
IMPLEMENTATION OF A DYNAMIC INFORMATION SYSTEM FOR
DESIGN
An information system for design

S. FRIDQVIST
Computer Aided Architectural Design, Lund University, Lund, Sweden

Abstract

This paper reports an implementation of the conceptually most important features
of the BAS•CAAD information system, and the use of this implementation to
create models of different levels of generalisation in the construction context. The
foundations for the BAS•CAAD information system, which have been presented
in an earlier paper, are briefly described. It is a dynamic information system for
design, built on a generic ontological framework. The system supports the
definition of classes in different levels of universality; the classes may originate
from different standards or the individual designer, and allows a free combination
of attributes.

Keywords: CAD, design, dynamic schema evolution, information systems, object
oriented modelling, product modelling

1 Introduction

Many approaches of product modelling focus only at modelling, and seem
to overlook the process of creating the models. The most outstanding feature of
this process is that the information changes and evolves over time, not only in
quantity but as well semantically. This would make it hard to use a product
modelling system based on a fixed classification schema in the earliest, most
dynamic phases of design, since the fixed schema would be at odds with the
evolving semantics of design.

This paper presents the author’s work of implementing a prototype
information system, which has been constructed from the basis of the theoretical
investigations of the BAS•CAAD research project. The project aims to find
solutions to both the problem of modelling, and to the need to reflect and support
the evolving nature of the design process. The theoretical foundation of the
project was initially developed by Dr. Anders Ekholm, and has been refined by
him and the present author as part of the BAS•CAAD project.

Durability of Building Materials and Components 8. (1999) Edited by M.A. Lacasse
and D.J. Vanier. Institute for Research in Construction, Ottawa ON, K1A 0R6,
Canada, pp. 2569-2578.
 National Research Council Canada 1999

C
on

st
ru

ct
io

n
In

fo
rm

at
ic

s
D

ig
ita

l L
ib

ra
ry

 h
ttp

://
itc

.s
ci

x.
ne

t/
pa

pe
r

w
78

-1
99

9-
25

69
.c

on
te

nt

1.1 Information systems for design
Information systems are computer based systems that support handling

information, e.g. during problem solving. A more thorough discussion of
information systems for design can be found in (Ekholm and Fridqvist 1998).
There, we defined that information systems for design must: 1) support
representing objects in the domain of interest, 2) be able to communicate with
other software, 3) support defining the design goal, and 4) have a dynamic object
structure.

Most proposals for product modelling software focus on the first two
requirements. To be useful not only for describing the results of the design
process, but as a tool in this process, an information system for design must have
all properties mentioned above. This is discussed in e.g. Eastman and Fereshetian
(1994), Eastman, Assal and Jeng (1995), Galle (1995), Junge, Steinmann and
Beetz (1997), Leeuwen and Wagter (1998), and Ekholm and Fridqvist (1998).

2 Foundations for the BAS•CAAD information system

The BAS•CAAD information system is intended to cover all levels of
generalisation of modelling in the construction context, from international
classification standards to specific buildings. It is built on a generic ontological
framework, with the object classes thing class, relation and unary attribute, and it
supports generic design operations, like generalising and specialising, aggregating
and decomposing, and adding and removing attributes (Fridqvist and Ekholm
1996).

The BAS•CAAD ontological framework allows models to be multi-
contextual; that is, several contextual views can be co-ordinated in one model.
The foundation for multi-contextuality is aspect views, as described in (Ekholm
and Fridqvist 1998). However, although multi-contextuality is inherent in the
BAS•CAAD object structure, it has yet to be implemented as an observable
feature in the user interface.

In

Fig. 1 the ontological framework is depicted as an EXPRESS-G diagram.
The figure differs from the one in (Ekholm and Fridqvist 1998) in that the entity
Attribute is now named UnaryAttribute. In addition, the superclass BAS_CAAD
object is removed.

