Construction Informatics Digital Library http://itc.scix.net/

paper w78-1999-2139.content

INFORMATION EXCHANGE ARCHITECTURES
FOR BUILDING MODELS
Information exchange architectures

C. M. EASTMAN
Design Computing, Georgia Institute of Technology, Atlanta, GA.

Abstract

The work in building product models, beyond the need to develop the appropriate
semantics for representing building data, needs to address the information flow issues
arising from the current procedures of architecture, engineering and construction
practice. Offered here are four scenarios common to building practice and an analysis
of the information flow issues arising from the need to support these scenarios. The
issues arising from such studies are named Information Exchange Architectures. The
study of Information Exchange Architectures is posed as an area requiring much
study if data exchange technologies are to be used in everyday practice.

Keywords: STEP, data exchange, building models. process models

1 Introduction

A growing number of building product models have been developed that
respond to information exchange needs in different aspects of the overall building life
cycle. Here, I am referring to the ISO-STEP building models, including CIMsteel
(CIMsteel 1993), Building Elements Using Explicit Shape Representation (Part 225
1996), Part 106, the Building Construction Core Model (BCCM 1996), COMBINE
(Augenbroe 1995) and also the Industry Foundation Classes (IFC) (IAI 1997), which
also used STEP implementation technologies. Most of these modeling efforts have
focussed on the semantics of the data model itself. They have addressed many of the
difficult issues of data modeling, such as the growing levels of detail that must be
addressed throughout the design process, the need to dynamically associate packages
of performance attributes with various objects, often at the instance level, in response

to contextual performance issues. Overall, much progress has been made in
developing practical solutions to the semantic structuring of building product models.
A growing number of these building models are being used, especially CIMsteel and
the IFC.

On the implementation side, most of these models rely on the STEP Standard
Data Access Interface (SDAI) (Part 22 1993) that defines a code library that supports
reading from and writing to a STEP part model. Almost all implementations rely on
exchanges based on one application writing to a file and the second application
reading from that file. This results in the following exchange scenario:

A user extracts from a building application the data in the application that is to
be exchanged with another application. An interface to the application writes
out the data according to an EXPRESS schema. That format is then interpreted
by an interface to a second application that has been paired with the sending
one. It extracts the data in the neutral format and loads it into second
application, which can now be executed.

For later reference, I call this the Standard Exchange Scenario. The Standard
Exchange Scenario is very general and is defined in terms of data exchange, rather
than information exchange. Yet I believe that this form of exchange has very limited
use within the building life cycle. Effective sharing of building data requires that we
support the processes in which data exchange is embedded. These processes involve
possibly complex information exchanges, beyond the pairwise exchange between two
models. We call these information flows and the environment that goes with them
different Information Exchange Architectures.

Data exchange comes in all scales, from the exchange of a complete project to
just a few variables. Flows may be linear or iterative. There are several dimensions of
a data exchange architecture that are important to different building modeling
contexts. In this paper, I review these different dimensions of data exchange because
they pose important research questions that must be addressed if the significant work
on building models is to be used productively.

These different dimensions can be illustrated by considering different scenarios
involving information exchange in current building processes. There are many
common scenarios. In the following section, four scenarios are presented that detail
some of the information flows encountered in the building life cycle. They are
imaginary, anticipating the time when there is growing use of diverse applications.
Otherwise, they reflect current practices. The scenarios depict different issues arising
in building model information exchange architectures. When we compare the
requirements of these scenarios to the capabilities supported by the current
technology, we can begin to identify the gaps in current data exchange technologies
needed to support different building data exchange contexts.

After these scenarios, their aspects are considered and used to identify
significant research issues needed in the area of Information Exchange Architectures.

