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Abstract

The deterministic approach to estimating the production rate of a construction
operation assumes constant midpoint physical attributes without addressing the effect
of randomness of job conditions.  On the other hand, most simulation models bypass
physical factors and rely on second-order inputs of probability distributions of task
times, the judgements of which have been cited as difficult for users to make.  This
paper presents an alternative approach to production estimation, based on simulating
directly the effects of changing job factors on task times, while addressing the
probabilistic nature of construction.  The neural network model is used as the
computing mechanism for determining the cycle times of the equipment in given
conditions and provides the basis for estimation.  The obtained times are then fed
directly into a discrete-event simulation model to simulate the process and establish
the production capacity of the system as constrained by first-order factors.  The
approach is illustrated using a hypothetical excavating and hauling operation while
the object-oriented programming technique is used to implement the computing
procedure.

Keywords: construction productivity, excavation operation, neural network, discrete
event simulation, object oriented programming
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1 Introduction

The maximum production rate that can be achieved for an on-site mechanised
construction operation is dependent on the production capacity of the set-up of the
employed equipment resources working in the given physical environment.  The
estimate of this capacity will be the basis for the expected speed of the operation
which is obtained by applying further a percentage efficiency factor to reduce the
maximum rate.  The result is then used in cost and time estimation for the involved
project.

The scope of the current paper is to study methods for estimating the above-
mentioned maximum capacity as constrained by physical job factors only, without
considering non-physical or management factors that influence operation efficiency.
Existing estimating methods are reviewed and commented before a proposed method
is presented, which is based on neural network models for computing task times from
physical factors while embedded in discrete event simulation.  The common
excavation and hauling operation is used throughout the discussion and comparison
of the methods.

2 Existing estimating methods: deterministic  vs. stochastic

The traditional deterministic method is most commonly used for production
estimation for construction operations.  With this method, fixed average job
conditions are assumed even though the conditions encountered are changeable.  The
production capacity of the leading resource of a system is usually first estimated
according to such assumptions to determine the output rate of the set-up which
includes other resources that work together.

For example, in an excavation and hauling operation which employs an
excavator and a fleet of trucks, the excavator is the leading resource whose digging
capacity determines the number of truck loads that can be produced at most.  Since
the excavator’s maximum hourly production depends on the number of digging cycles
achievable per hour, its average cycle time for the job needs to be estimated first.
With the deterministic method, midpoint values of work dimensions and conditions,
i.e. average depth of cut, average swing angle, average soil properties are assumed
and used in estimating the average cycle time and thus the production rate.  Similarly,
fixed haul conditions are assumed in estimating the average truck travel time for
determining the system production for a given number of trucks.



If considering the overhead time spent by the excavator repositioning itself after
each truck load, the deterministic estimates of the production capacity of the
operation can be obtained as follows:
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where Xmax = operation production (m3 per hour)
Tl = loading time per truck (minutes)
Tr = excavator reposition time after each truck load (minutes)
Vt = volume per truck load (m3)
N = number of trucks
Nb = balanced number of trucks

Further, Tl and Nb can be obtained as follows:
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where tc = average digging cycle time (seconds)
Vb = bucket volume (m3)
Tt = average truck cycle time (including spot time, hauling time, dump time,

and return time but excluding loading time, minutes)

More details on the deterministic method can be found in many publications
such as Nunnally (1987), Caterpillar (1988), and Gransberg (1996).  Despite its wide
use, one acknowledged important problem with the above method is that it ignores
the effects of changing job conditions and random task times, which are prevalent in
real situations, and at times this might lead to inaccurate results.

To better model the randomness existing in construction operations, many
researches have suggested stochastic simulation based methods and programs, which
often are intended for general uses instead of a particular type of operation.  Using
such  packages to estimate an operation’s production will require inputs of probability
distributions of task times, relations among tasks, and types and numbers of
resources.  During a simulation run, task times are sampled from the inputted
distributions and events are generated through the period of the operation to



accumulate productions and compute various statistics.  For more about such discrete
event simulation models, see McCahill and Bernold (1993).

The critical information needed for using the above general purpose simulation
method is the probabilistic task times which are determined by the user based on past
data.  The model itself is not concerned with the influence of physical job conditions
(or first order factors) such as work dimension and soil type on task times (or second
order factors). Its ability to deal with closely the relation between first and second
order factors for a particular operation has to be sacrificed in order for it to be general,
but the user will in the same time lose the feel of the impact of first order factors on
the final results.  This problem has been cited as hindrance to wider use of simulation
models (Schexnayder 1997).