The BAS•CAAD information system is based on a similar object oriented
view as object oriented programming languages. In its present state, however, the
BAS•CAAD information system does not support definition of the objects’
behaviours (see section 3.1). For simulation purposes, a modelling system must
enable defining the behaviour of the objects. The present development of the
BAS•CAAD information system is intended to show how a system that describes
classes of concrete things can support design; simulation modelling is not
supported, although such an extension is possible.

Fig. 1: Ontological framework of the BAS•CAAD information system

2.1 Design statements and attributes
Artefact design can be characterised as making statements about the

designed thing and the ‘satisfactory situation’ that the design is to support
(Ekholm and Fridqvist 1998). An information system for design should
accordingly at least be able to record such statements. The statements, of course,
need not be verbal. Also 2D drawings or 3D models or parts thereof can be
treated as statements. The BAS•CAAD information system is designed to collect
such statements and to support analysis and communication of them.

Note that not all designer actions result in new statements in the meaning
used here. Some actions change or delete already present statements. Thus,
statements are not identical to the moves Schön discussed. Schön used the term
move for any physical or mental activity the designer takes regarding the design
task (Schön 1983).

The attributes of the entity ThingClass in Fig. 1reflects that it can be defined
as a 6-tuple of sets of attributes, T = (TG, TC, RI, TE, RE, AU), (Ekholm and
Fridqvist 1998). Given the BAS•CAAD ontological framework, only seven
different types of statements are possible. They correspond to creating
ThingClasses, and to adding attributes to the six sets mentioned above:

1. There is a kind of things, called X.
2. An X-thing is a kind of Y-thing (= kind X is a subkind or specialisation of Y).
3. An X-thing is composed by a C-thing part.
4. An X-thing is internally structured, so that any part of kind P1 is related to any

part of kind P2 by an R-relation.
5. The environment of an X-thing includes an E-thing.
6. An X-thing is related by an S-relation to any E-thing in its environment.
7. An X-thing has the unary property Q.

A consistent collection of correct statements defines a model through the
three basic classes of the ontological framework in Fig. 1. However, these classes
are not suitable for storage of design information, since all connections between
objects must be established. The trouble with this is that some connections might
imply statements that the designer would not intend. In particular, some things are
used in numerous different environments, and it would not be desirable to have to
include all these environments in the definitions of thing classes like ‘bolt’ or
‘nut’.

Instead, we have found that all information necessary for the creation of
such a schema is contained in a consistent set of design statements, as related

above. Thus, the schema in Fig. 2 has been developed to provide the data
structure to be implemented. Design data are stored in instances of
ThingClassDefinition, which collects instances from the six subclasses of
Attribute that correspond to the six different kinds of attributes, see Fig. 2. The
classes RelationDefinition and UnaryAttributeDefinition define relations and
unary attributes, and ensures that attributes referred to in several places are
identically defined.

Fig. 2: Object structure of the current implementation

2.2 Example
To describe a thing in the BAS•CAAD system is to define thing classes for

the thing and its parts, and the attributes that characterise those things. Fig. 3
displays a brief example of how an ordinary table may be described. The
presentation is not an actual printout from the prototype software, although a
similar syntax is used for files.

THINGCLASS table
COMPOSITIONATTRIBUTE tableTop CARDINALITY 1
COMPOSITIONATTRIBUTE tableLeg CARDINALITY 4
INTERNALSTRUCTUREATTRIBUTE tableLeg isConnectedTo tableTop
INTERNALSTRUCTUREATTRIBUTE tableTop isConnectedTo tableLeg

THINGCLASS tableLeg
CLASSATTRIBUTE woodenBar
ENVIRONMENTATTRIBUTE tableTop
EXTERNALSTRUCTUREATTRIBUTE isConnectedTo tableTop IN table

THINGCLASS woodenBar
UNARYATTRIBUTE material VALUESPACE wood
UNARYATTRIBUTE shape VALUESPACE bar

Fig. 3: Thing class definitions

Table legs obviously are functional parts of tables; a wooden bar is
characterised by its material, and its shape.