2 Information exchange scenarios

2.1 Scenario one: Design coordination

An architectural firm's lead designer has laid out the schematics for a high rise
office building. The firm's associates are working on the service core of the building,
using a variety of applications. An initial layout of the service core was defined,
which is now being refined by the design team members. One associate is detailing
the restrooms, using a restroom design application, another the fire stairs using a
stairwell application and another the elevators, using an application from an elevator
manufacturer. In parallel, other designers are working on the facade, the lobby and
other aspects of the building using various applications. As the designers modify and
detail parts of the existing design, they coordinate with the other people being
affected. This may involve a pairwise exchange ("can you give up three inches on the
south wall of the restroom"?), or a group may form to determine the best solution to
an issue based on their mutual perspectives (where to route plumbing lines). They
collaborate on schedules ("I'll wait to detail the stairs since you are reconsidering the
floor-to-floor height"). As changes are made, they are distributed to the other
designers. If a change is proposed or made that cannot be accommodated by the
others, then these are reviewed with the principal who adjudicates and resolves
conflicts. This scenario is characterized in Figure 1.

& application Uzer3 :
Building Mode & application ¢

d=er 2

& application User

& application F

N,
inspection and queries
selection and extract
incremental updates

Fig. 1: A data exchange scenario between members of a single design team

In this scenario, the building data is treated as a repository that is shared,
accessed and incrementally updated by the design team. Team members query the
contents of the current design and select the information relevant for their tasks.
Modifications are written back to the repository as incremental updates, changing or
adding details. Updates made to shared data must be communicated to all whose
work is affected. In general, participants need to know who has what data, so that
coordination and the distribution of updates are facilitated. This scenario is very close
to current practice, where all people are using a single CAD system. The main
difference is that the designers are now using heterogeneous design tools.

2.2 Scenario two: Energy consultant advises on design

The architectural firm has employed an energy consultant, in part because the
client is concerned about ecological issues. The consultant is to advise on energy
efficiency and to assess environmental conditions throughout the building. During the
review, she analyzes potential issues of glare, both from lighting and from the
expanse of glass on the south and west facades (among other issues). For the glare
issue, she examines the building layout and typical sky lighting intensity (using data
gathered by herself for this city), the expected interior surface finishes, and internal
lighting. Running the figures through a lighting analysis application, the exterior light
coming in windows is found to be quite high and of high contrast with the internal
lighting. After discussion with the architect, two alternatives are explored—using
high levels of internal lighting to reduce contrast or reducing the external lighting
level and relying more heavily on local light sources. The architect opts for the latter,
and the consultant examines louvers, overhangs and external sunshades by assessing
their behavior in lighting simulations. She identifies several alternatives for the
architect to select from. He chooses to use exterior louvers integrated into the
building facade. The architect revises the layout and passes it back to the consultant,
who reruns the analyses and tries variations to enhance its benefits for certain days of
the year. This scenario is diagrammed in Figure 2.

Architect's
Buildirgey Maodel
Product
Data
Persanal OO0O0O0g
Data Archive = OOogg

DDDDﬁ M oo

Application

Simulation

Simulation Application
Application

Fig. 2: The data exchange scenarion between an architect and energy consultant

In this scenario, the consultant relies on data supplied by the architect, but also
retrieves data from a variety of other sources—weather information, her own data on
sky conditions, material and finish properties and product information. She integrates
the various data within her own modeling environment to support various simulations

and analyses. Design alternatives are generated by both the consultant and architect,
that are passed back and forth for analysis and possible design integration.

Cantractor's Subcontractar's
Frocess Madel Frocess Maodel

Wanes =t (Zooze

Contractor's Subcontractor's
Builditg Model Buildirs M odel

Fig. 3: The data exchange scenario between two contractors planning parts of
the same job

2.3 Scenario three: Construction scheduling

A project manager for a general contractor is developing a very tight
construction schedule for a large scale building project. In parallel, the sub-contractor
for structural fabrication and erection is developing that company's schedule. In order
to speed construction, the agreed to strategy is to begin finishing the lower floors
while the upper level structure is still being erected. To do this, both organizations
must closely coordinate. Week-by-week site and floor layouts have been printed to
coordinate material stockpiling and the location of work assignments. Both groups
proceed to develop their own detailed schedules independently, based upon an agreed
to general schedule of structural erection and finishing. As both persons proceed, they
communicate daily to resolve issues, assumptions about the other's work and to
resolve differences.

