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Abstract
Many requirements to product data management for concurrent engineering can be
most efficiently satisfied through the application of advanced client/server
architectures together with appropriate knowledge-based methods. This paper outlines
the basic design considerations for a knowledge-based product data server and
suggests a development approach on the example of a prototype server implementation
realised in the domain of architecture, engineering and construction (AEC).
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1 Introduction

State-of-the-art product data management (PDM) and CAE software for AEC
involve sophisticated problem solving algorithms as well as high-level database
management functionality. With the emerging IFC project model (IAI, 1997),
supported by most established CAD vendors, the use of a standardised building model
as basis for application interoperability and co-operative work is rapidly taking shape.
Nevertheless, IT environments in AEC are still limited to data exchange on the basis of
e.g. STEP physical files (ISO 10303-21 1994), or to data sharing using one global
product model implemented on top of a general-purpose relational or object-oriented
database system. Applications making use of product data technology methods are
mainly realised on the basis of the object-oriented programming paradigm, typically in
the C++ programming language. However, as outlined in table 1 below, the general
demands of concurrent engineering methodology (Prasad 1992; Scherer 1998) impose
several additional requirements to product data management in building construction
beyond integration and simple data exchange which can be tackled more efficiently
with the application of advanced knowledge-based methods in product data
management server software.
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Table 1: Concurrent engineering issues requiring knowledge-based solutions

Basic Concurrent
Engineering issues

Related PDM features Appropriate knowledge-
based solution methods

Collaborative work
of physically
distributed teams

• Distributed client/server
architectures

• Comprehensive data access and
retrieval functions, providing
just-in-time information

• Continuous product model
evolution

• Advanced agent-based
communication paradigm

• Search engines
Search agents

• Dynamic object evolution
and classification methods

Co-operative
problem solving

• Information sharing
• Inter-model-operability

• Knowledge-based model
mapping methods

Concurrency • Multi-user access to product data
• Availability of local view models

together with methods for effec-
tive model transformations

• Consistency checking
• Change and version management

• Multi-agent architectures
• Knowledge-based model

mapping methods

• Rule-based agents
• Model matching and

merging methods

Simulation,
monitoring and
forecasting

• Advanced simulation tools • Agent technology
• Probabilistic reasoning
• Cased-based reasoning
• Learning algorithms etc.

Many of the above features would be embedded in advanced client applications
armoured with deeper engineering knowledge than the scope of a PDM server would
allow, but there are also several issues that require inter-discipline problem solving and
are therefore better suited for server-side solutions. Tasks that would typically be
dedicated to advanced server-side tools are e.g. model mapping and matching (Khedro
et al. 1994; Scherer and Katranuschkov 1997), building code services (Han et al.
1999), information searches in the full project space (Scherer 1998b) etc. Such tasks
are too complex to be satisfied on the basis of one single IT paradigm. Therefore, what
is needed is a hybrid approach combining traditional object-oriented methods with
advanced AI problem solving and representation techniques within a flexible client-
server architecture. Moreover, the architecture of the PDM server itself has to be
chosen in such way that a uniform interface to client software is achieved, conforming
to a commonly acknowledged modelling methodology, such as STEP (ISO 10303-1).

Based on these objectives a PDM server has been developed and implemented
for the IFC project model, release 1.5 (IAI 1997). The prototype environment includes
client applications based on Autodesk’s Architectural Desktop, a finite element
structural analysis program, a foundation design expert system, a knowledge-based
construction simulation system for geotechnical works and a facility management
information system (Scherer 1998a; Katranuschkov and Hyvärinen 1998).



2 Client/Server environment architecture

Client/Server solutions based on TCP/IP and making full use of the Internet are
doubtlessly most suitable for distributed project development, typical for the virtual
enterprise in building construction.