House Palce
Define attributes man-made Kind of House

provides dwelling
Inherent attributes man made

provide dwelling

Fig. 4: Defined and inherited attributes

2.3 Other features of the object structure
Besides generating and maintaining the object structure, the prototype

currently supports a simple schema for object identification, inheritance and
specialisation of attributes, and class libraries. Additionally, class subsumption is
planned to be implemented.

2.3.1 Object identification
The BAS•CAAD information system for design allows thing classes to be

defined by references to predefined libraries (see section 3.3). Such a mechanism
requires that libraries and classes can be unambiguously identified, in order to
ensure that the correct libraries are used. The current version can identify objects
within a library, but there is no secure identification of libraries. The development
of such a mechanism is a task for database specialists and international
standardisation organisations, and outside the scope of this phase of the
BAS•CAAD research project.

2.3.2 Attribute inheritance
Class attributes indicate a more generic kind, also called a superclass. All

statements defined for the superclass are also valid for the subclass; the attributes
of the superclass are inherited attributes of the subclass. An example: the class
House has the attributes ‘man-made’ and ‘provides dwelling’. If Palace is defined
by the attribute ‘kind of Building’, Palace inherits the attributes ‘man-made’ and
‘provides dwelling’ (Fig. 4). A mechanism for attribute inheritance has been
implemented.

2.3.3 Attribute specialisation
With the above set of attributes, however, the Palace class doesn’t reflect

that a palace is a specific kind of house. This type of difference can be defined in
to ways; either by adding a new attribute to the specific class, or by specialising
an inherited attribute. Which way to choose is a question of clarity in modelling
and usefulness of the model; se Fig. 5 for a illustration of the differences of the
two methods in terms of sets.

Fig. 5: Classes and subclasses

House Palace
Defined attributes man-made

provides dwelling
kind of House
provides luxurious dwelling

Inherited attributes man-made
provides dwelling

Fig. 6: Attribute specialisation

In this case, we have chosen to specialise the attribute ‘provides dwelling’
into the more specific ‘provides luxurious dwelling’, and to define the class
Palace with the specialised attribute. A mechanism for this has been
implemented. The new attribute is defined in the Palace class, where it substitutes
the inherited attribute ‘provides dwelling’(Fig. 6).

2.3.4 Class subsumption
Description logics (see next paragraph) provide a mechanism called

subsumption. This could be described as the inverse of inheritance, since it
answers what superclasses a given class has according to its set of attributes. For
instance, if a thing Bungalow has the attributes ‘man-made’ and ‘provides
dwelling’, then it is subsumed to be a kind of House, i.e. the class Bungalow is a
subclass of the class House. Subsumption is not currently implemented in the
BAS•CAAD prototype system, since it would make implementing inference more
complicated. However, since subsumption could arguably provide a powerful
tool for case retrieval, it will probably be implemented in a future version of the
BAS•CAAD system.

Description logics (DL) is a field within artificial intelligence research. It
aims to develop mechanisms for describing concepts, and to automatically
classify concepts. DL is based on first order predicate logic, and is DL systems
implementations are usually similar to programming languages (Lambrix, 1996).
Although DL is similar to the BAS•CAAD approach in many ways, it seems that
it cannot serve as the base for a design information system. This subject is
outside the scope of this paper, but will be further developed in a future
publication by the present author.

3 The BAS•CAAD prototype information system

The prototype is intended to study the feasibility of organising an
information system for design based on systems theory. It should also be dynamic
in respect to the possibility for the user to define new class concepts in the
conceptual schema, and to classify model instances.

The current implementation has been preceded by many earlier attempts.
The foundation has in all cases been the concepts system and property. The aim of
the BAS•CAAD project is to support expression of designed objects through these
concepts in a computerised database. Thus, all versions of the software have
sought to implement these two terms as object classes.