In this scenario, two separate schedules are being planned, based on a shared
high level schedule. Spatial conflicts, material and product specifications and task
dependencies are checked, with conflicts identified and resolved during reviews.

2.4 Scenario four: Pass off of the construction model to the facility

owner/manager

Here, the as-built design is passed from the contractor to the building
owners/managers. The contractor has been paid to revise the architect's drawings, to
reflect changes that were made during construction. The revised drawing files are
then passed to the client organization, which uses a commercial facility management
database to manage its facilities. After the revised drawing files are archived, another
version is abstracted and simplified to obtain the general layout data required by the
facility management package. Additional data is added, such as the enclosed spaces,
organizational boundaries, HVAC control zones and other regions of relevance to
facility management, but not represented in the original model. So that proper
maintenance schedules can be planned for mechanical equipment, specifications from

the mechanical equipment suppliers are added to the model. Equipment specifications
are currently defined in paper manuals, but will eventually move to an electronic
format. Materials used in public spaces are identified so that maintenance schedules
for these spaces can be developed.

Froduct
Spec Data

oood

Contractor's Facility b ormt.
Builditg Mol 2o Buildipg M adel

Furniture
Data

oood

Fig. 4: Data exchange scenario from contractor to facility manager

In this scenario, there is a single pass-off of data. The pass-off involves
integration of data from heterogeneous sources—the equipment operating and
maintenance manuals. The pass-off is done once for the total project, in one direction.

3 Data exchange architecture needs

These four information exchange scenarios are only a small sample of many
different but common data exchanges regularly undertaken within any building
project. The scenarios presented are not meant to be exotic, but rather typical of the
kinds of task coordination that building models were meant to support.

Upon examination, however, these four scenarios have different information
flows than that provided by the Standard Exchange Scenario, emphasized by the most
STEP technology. By identifying these differences, we begin to articulate a new set
of issues beyond information representation that needs to be addressed in the wider
research on building models.

3.1 Batch exchange or repository with updates

The data flow provided by current exchange capabilities is that one application
sends a dataset and the other one loads the result. The data is not in a repository that
can be added to, modified or deleted by different applications, as depicted in
Scenarios One, Two and Three. There is no mechanism for two or more datasets to be

merged for input to a third application. A related issue is whether building model data
may be generated by multiple applications instead of a single one. Scenarios Two and
Four consist of a merging of several data sources, where the building model is only
one source.

Batch exchanges are relatively straightforward. A dataset is prepared for
exchange by the source application and user. It is received whole by one or more
receiving applications. If a receiver carries earlier data describing the building, it is
overwritten by the new data. Exchanges may be in either or both directions, but they
are all-or-nothing—no partial updates are allowed.

If an application is to update an existing model or to merge data from different
models, there must be some means to identify which entity instance is being updated
or extended. Unambiguous object identification is required. A second issue is how to
track those entities that have been changed, so other users of the changed data can be
notified. Thus two additional functional capabilities are required if the building model
is a repository that supports selective extraction and incremental updates.

(1) unique identification: Each object must have a unique identification, so that the
repository copy of the object can be found and updated with a new copy, if
necessary. The Integrated Resources of Part 043 and also the IAI Resource Layer
generate such identifiers, which must be carried by the application. The
requirement for unique identification also places a requirement on the application,
because it must carry object identifiers that can be used in matching against those
read from the repository.

This problem is made more complex when it is realized that building models
carry data at different levels of aggregation. That is, suppose we update the
description of a window. A model may aggregate information about the wall that
includes the windows. It may carry higher levels of aggregation, such as a facade
which is also defined in terms of properties of a window. Some properties of
spaces—such as lighting level and HVAC loads—are also defined in terms of
windows.

These other descriptions at different levels of aggregation were not defined
initially by the building model itself, because they carry specialized information
about design. Rather they were generated by applications. Thus one update
implies that to complete the impact of the update the same application or other
ones must update the model also. This is an issue of change management, taken
up in issue number three below.

