management
ARC Associate rule to component
ECA Manage ECAs
ECA 01 Predefined event management
ECA 02 Predefined condition management
ECA 03 Predefined action management

TAL Transaction audit logging

MCI

MCI 01

MCI 04

MCI 02

MCI 03

MRI ARC

ECA

CDR

CDR 01

CDR 02

CDR 03

CDR 04

ECA 01

ECA 02

ECA 03

ACC

AAC

RUP

RUP 01

RUP 02

DUC

Functions Implemented

Functions not implemented
but proposed for future
development

TAL

CODE

CODE

Fig. 3: Functional decomposition

3 References

Ackoff, R. L. (1979). The future of operational research is past, General systems Vol.
24.

Björk, B. (1989). Basic structure of a proposed building model, Computer aided
design, 21, 2, pp 71-78.

Björk, B. and Penttial H. (1993). A scenario for the development and implementation
of building product model standard. Advance Engineering Software, 11, 4,
pp176-87.

Björk, B. (1997). Informate: a framework for discussing information technology
applications in construction, Information Technology Support for Construction
Re-engineering, CIB Workshop W78, Cairns, Australia, published in
proceedings pp 5-22.

Brown, A., Cooper, G., Rezgui, Y. Brandon, P. and Kirkham, J. (1996). The
architecture and implementation of a distributed computer integrated
construction environment, Construction on the information highway, CIB
Workshop W78, Bled, Slovenia, published in proceedings pp 95-108.

Gielingh, W. (1988). General AEC Reference model. External representation of
product definition data, Document no. 3.2.2.1. TNO-report BI-88-150.

Hazelhurst G., Pitt, T. and Buxton, R. (1997). Implementation of single buiding
modelling technologies into the management phase of the property cycle,
Information Technology Support for Construction Re-engineering, CIB
Workshop W78, Cairns, Australia, published in proceedings pp 159-170.

O'Brien, M. and Baig, A. (1998). An active knowledge base for building design, First
International Conference on New Information Technologies for Decision
making in Civil Engineering, Montreal, Canada, published in Vol 1 of
proceedings pp 379-388.

Turner, J. (1990). AEC Building system model. ISO TC/184SC4/WG1. Document
3.2.2.4. (Working paper).

Wix, J. and Bloomfield, D. (1997). Standards for information exchange and sharing:
business benefits, Information Technology Support for Construction Re-
engineering, CIB Workshop W78, Cairns, Australia, published in proceedings pp
409-418.

Wix, J. and Liebich, T. (1997). Industry foundation classes: architecture and
development guidelines, Information Technology Support for Construction Re-
engineering, CIB Workshop W78, Cairns, Australia, published in proceedings
pp 419-432.