It is intended to display some features we consider important in an
information system for design, but it is not intended for productive design work.
The current version is centred on building symbolic schemas for concepts
referring to things, and lacks most of the abilities to specify metric values
necessary for a production tool.

3.1 Smalltalk
The BAS•CAAD prototype information system is currently implemented in

Smalltalk under the Macintosh operating system. The reason for choosing the
Smalltalk computer language was that it is object oriented, and that it supports
explorative program development.

In product modelling, products are structured as objects that are assembled
of objects in several levels. This makes it natural to choose an object oriented
programming language for implementing such a system. Object oriented
programming is based on the concept of objects that interact through sending and
reacting to messages. Objects are defined through classes, which define the
structure and behaviour of the object. The behaviour is the collection of various
responses an object is capable of, and it is defined through pieces of software
code, that in Smalltalk are called methods. Each kind of message that is
‘understood’ by an object corresponds to one method, which handles that
particular kind of message. Some methods return answers, others just change the
object’s internal state.

In explorative program development, the software needs only to be partly
defined before it is executed and tested. Thus, experimental solutions can be tried
and kept if successful; otherwise, they are discarded. This way the final software
solution is obtained though an exploration. In Smalltalk, code segments can be
run and tried directly, without any time-consuming compilation or linking
procedures. Actually, Smalltalk allows the programmer to change the code while
the software is running, thereby relieving the programmer from repeatedly
punching in lots of test data. This is not possible in C++, a popular programming
language that also supports object oriented programming.

Smalltalk is profoundly object oriented; every concept is treated as an object
class. Thus, in Smalltalk it requires an effort to not be object oriented, as opposed
to C++. A drawback with Smalltalk is that the resulting programs do not run as
fast as those created with e.g. C++.

3.2 Implementing the system
The foundation for the BAS•CAAD prototype is the three concepts thing

class, relation and unary attribute that are implemented through the corresponding
object classes ThingClassDefinition, RelationDefinition and
UnaryAttributeDefinition.

 To create and manipulate these objects, some means has had to be created.
Principally, there are two choices: a command line user interface or a graphical
user interface (a GUI). In a command line user interface, the user types
commands, and then usually hits a key to get the command executed. A command
line interface requires developing a command line interpreter, a piece of software
that can translate the command lines into software actions and input data.

A GUI can make it easier for the software developer by controlling the
user’s actions. The user controls the software via buttons, menus, text input fields
etc. Thus, the software developer can restrict the user to input only such
instructions or data that are valid, through presenting only such control objects
that allow actions that are meaningful to the software in a given situation. A
benefit for the user is that it is fairly easy for the developer to make the software
self-explanatory through a GUI.

Fig. 7: Examples of user interface windows

Regarding these concerns, the choice fell upon a GUI as the method to
interact with the software. Each of the object classes ThingClassDefinition,
RelationDefinition and UnaryAttributeDefinition has a corresponding window
class. The Smalltalk dialect used for the BAS•CAAD prototype (Smalltalk
Agents, STA), provides generic classes of GUI components, such as windows,
menus, buttons etc. These can be subclassed and modified to suit the particular
needs of the software being developed.

In addition to the three classes of windows related above, which display the
state of the model, additional windows have been developed for specific tasks,
such as adding different kinds of attributes to thing class definitions.

Windows communicate with the corresponding model objects through
messages. Each user interaction with a window causes at least one of the
window’s methods to be executed. This results in messages being sent to the
model object, which responds with the appropriate actions. Finally, some
messages are sent from the model object back to the window, to ensure that the
window reflects the new state of the model object.