(2) partial updates: 1f only some of the objects in the repository are read and not
others, bookkeeping must properly interpret the updates. If there are 40 walls on a
floor and an application reads 25 of them, then after execution writes back 22 of
them, what is implied for the 3 missing ones? A mechanism must be provided to
distinguish additions and deletions, as well as modifications. If all the objects read
by an application are flagged, those not written back can be assumed deleted by
the application. If the application writes back new ones without IDs, these can be
assumed to be new ones. Others that are both read and then written back with
matching IDs are interpreted as updates. Some techniques for managing partial

updates have been reported in (Eastman, Jeng et al. 1997).

3.2 Data inspection and selection by the receiver

In current exchange capabilities, the dataset to be exchanged is prepared by the
sender. The sender determines what the receiver will acquire. In the Standard
Exchange Scenario, the receiver cannot directly inspect and select the data needed,
but must communicate with the sender beforehand. Part of effective use of a building
model used as a repository is that users can browse, query and select what portions of
the building model are to be accessed and transferred to their application for use.

Browsing and querying of a building model need to support the traditional
accessing mechanisms now provided by current CAD tools and standard database
queries (Elmagarid 1992), but integrated in ways not provided by these systems alone
(Jacobsen et al. 1997). Because of the diverse users and needs, multiple accessing
structures are needed. Architects and other users, for example, usually review a
building based on spatial access of the data, as presented by floorplans and other
sections and spatial visualizations of the building. Building specification people
review a building based on the classification structure of building specifications—the
Construction Specification Institute (CSI) structure in the US— accessing entities that
are part of a particular system or that have a particular function. Product suppliers and
consultants today search a set of drawings by functional systems, such as by
mechanical systems, lighting, or communication systems, so as to bid on them. There
needs to be multiple ways to query a building model—no one capability is likely to
be appropriate for the different interest groups.

Building models are typically very large, both in terms of the number of classes
in the model, and also in terms of the number of instances carried within a dataset.
They carry multiple redundant descriptions of some building or design part, needed
for the different applications. Tracking through this structure without powerful query
capabilities will not be acceptable.

The capabilities outlined here are not yet available in production form.
However, aspects are provided by some products of STEP product vendors, such as
those offered by STEP Tools Inc. and EPM Technology. These capabilities require
both language extensions to support high level queries and also application
development tools that include graphical user interfaces. More work needs to be done
to develop such facilities, if building modeling is to be a ready-to-use production tool.
While the 3D modeling of the Boeing 777 and other examples suggest that these
capabilities are being developed in other fields and need only be adapted for use in
building, the truth is more complicated. The visual modeling of the 777 was not tied
to a workable database. In reality, the building industry is more concerned with large
assemblies of 3D objects than most other fields. Product model interfaces with
effective end-user browse and query mechanisms do not exist. They will be needed,
however, if we expect effective use of building models.

3.3 Populating a model involving multiple sources

The data from a building model is often only one part of the information used in
the development of another model. Particularly in the scenario of the energy analyst,
the data regarding buildings, building products, users and local weather conditions
are combined to define another model. From this perspective, building model data is
only one of multiple types needed for most analysis applications. Input data extracted
and reformatted from multiple sources is commonly required, resulting in a custom-
configured dataset.

A simplified diagram of such an environment is shown in Figure 5. The figure
illustrates that a building model is only one information source among several that are
needed to support most building tasks. Most tasks require access to different data:
specifications of installation procedures, building codes, engineering or design
details, user data or programmatic requirements. The building information is only one
part of the information support needed.

Many building-related Web browser technologies have shown the practical and
effective use of general purpose search tools capable of operating on unstructured
data. The implication is that text-based search engines, "rummaging" over Web sites
and digital encoding of reference manuals and other information sources, could
provide one type of effective means to access other kinds of data needed for building-
related tasks. There is a growing business in developing special purpose Web sites
for particular classes of users, such as architects, engineers and contractors. There are
a number of efforts to use Web crawlers and other off-line search techniques to index
Web sites of interest in a particular domain and provide them in a gateway site.
Surely these technologies will all play a growing role in accessing data in the building
industry and for populating data in domain or application specific building models.

