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Abstract

Neural network approach is applied to establish relationships between the
quantities/cost of the concrete/formwork, which is required for the structural elements
of tall buildings using high performance concrete (HPC), and the design variables.
Hybrid and hierarchical strategies are proposed for the cost estimation, where the
feed-forward networks are adopted. After training, the neural networks are utilized to
predict automatically the quantities/cost of HPC wall-frame structures in tall
commercial buildings. Verifications are conducted with respect to various sets of the
design parameters and a comprehensive discussion is given.
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networks

1 Introduction

The costs of the high strength concrete (HSC) building structures are influenced
by a number of factors, including the structure parameters (e.g., the grid size, the
number of story and the grade of concrete), the building design specifications (e.g.,
the lateral drift of the building structure) and the design objectives (e.g., the
minimization of total weights). Consequently, developing a model for cost estimation
requires an intensive understanding of the relations between the above factors and the
costs. Traditional approaches to cost estimation are mainly based on spreadsheets,
database management systems (Bett, 1987), statistics (Wilson, 1982; Singh, 1994),
linear regression (Koushoulas and Koehn, 1974; McCaffer, 1976; Bowen, 1985;
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Singh, 1990). These methods are not appropriate for nonlinear multi-dimensional
relationships involved in the cost analysis. Developing empirical or semi-empirical
formulae through either simulated database (Singh, 1990, 1994) or the practical
statistics (Karsheras, 1984) for the cost estimation of building structures is extremely
difficult because of the highly coupled interaction among various factors.

Application of neural network approach to construction is a relatively new
research area, including the modular construction decision making processes
(Murtaza et al., 1994), construction cost estimation (Li, 1995a, 1995b), construction
management (Chao and Skibniewski, 1994; Boussanaine, 1995; Li, Zeng and Guan,
1996), construction optimization (Flood and Kartam, 1994), construction bidding and
forecasting (Gaarslev, 1991; McKim, 1993). In the development of neural cost
models, Li (1995a, 1995b) explored the effect of network configuration on the
accuracy of the models and discussed the difficulties in use of neural networks. The
data for training the network was sampled from a bidding game. For predicting
strength and workability properties of the fibre reinforced concrete (FRC) mixes, the
feed-forward neural network has been employed (Rao, 1997), where the relations
between the water-cement ratio, aggregate-cement ratio, aspect ratio and volume
percentage of fibres, and the various strength parameters are learned. Hua (1996)
applied neural network to forecast the demand for residential construction in
Singapore, where a total of 12 economic indicators are identified as significantly
related to demand for residential construction. It has been found that the neural
network model can produce a better prediction than the conventional multiple
regression.

In this paper artificial neural networks are applied to establish relationships
between quantities/costs of the concrete/formwork for structural elements of tall
buildings using high strength concrete and the design parameters. Two neural
strategies of the cost estimation are proposed while the feed-forward neural networks
are adopted. The trained networks are utilized to predict automatically the
quantities/costs of high performance concrete (HPC) structures in tall buildings.
Verifications are conducted and comparative analysis is given.

2 Neural cost estimation strategy

2.1 Problem of the cost estimation
The costs of concrete and formwork are directly proportional to their

quantities required. The quantities are, however, affected by the structural design
parameters such as grid sizes, grades of concrete, and numbers of stories. These costs
and quantities can be found by using a structural design software package and
computer calculation when the shape of the structure and its structural form are
defined. In Hong Kong, the most common type of structural form for tall commercial
buildings is the “Wall-Frame” structure which uses the shear wall construction to
resist the lateral wind load and provides a centrally located service core to house
utilities such as lifts, toilets and stairwells.

In this study, neural networks are anticipated to model the quantities/costs of



concrete and formwork required for the building structures, enabling designers to be
aware of the design economy in adopting various design parameters such as concrete
grades, grid sizes and numbers of stories. Direct collection of the cost data from
practical statistics imposes some difficulties: expensive, time consuming and
uncertain. The simulation approach is thus developed, by means of several software
packages  including  TBCAD,  ETABS,   optimal  drift  design  codes ( Fig. 1),  for
generating the database for cost
estimation. The wall-frame structure, as
shown in Fig. 2(a), is assumed for tall
commercial buildings of 40 to 70 stories
in this study, because it is the most
common form of structure for tall
buildings in Hong Kong. The
fundamental structure members in the
wall-frame structure systems involve
solid slabs, beams, columns and shear
walls. The simulation is based on the
structural floor plan shown in Fig. 2(b).
The whole structure is supposed to be
constructed by HPC.

Fig. 1: Sampling scheme of the
database for cost estimation

2.2 Hybrid cost estimation
Given a set of input variables including the grid size, the number of story, the

grade of concrete, one neural network can be used to estimate the costs for the
concrete or formwork required for the structural elements (including the slabs,
columns, beams and shear walls) and the whole structure. Fig. 3 presents this
network-based hybrid model for cost estimation, where the network serves as a
physical mapping between the input (independent) variables and the output
(dependent) variables. However, the network may not be best suited to this multi-
dimensional cost estimation problem, since the cost components to be estimated may
have different sensitivities and variations with the input variables. Thus, the hybrid
estimation model usually gives a compromised performance, although the training
and implementation of the network require less computation.