There are quite a few different architectures that can be envisioned for a
concurrent engineering environment based on the client/server communication
paradigm. On the client side a variety of tools have to be supported, as shown on the
left side of fig. 1. On the server side, the following realisation alternatives can be
envisioned:

1. All-in-one PDM server
This is, conceptually, the simplest possible server design. It has the benefits, but
also the drawbacks of not being dependent on any other services. In order to satisfy
fully the requirements of concurrent engineering, such server implementation must
embed several features which go far beyond product data management
functionality, such as process and workflow management, actor authentication,
secure communication etc. Such features make the server implementation very
complex and consequently extremely difficult to achieve in practice. On the other
hand, if such implementation concentrates on typical PDM tasks, it can still be
useful even without the support of all required issues, provided that an appropriate
work discipline is maintained within the project team.

2. PDM Server – DBMS
This alternative is very similar to the above, the main difference being in the use of
a comprehensive commercial DBMS interfaced through a standardised data
manipulation language like SQL, OOSQL, or through ODBC requests.

3. Information Logistics Server  – PDM Server Interface – PDM Server – DBMS
In this approach, full concurrent engineering support is achieved with the help of an
Information Logistics System (ILS) used as front-end server. The ILS encompasses:
(1) an Object Request Broker that can identify among several possible servers the
one responsible for answering an incoming client request (remote procedure call)
and then forward the request to that server, (2) realisation of secure synchronous
and asynchronous communication, and (3) identification and authentication of the
issuing actor and/or software application (Wasserfuhr und Scherer 1998). With such
architecture, all requirements to IT supported concurrent engineering can be
satisfied, if a set of dedicated servers for comprehensive process, document and
product management are available.

4. ILS – PDM Server Interface – PDM Agents – PDM Server – DBMS
This is an enhancement of the architectures described above, allowing also
intelligent server-side components to be integrated as automated software agents
into the system. Such intelligent agents can accomplish more sophisticated server-
side tasks like automated change recognition, notification of actors for possible
conflicts, performing of certain well-defined automated services like cost estimation
for prefabricated elements, automated model mapping depending on the state of the
data etc. Therefore, in our opinion this alternative offers greatest advantages for
concurrent engineering work in AEC projects.

The last alternative, shown schematically on fig. 1 below, has been actually used
in the developed prototype, described in more detail in the following sections. Due to



the prototype state of the development the application of a commercial DBMS was
avoided for convenience.

Fig. 1: Advanced multi-tier client/server environment configuration

3 Knowledge-based product data representation

The realisation of PDM functionality is nowadays most commonly achieved on
the basis of sets of loosely connected tools, or, at the high-end, with the help of
integrated PDM servers using the object-oriented programming paradigm. However,
according to our opinion, object-oriented methods alone are not powerful enough for
the implementation of many advanced tasks required for efficient concurrent
engineering support. Therefore we propose the use of a hybrid approach. In this
approach the underlying modelling framework of the environment is based on the ISO
STEP methodology, enhanced through the use of EXPRESS-C (ISO/TC184 1994) as a
common modelling language for all supported data models. To enable coherent use of
both the object-oriented paradigm based on the EXPRESS-C specification and
knowledge-based methods applied in several product data services, such as model
transformations, model matching, complex queries and assertions on the basis of
generic templates etc., the representation of the product data models in the PDM server
is done according to the frame-based modelling paradigm (Russel and Norvig 1995).

The suggested frame-based representation parallels the conceptual model sche-
mata specified on the basis of EXPRESS-C. Frames can incorporate all object-oriented
features of EXPRESS-C entities, such as inheritance, state (attributes) and behaviour
(operations), but allow also to vary dynamically the number and type of their attributes
(important for object evolution methods), to define different properties of the attributes
themselves (important for dynamic object classification rules), as well as to associate
rules to different frame structures. Rules are defined separate from the data and
methods captured within frames, and can be used for run-time binding of variables to
modelling object instances. This enables their use for information retrieval purposes in
applications that do have knowledge of the model schema, but not necessarily of the
particular model instantiations. Rules are triggered through the execution of ASSERT