Most of the work with the development of this prototype system has been,
and continues to be, to decide how to obtain the desired functionality. To perceive
a user action in the terms of objects exchanging messages is a complex task. One
particularly difficult question is to decide what object is the agent, and what
objects are acted upon. The reason for this is that many objects may be involved
in the execution of one user action, with many messages exchanged. If the
resulting web of such message interchanges is too entangled, the programmer is
likely to get lost. Additionally, there is a need to make the software code as
intuitive as possible to any future programmer (which, incidentally, often is the
same person, but a couple of days later).

3.3 Libraries
The use for the BAS•CAAD system is to record information about concrete

things through the three concepts thing class, relation and unary attribute. The
task for the user is to define what different kinds of things that compose the part
of reality that is to be modelled, and the relations and other attributes that

characterise such kinds of things. Then, the BAS•CAAD system can be used to
record these definitions.

Acknowledgeably, defining a coherent conceptual understanding of the
concrete world is a very demanding task. To allow the BAS•CAAD system to be
used in normal design situations, pre-defined well-considered schemas of thing
classes has to be provided for use as libraries, from where the designer can fetch
definitions to build up his design database.

The current BAS•CAAD prototype supports such class libraries. Objects in
libraries can refer to objects in other libraries, so that hierarchies of libraries can
be created. This feature is implemented to try a mechanism that would allow
international and national standardisation organisations to create generic libraries.
Building material providers and others can then create intermediate level libraries
that ultimately can be used as references in specific building projects.

The concept of class library has been generalised, so that library is the sole
format for databases and files. Thus, the work of any level of specificity can be
the foundation for further specialisation. For instance, it would be possible to use
the project file from a window designer as a library file in a building design
project without any reformatting or reclassification.

4 References

Eastman C. M. and Fereshetian N. (1994). Information models for use in product
design: a comparison. Computer-Aided Design Vol. 26, No 7, pp 551-572,
July 1994.

Eastman C. M., Assal H., and Jeng T. (1995). Structure of a database supporting
model evolution. In Modelling of buildings through their life-cycle.
Proceedings of CIB workshop on computers and information in construction
(eds. Fisher M., Law K., and Luiten B.) Stanford University, Stanford, Ca,
USA, August 21-23.

Eastman C. M. and Siabiris A. (1995). A generic building product model
incorporating building type information. Automation in Construction, vol.
3, no. 4, pp. 283-304.

Ekholm, A. and Fridqvist, S. (1998) A Dynamic Information System for Design
Applied to the Construction Context. In The Life-cycle of Construction IT
Innovations (Eds. Björk, B-C. and Jägbeck, A.), proceedings from the CIB
W78 workshop, 3-5 June 1998, Stockholm, Sweden

Fridqvist S. and Ekholm A. (1996). Basic ObjectStructure for Computer Aided
Modelling in Building Design. In Construction on the Information Highway.
(Ed. Ziga Turk), proceedings from the CIB W78 Workshop, 10-12 June
1996, Bled, Slovenia.

Galle P. (1995). Towards integrated, ”intelligent”, and compliant computer
modeling of buildings. Automation in Construction. Vol. 4, No 3, pp. 189-
211, 1995.

Junge R., Steinmann R. and Beetz K. (1997) A dynamic product model. In CAAD
futures 1997, proceedings of the 7th International Conference on Computer
Aided Architectural Design Futures (Ed. Richard Junge) Dordrecht: Kluwer
Academic Publishers.

Lambrix P. (1996) Part-Wole Reasoning in Description Logics, dissertation at the
Department of Computer and Information Science, Linköping University,
Linköping, Sweden.

Leeuwen J. P., and Wagter H. (1998). A Features Framework for Architectural
Information. In the proceedings of the Artificial Intelligence in Design
Conference 1998 (Ed. Gero, J. And Sudweeks, F.) Dordrecht: Kluwer
Academic Publishers.

Maher M. L., Simoff S. J. and Mitchell J. (1997). Formalising building
requirements using an Activity/Space Model. Automation in Construction,
vol. 6, pp. 77-95.

Schön D. (1983) The reflective practitioner. BasicBooks 1983.