2.3 Hierarchical cost estimation
The three inputs in the cost model above can also be decomposed by

discretizing one or two independent variables into auxiliary variables. As such, the
cost estimation can be carried out separately by a set of independent networks,
leading to a hierarchical cost estimation scheme. Since networks are used to map
relatively simpler input-output relationships, more suitable network configuration and
learning parameters can be obtained and thus a better estimation performance can be
attained.



Fig. 2: Wall-frame structure and typical floor plan

Fig. 3: Hybrid neural cost estimation   Fig. 4: Hierarchical neural cost estimation
(Model I)      (Model II)

When two input variables are discretized into auxiliary variables, the cost
model has only one independent variable. Given a pair of auxiliary variables, say the
grid size and the number of story, a simple network with one input (the grade of
concrete) can be employed to estimate the cost for the concrete and formwork, as
shown in Fig. 4. Thus, a serious of networks are required to cover entire ranges of the
two auxiliary variables, with one network for each pair of the discretized variables.
When another independent variable, say the grid size or the number of story, is
selected, the network-based model similar to one shown in Fig. 4 can be applied.

When one independent variable is discretized into auxiliary variable, a
network having two inputs can be used to estimate the cost for the concrete and
formwork. With different variable as the auxiliary input, three hierarchical neural



models can be developed. Fig. 5 shows the hierarchical models for the costs with the
number of story. In such models, a number of networks are needed to estimate the
cost with respect to a particular discretized auxiliary variable. Each network has to be
trained and applied independently.

3 Network construction and training

With respect to the hybrid model
(Fig. 3), the input layer of the network
has three neurons representing the grid
size, the number of story and the grade of
concrete, respectively, while the output
layer has a total of five neurons
representing the quantities of the concrete
and the formwork for the slabs, columns,
beams, shear walls and the whole
structure. For the hierarchical models
(Fig. 4 and 5), the inputs to the particular
network depend upon the estimation
scheme, while the outputs are the same as
those for the hybrid model. There are one
or two inputs when two or one input
variables are discretized into auxiliary
variables, respectively. As regards the
number of hidden layers and neurons in
each hidden layer, there is no general
guideline for their selection. Associated
with the hidden and output neurons are
binary sigmoid transfer functions.

Fig. 5: Hierarchical neural cost
estimation (Model III)
(with the number of story as the
auxiliary)

The feed-forward network is used to establish in an implicit manner the
complex multi-dimensional mapping between the inputs and the outputs. Network
training is to adjust the network weights to learn the training patterns, which is
conducted by a commercial software NeuralWorks* in this study. After training, the
network can be instantly converted into a callable function for further implementation
in the hybrid and hierarchical strategies.

* The NeuralWorks is a product of NeuralWare, Inc., Pittsburg, PA 15276, USA.



4 Results and discussion

4.1 The training and testing patterns
The major objective of this investigation is to develop the neural network-

based cost models, to realize the automatic cost estimation. To have such models, it is
required to develop a comprehensive set of samples which cover ranges of
independent variables influencing the cost of the HPC building structures. This is
achieved in this study by conducting simulation experiments via the scheme shown in
Fig. 1. The output obtained from the experimental simulations includes the
quantities/costs for slabs, beams, columns, shear walls and the whole structure which
are used as the desired target output for training the neural networks. The grade of
concrete, the grid size, the number of story are chosen to be independent variables and
sampled in ranges of (60-120MPa), (4-12m) and (30-70), respectively. Table 1 gives
the quantities for the concrete of the structural elements, while the data for the
formwork is omitted. There are a total of 9x5x7=315 training pairs.

Table 1 Training patterns for the networks for cost estimation of the concrete

Input Patterns Desired Output Patterns
Grid
Size

(m)

Number
of

Story

Grade of
Concrete

(MPa)

Slab
(cu m / sq m
floor area)

Column
(cu m / sq m
floor area)

Beam
(cu m / sq m
floor area)

Wall
(cu m / sq m
floor area)

::: ::: ::: ::: ::: ::: :::
6 30 70 0.085896 0.030381 0.023374 0.060371
6 30 80 0.086041 0.023675 0.021465 0.054709
6 30 90 0.086260 0.019977 0.012665 0.050393
6 30 100 0.08649 0.017713 0.011579 0.043801
6 30 110 0.086569 0.009452 0.005277 0.038136
6 30 120 0.08662 0.006741 0.004915 0.034264