Client Applications PDM Server Environment

Thin Internet-enabled Client

WWW Browser with associated
thin clients (using Java Applets

or MS ActiveX)

DBMS
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Application

Infologistic
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(Object
Request
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PDM Agent
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PDM
Server
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with embedded Internet capability

Note: The link b/n any two components is on the basis of
TCP/IP and can thus be established via the Internet

Client
Adapter



and QUERY functions from the body of the object-oriented server methods. Thus, rule-
based reasoning can be seamlessly integrated in the ”normal” object-oriented requests
of a client application to the PDM server, as shown on the simplified example in fig. 2.

TC_Model extension in EXPRESS-C:
ENTITY TC_MODEL SUBTYPE OF (IfcRoot);
...                           –- attribute specification
(* versionStatus: StatusEnum; -- inherited from IfcRoot *)
Operations                    -- EXPRESS-C method specification
   match (compVersion: TC_MODEL);
...
END_ENTITY;

When a modified version of an instantiated product model M1 is checked in at the PDM
server and its status is set to ”proposed”,  e.g. by executing a remote procedure call from a
client application like:

M1.setAttribute (Name:”Status”, Value:”proposed”) *)

the following rule will be triggered automatically, allowing a separate agent process to
determine all changes done to the model and to notify subsequently the affected actors:

IF (the ‘versionStatus of ?m is ‘proposed) ; ?m is automatically bound to
   (the ‘projectID of ?m is ?id) ;  the model instance M1.
   (?n is in ‘TC_MODEL) ;  Gets all ‘active’ instantiated

((the ‘projectID of ?n) = ?id) ;  model versions with the same
   (the ‘versionStatus of ?n is ‘active) ;  projectID on the server.
THEN
   (the ‘versionStatus of ?n is ‘frozen)
   (exec.operation ‘match (oid:?m inParams:(?n)))

*) Note: The syntax of client requests is simplified here and in all subsequent examples for convenience.

Fig. 2: Triggering a rule-based method from a client application

In this example, exec.operation  is used to invoke the object-oriented method
”match”, thus allowing to combine rule-based and object-oriented techniques.

match (oid: ?m inParams: (?n)) is the method that will be applied consecutively to
model M1 and any other model Ni satisfying the above rule. However, it will in turn
trigger forward and/or backward chaining rules during its execution, switching
seamlesly between object-oriented and rule-based processing techniques.

The actual implemented rules in the PDM server for the above example are
somewhat more complicated, but without any principal difference. Similar rules are
applied for other possible model states, allowing the PDM server agents to react
automatically to various changes in the enviornment.

4 Architecture of the knowledge-based product data server

The outlined representation paradigm allows the development of a server archi-
tecture that very much resembles that of a typical knowledge-based system as shown
in fig 3. However, in contrast to expert systems, designed to assist engineers in the
solution of specific problem solving tasks, the goals of the knowledge-based methods
in the PDM server are to react to general-purpose, yet complex queries and assertions,



and to adapt dynamically to a variety of changes in the product models resulting from
the concurrent, simultaneous work of the separate actors in a project team.

Server
Interface Module

OO-oper. / EXPRESS-C

Working
Memory

Reasoning
Agents

(AI Methods)

Server Knowledge Base:
Frame-based representation (state and behaviour) of the product model schemata
and a set of instntiated product models, containing the modelling object instances

uses

invokes

uses

Input: operation parameters with
embedded query/assert expressions

Explanation
Component (N/A)

Knowledge
Acquisition
Component

create/modify objects
(through SPF, SDAI-oper.)

sends msg

sends msg invokes

Fig. 3: Knowledge-based server architecture

The main component of the proposed server architecture is its knowledge base
containing a set of predefined data model schemata, as well as one or more product
models associated with each model schema and representing the separate work spaces
and views of each actor on the designed building product. Each data model schema in
the knowledge base is organised in a frame structure, as described in the previous
section, and contains exclusively class frames, roughly corresponding to the entity
structuring given in the EXPRESS-C schema of the model. The instantiated product
models, on the other hand, contain only instance frames with inherited attributes and
behaviour from the respective underlying data model schema. All frames can act both
as ”normal” objects, responding to messages from the outside and/or from other
objects, as well as to participate in rule-based queries and assertions. The knowledge
base can accommodate also overall rules similar to the global rules in EXPRESS.