3 Proposed method: simulation with physical factors

As an alternative approach to estimating an operation’s production capacity, the
proposed method is based on computing directly the effects of physical factors on
task times meanwhile simulating the work flows of the employed resources to
establish the production rate.  Since the exact job conditions change constantly in a
random manner and the speeds of equipment resources will vary accordingly, the
probabilistic nature of production in the construction environment is addressed.

To cater for the special attributes of each task involved in a particular type of
operation, certain computing mechanisms will have to be developed as the basis for
estimating task times.  They will be embedded in the discrete event simulation
program as modules to be called by the main procedure when tasks are enacted.  For
reasons of computing efficiency and complex mapping ability, it is suggested to use
the neural network model as the common mechanism to provide task times in given
conditions for the simulation process.  Each task will require a neural network pre-
trained on observed performance data for the employed equipment to perform the
following mapping function:

(x1, x2, …, xN) => T (5)

where x1, x2, …, xN = parameters for physical job conditions
T = task time

For example, the neural network model’s input parameters for an excavator will
be depth of cut, angle of swing, and type of soil, while its output will be excavator
digging cycle time.  The neural network model’s input parameters for a truck will be
gross weight, total resistance (grade plus rolling), and travel distance, while its output
will be truck travel time.

Training data for a neural network can be obtained from site observations of
equipment performance or from the manual prepared by the manufacturer for that
particular model of excavator or truck.  Details of developing a neural network model



for estimating productivity of construction equipment can be found in Chao and
Skibniewski (1994).

For reasons of system modularity and flexibility, it is suggested to use the object
oriented technique to implement the system design and develop the simulation
programs.  In such programs, each task and resource of an operation is represented by
an object which is a combination of relevant data and functions.  In the case of typical
excavation and hauling operations, the simulation system developed in C++ will
include the following components:
• a main function that initiates the attributes of a job, creates the objects for the

job, contains the simulation algorithms, and outputs the results
• an excavator object that includes the excavator’s characteristics and a function

for estimating its digging cycle time for given digging parameters
• a series of truck objects that each include a truck’s characteristics and a

function for estimating its travel time for given haul parameters
• truck-loading task objects that each include the excavator and truck objects

concerned, the excavation attributes, and a loading time estimating function
The structure and weights of a neural network trained for an excavator or truck

for cycle time estimating will be imported from an external file by the excavator or
truck object concerned.  For more about developing an object oriented application for
estimating task times in construction, see Chao (1998).

Due to the randomness introduced in the simulation process, each independent
run of an operation will result in a somewhat different production rate achievable, and
hence a large sample of, say, 100 runs should be obtained to find out the average
production level as the estimated operation capacity.  The method presented above is
illustrated using a numerical example of the excavating and hauling operation in the
following.

4 Illustrative example

Assume the scenario of an excavation and hauling operation with a medium size
hydraulic excavator digging in medium job conditions and loading a fleet of off-
highway trucks one by one which will then travel individually to a dump to dump the
load and travel back for another load.  The model of the trucks used has an empty
weight of 31 ton and a maximum gross weight of 67 ton.  The excavator’s features
and a summary of the job conditions are shown in Table 1 and Table 2, respectively.



Table 1: Features of excavator

Heaped bucket capacity 1.7 m3
Maximum depth of cut 5.8 m
Width of undercarriage 3.0 m
Optimum horizontal reach 5.5 m
Maximum horizontal reach 8.0 m
Effective reposition speed 0.15 m/sec
Set-up time per reposition 10 sec

Table 2: Job conditions of example excavation and hauling operation

Depth of excavation (m) 3.6
Type of soil II (common earth)
Unit weight of soil (kg/m3 in bank measure) 1840
Load factor of soil 0.80
Bucket fill factor of soil 0.80 - 1.10
Haul distance (m) 1600
Total resistance of haul road to dump (%) 12
Total resistance of haul road to excavation (%) 3

The excavator will finish the excavation in strips of equal width while being
positioned on the bench with bench height equal to the depth of the excavation.
During digging and loading it will have its front facing the work zone, the width of
which equal to its undercarriage width in order to minimise the swing angles from cut
locations to the truck positioned on one side of the excavator.  After each truck load
the excavator will move backward to reposition itself and start another truck load.