::: ::: ::: ::: ::: ::: :::
12 70 60 0.083870 0.128454 0.017954 0.151222
12 70 70 0.084042 0.108113 0.016845 0.143726
12 70 80 0.08416 0.098742 0.015910 0.138567
12 70 90 0.084322 0.094112 0.014956 0.132635
12 70 100 0.084417 0.086002 0.014082 0.124727
12 70 110 0.08463 0.082804 0.013213 0.119628
12 70 120 0.084789 0.078963 0.012369 0.116040

4.2 Results for hybrid cost estimation (Model I)
After a number of trial runs, it has been found that the network of two hidden

layers, having 10 neurons each, can achieve a better training performance of the
converging error of 0.08. Hence, such a network is finalized for the hybrid cost
model. The validation and testing results are plotted in Fig. 6, with respect to various
combinations of the grid size, the number of story and the grade of concrete. Fig. 6(a)
shows the estimated cost of the whole concrete, for the numbers of story of 40, 55 and
60, varying with the grade of concrete, given a fixed grid size of 9m. The estimated



costs for the number of story of 60 is found to agree uniformly with the desired ones.
The estimated costs for the number of story of 55 have clear reasonable trends of
variations and are well interpolated. Fig. 6(b) presents the validation results for the
grid sizes of 9m and 9.6m with respect to different grades of concrete, given the
number of story of 60. Satisfactory agreement of the estimated costs with the desired
ones and excellent interpolation of the neural estimation have been confirmed.

(a)       (b)
Fig. 6: Validation results for hybrid cost estimation (Model I) for the concrete

4.3    Results for hierarchical cost estimation (Model II)
   With respect to the estimation model (Fig. 4), a number of networks are

required for different pairs of auxiliary variables. In this work only one network for
the particular grid size of 9m and number of story of 40 is given as an example. For
this model there are one input and five outputs. After numerous trial runs, the
network configuration of one hidden layer with five neurons has been adopted, with
the converging error of 0.02. The validation results for the costs of the concrete and
the formwork are presented in Fig. 7. The promising estimations have been found.

4.4 Results for hierarchical cost estimation (Model III)
When the number of story is taken as auxiliary variable, the hierarchical

strategy can be realized using the Model III (Fig. 5). A number of networks with two
inputs and five outputs are required to estimate the costs for concrete and formwork,
with one network for each fixed number of story. In this case, there are a total of
9x7=63 training patters, with respect to the grid sizes of 4, 5, … and 12, and the
grades of concrete of 60, 70, …, 110 and 120. The network configuration of two
hidden layers with 10 neurons each has been adopted after a few of trial runs. The
converging errors are about 0.01 and 0.02 for the networks for the concrete and



formwork, respectively. Fig. 8 shows the validation results for the cost of the total
concrete and formwork, for the discretized number of story of 60, with respect to
various grades of concrete. The estimation has been found excellent for the costs of
the whole structure concrete. The estimated costs for the grid size of 9m fall
uniformly on the curve for the desired costs. The estimated costs for 9.6m look well
interpolated between the curves for both grid sizes of 9m and 10m. However, the
errors associated with the estimated costs for the total formwork look quite larger.
The desired variation of the cost in the range of the grades of the concrete of 60MPa
and 80MPa has been smoothed off in the neural model.

(a) for concrete             (b) for formwork

Fig. 7: Validation results for the cost estimation (Model II)

4.5 Comparative analysis
Adopting the hybrid estimation strategy, only one neural network is required

and trained. It has been confirmed from the training results that the network (for both
concrete and formwork) has the best converging accuracy of 92%, which is smaller
than the training results of the hierarchical strategy. The major advantage of the
hybrid strategy for the cost estimation is easy to implement. Thus, if the average
estimation error of 0.08 is acceptable, the estimation strategy is suggested.

For achieving a better estimation accuracy, the hierarchical strategy is suggested.
The training as well as estimation performance of the hierarchical strategy varies from
one model to another. It is found that the model II and model III give better estimation
performance with accuracy of 0.01 and 0.02. However, as the hierarchical estimation
strategy requires more than one network, more training and implementation work is
necessary.



(a) for concrete (b) for formwork

Fig. 8: Validation results for the cost estimation Model III
(with the number of story being auxiliary variable at 60)

5 Conclusion

Using the quantities/cost data for the structure elements generated from the
structure analysis, neural networks can be employed to predict automatically the costs
of concrete and formwork required for a wall-frame structure system of tall
commercial buildings using high strength concrete. The structural elements involve
solid slabs, beams, columns and shear walls. Design parameters such as grid sizes,
numbers of story and grades of concrete have been considered in the models to assess
their effect on quantities/costs of the HPC structures. Two strategies of cost
estimation based on neural networks have been proposed. From the training and
validation results, it can be concluded that all the neural models, no matter of the
hybrid or hierarchical strategies, can provide a promising cost estimation. The two
strategies are compared and it is confirmed that the hybrid model is less accurate but
easy to be trained, while the hierarchical models are more accurate but more
complicated in implementation.
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