The interface module has the task to resolve properly the requested operations by
a remote client, and to activate the appropriate server object methods responsible for
the execution of the client requests. All incoming requests and result responses are also
based on the formal EXPRESS-C specifications in the data models, regardless of the
particular internal server method used (pure object-oriented or knowledge-based
implementation). In this way, the interface module allows to hide from the users and
clients the implementation details of the server, which simplifies greatly client
implementation.

The actual processing of a request is done in the following steps: (1) the request
is parsed, the data are transformed to an appropriate internal format and the specific
task is identified; (2) except when explicitly given, the expected server load is judged
and the task is classified as a synchronous, high-priority asynchronous or low-priority
asynchronous (heavy-duty) task and is then queued respectively; (3) when the task is
awaked for execution, an appropriate server method is chosen and activated, and
(4) the results of the performed method(s) are stored on a solution blackboard and in



the respective data model in order to be available for other server modules, and are at
the same time transformed in a respective server response to the calling application.

The reasoning agent has the task to perceive changes in the environment and to
react to such changes with appropriate goal-driven, utility-driven or reflexive actions
(Russel and Norvig, 1995). Within the PDM server architecture each reasoning agent
is invoked by an object-oriented method whenever a knowledge-based function is
addressed. This can be done explicitly, by executing a respective operation, such as:

IfcRelUsesProducts.find (

  searchExpr:(FOR ?X DO (?X HAS AT LEAST 2 RelatedObjects)))

or happens automatically, when the state of an attribute monitored by a demon method
is changed, as shown e.g. in fig. 2 for the TC_MODEL operation setAttribute.

The general syntax of a search expression in EBNF format is
(FOR { ?Xi }* DO  ( <searchTemplate>  { AND | OR <searchTemplate> }* ) )

where ?Xi is a free variable, bound dynamically to the set of values satisfying the
search, and <searchTemplate> is used for executing a predefined query, such as sub-
class membership, maximum cardinality, equality, attributes satisfying a given con-
dition etc.

Typically a reasoning agent will retrieve the required data from the knowledge-
base together with the appropriate reasoning rules and will place them in the working
memory of the server. After that the inference process on the retrieved data and rules is
started, and, on its completion, the result is returned to the calling method. Currently,
the server implementation incorporates an inference engine including forward and
backward chaining as well as different search algorithms. However, these methods can
be extended using the same component architecture.

The remaining (dashed-box) components shown in fig. 3 are given only for
comparison with typical expert system architectures. An explanation component is
difficult to envision for a server software, and a comprehensive knowledge acquisition
component has been beyond the scope of the server implementation, although new
knowledge can (and is) continuously introduced in the knowledge base through
respective ”assertion” requests.

5 Knowledge-based product data services

The Application Programming Interface (API) of the prototype implementation
of the proposed knowledge-based PDM server encompasses more than 40 operations
that can be used by a remote client application. Most of these operations are based on
SDAI (ISO 10303-22 1996) or support data exchange functionality on the basis of
STEP physical files (ISO 10303-21 1994). However, in order to provide an enabling
infrastructure for concurrent engineering, several sophisticated services involving
knowledge-based operations have been specified as well. Such services include model
mapping, model matching and model merging, conflict recognition, generic
consistency checking etc. They have all been prototyped on the basis of the distributed
client-agent-server architecture described in the previous sections.

To illustrate the approach here we shall consider a simple practical example
involving model mapping. The realisation of the other knowledge-based services
adheres in principle to the same overall methodology.