The cut location for each digging cycle will be set randomly within the work
zone so that all locations have equal chance to be reached.  The swing angle and
depth of cut that defines a cut location will vary accordingly to the effect of changing
digging cycle times and truck-loading times.

Since exactly how much material contained in each bucket load is uncertain,
the bucket fill factor is assumed to vary randomly within the range shown in Table 2.
The work volume (m3, bank measure) completed in a digging cycle will be calculated
as heaped bucket capacity times bucket fill factor times load factor, with an average
of 1.29 m3.

Consequently, the volume of a truck load, which needs 15 buckets to fill it, will
not be a definite number but vary accordingly.  The changing gross vehicle weight
will lead to a different truck travel time to the dump.

Based on the considerations described above and the concepts presented in the
previous section, the required modules of a simulation program can be developed to
solve the production estimation problem for the given job conditions as well as other



similar operation scenarios.  The common back propagation algorithm can be used to
train the two neural networks embedded in the program.

Training data for the neural networks in this example was obtained from
Nunnally (1987) and Caterpillar (1988), for excavator cycle times and truck travel
times, respectively.  A summary of the characteristics of the two neural networks
developed is shown in Table 3.

Table 3: Summary of neural networks used

Network Attributes Excavator cycle time
estimating network

Truck cycle time
estimating network

No. of training sets 72 52
No. of hidden layer nodes 8 11
No. of training cycles 12000 18000
System error 0.000012 0.000012
Average error 0.67% 0.94%
Maximum error 2.31% 2.81%

For the given job conditions (work zone width of 3 m, maximum depth of cut of
3.6 m, and type II soil), the frequency distribution of the excavator’s digging cycle
times produced by the neural network model is shown in Fig. 1.  For cut locations
throughout the excavation, the cycle times range from 16.5 to 20.5 seconds, with a
mean of tc = 18.3 seconds and standard deviation of σ = 0.81 seconds.  The average
loading time per truck calculated using (3) will then be Tl = 4.6 minutes.

33 10 16.894 16.5 4.807692
34 29 17.282 17 13.94231
35 40 17.762 17.5 19.23077
36 49 18.264 18 23.55769
37 42 18.737 18.5 20.19231
38 21 19.229 19 10.09615
39 11 19.701 19.5 5.288462
40 5 20.187 20 2.403846
41 1 20.54 20.5 0.480769
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Fig. 1: Frequency distribution of digging cycle times

Assume that each truck load requires the truck to spend a fixed time of 1.8
minutes in manoeuvring and dumping and that the operation runs continuously for
210 minutes (3.5 hours).  The average hourly production from 100 independent



simulation runs is taken as the estimated capacity of the system that employs a certain
number of trucks.  As shown in Fig. 2, where the results are plotted against the
numbers of trucks used ranging from 1 to 10, the production level achieved when a
sufficient number of trucks (more than 3) are employed is around 236 m3 per hour.

A comparison of simulation versus deterministic estimates is also shown in Fig.
2. While the former is based on all cut locations and a changing bucket fill factor, the
latter is based on the midpoint of the work zone and excavation depth and a fixed
bucket fill factor, which result in a digging cycle time of 17.8 seconds, a truck loading
time of 4.45 minutes, a truck cycle time of 11.1 minutes, and a system capacity of
241.3 m3 per hour.  For this example, the deterministic method over-estimates the
productions consistently because it under-estimates the task times needed.

1 74.576 74.03
2 149.15 148.09
3 223.73 222.22
4 241.27 236.22
5 241.27 236.51
6 241.27 236.48
7 241.27 236.38
8 241.27 236.42
9 241.27 236.38

10 241.27 236.5
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Fig. 2: System production estimates

5 Conclusions

A neural network based simulation method for estimating the production of a
construction operation is presented.  The objective is to establish the system capacity
as constrained by first-order factors.  Because of the tedious and complex calculations
involved, the traditional deterministic method uses simplifications for a short cut to
the solution which sometimes will lead to inaccuracy.  A more realistic estimation is
made possible with the use of neural network computing within the framework of
discrete event simulation while developed using the object oriented technique.  As
shown in the illustrative example, a complex real world problem involving many
variables becomes tractable.  However, such programs will have to be built specially
for a particular type of operation, because the performance of various types and
models of equipment in construction is influenced by a variety of physical parameters
in unique ways.
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