5.1 Model mapping
Any application needs to extract a view from the product model, and the

transformation from the product model to such view is unique to the application
(Clancy 1985). The goal of model mapping is to enable such model transformation - in
the ideal case automatically, without any user interaction.

Model mapping involves the conversion of one modelling representation to
another without awareness of the context, i.e. already existing local data in the target
model (Scherer and Katranuschkov 1997). The mapping process is performed on the
basis of a formal specification of all necessary translations on class level, and includes
full or partial transformations of the data instances according to this specification. As a
basic interoperability problem in product data based environments, model mapping has
been intensively investigated in the last years, and several formal mapping languages
and implementation techniques have been proposed (Liebich et al. 1995; Katranusch-
kov and Scherer 1996). However, whilst all proposed generic approaches are quite
useful for creating full new views or versions of a product model, they are complicated
to use when context-dependent transformations are required because all generic
specifications are done on class level and are therefore static, i.e. they cannot reflect
the changes in the environment. Such context-dependent transformations can be
realised much easier with the help of the suggested knowledge-based approach.

To focus the discussion, let us consider the following example: ”mapping from
an IFC product model to a foundation design system”.

The necessary input to the foundation design system is fairly simple. It is
comprised roughly of the geometric and material properties of the ground plate of the
examined building, the soil properties of the site, the points at which the overhead
structure interacts with the foundations and the loads applied to these points. Though
not very voluminous, this information is available in an IFC model in quite different
form. Moreover, it is depending also on the specific instantiated context, i.e. the
particular relations between the product data instances. The needed loads can for
example be represented in IFC as support reactions of IfcWall and IfcColumn entities,
stored in appropriate property sets*), but this is only valid for elements connected to the
particular ground plate under consideration.

Such mapping conditions are extremely difficult to specify on class level, and the
use of a generic implementation approach can lead to considerable computational time.
On the contrary, with the help of the described knowledge-based query functions the
same conditions can be easily specified with minimal user input and the mapping can
be performed automatically by a mapping agent, whenever it detects that the necessary
input data are available. In fact, the concrete realisation of the considered mapping
example has required only 4 different knowledge-based queries, such as:
Obj.find
    (searchExpr:
       (FOR ?D ?V DO
            ((THE HasProperties OF Obj IS ?Y) AND
             (((THE Descriptor OF ?Y) = ”NODE_REACTIONS”) OR
              ((THE Descriptor OF ?Y) = ”LINE_REACTIONS”)) AND

*) Such property sets are not elements of the current IFC project model specification. They have
been used in the implemented prototype to enable the consideration of structural engineering
software in the environment.



             (THE HasProperties OF ?Y IS ?Z) AND
             (THE Descriptor OF ?Z IS ?D) AND
             (THE ValueComponent OF ?Z IS ?V))))

Such queries may appear complicated, but their specification is straight-forward
and, because of their expressive power, the full implementation of the mapping (in the
Java language) is fairly simple – in this case just about 100 lines of code.

6 Discussion

Concurrent engineering requirements are not well supported in existing IT
environments for AEC. One reason for that are the limitations of object-oriented
technology which is used as basis in most known implementations. The hybrid
approach proposed in this paper allows to overcome many of these limitations with the
help of appropriate knowledge-based server-side tools. With such dedicated tools it is
easy to implement various client adapters, with a GUI support for all needed PDM
services.

The suggested knowledge-based architecture of the PDM server provides the
following benefits: (1) separation of data structures from high-level rule-based data
management knowledge, (2) encapsulation of knowledge-based methods within the
procedural attachment of operations to the modelling objects, enabling the use of
uniformly defined function calls from the outside, (3) full consistence with the
conceptual object-oriented modelling approach. On the basis of this architecture, a
comprehensive PDM environment incorporating different building design services as
suggested e.g. in (Han et al. 1999; Turk et al. 1998 etc.) can be envisioned.
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