Building New Building
codes and building contextual
regulations madel data

v

Web access to produd d other information

T f

Building Existing Personal
product building database
data model

Fig. 5: Composition of models from many data sources

The basic structure of World Wide Web data is a simple encoding language
called HyperText Markup Language (HTML). HTML supports text and graphic
raster formats for transmission and display, using any Web viewing program, such as
Netscape Navigator or Microsoft Explorer. The HTML language and HTML viewers
also support plug-ins. These are add-on applications to the base viewers that support

other encodings than those native to HTML. And HTML allows other formats to be
encoded within it. Some of the useful plug-ins for building product use include:

Acrobat - book-quality formatted text and images in PDF format

Shockwave - dynamic, animated multimedia

!Whip - displays DWG files reformatted as DWF files, supports
hyperlinks

Softsource - displays DWG and DWF files reformatted as SVF files,
supports hyperlinks

Dr. DWG - displays and supports hyperlinks and redlining of DWG
files

VRML (Virtual Reality
Modeling Language)

3D models, with a real-time viewer

OliVR - real-time video with sound
Quicktime - real-time video with sound

A newer net format is Extensible Markup Language (XML). XML supports the
development of custom formats and appears to have the capability of directly
representing EXPRESS models. It will be worth watching the developments of XML
as a future exchange language, especially for net-based data exchange (Doherty 1998;
Goldfarb and Presod 1998).

This perspective suggests that building product model data, encoded in
EXPRESS of other format, should be available in the same way that all the above
kinds of information are available through a standard Web browser. Some CAD
companies have recognized this direction and have embedded browsers into their
CAD system environment. Some of the software companies selling EXPRESS tools
include HTML and XML related capabilities. This promising direction is just being
initiated and is likely to have a major impact in the future.

However, how is all this data structured and composed? How does it get
composed into a building model? Ideally, one can "dream" of a grab and drop
interface, allowing selection and transfer from various Web sites to a building model.
No tools allowing such exchanges exist today. Who will help to create them?

3.4 Single view model or multiple views

Existing exchange capabilities emphasize a single, neutral model for holding
building information. However, Scenarios Two and Three point out the regular use of
multiple, parallel but disjoint models in architectural and construction practice. The
scenarios illustrate a simple truth: given current building industry practices, it will not
be common in the foreseeable future to have a single repository that captures all the

information used in building design, in construction, or in building operation. Even
within a single stage, multiple data models are likely to co-exist, given current
business practices and the information needs of different engineering domains. The
different actors, for both technical and professional reasons, do not fully integrate
their results into a single dataset.

The use of multiple models to represent a product is also the premise adopted
by the ISO-STEP organization in their development of application protocols.
Application models, as defined in the STEP architecture, are the same as what are
called aspect models here. If different aspect models, such as CIMsteel, COMBINE
and Part 225, were all used in the same project, some data carried in each aspect
model would be shared and other data would be closely related. There would be a
need to coordinate and possibly run evaluations on the data within pairs of models, or
across all three. The coordination may be carried out in several ways:

- to use one model to initialize the other two

- to update a change made in one model so that the other two are consistent with it

- or to check that the three models are consistent with each other by applying a
third model to resolve conflicts in their data

With multiple models, two particular sources of inconsistencies arise. One
source are the computations during the mapping from one representation to another.
When done manually, mapping errors are common. However, mappings can be
largely automated, as we shall see. The other source of inconsistency results from
incorrect propagation of changes between representations. An example is that, in the
mechanical design, a boiler is relocated, but its structural load and location are not
updated and checked by the structural package. An automatic mechanism is needed to
check that the source entities and target entities of all internal maps are consistent. If
they are not, then the map must be re-executed. Of course, which map to re-execute
and the propagation of this update to others requires wider consideration.

A major emerging line of work in the product modeling community deals with
the derivation of views and with mapping between different product models. The
need for view generation results when one or more applications require data that
involves complex derivations from the base product model. Instead of putting these
derivations into external translators to/from the application, the model can serve a
wider set of needs by embedding them in the model and the resulting exchanges can
be more transparent and robust (Bailey 1996). A related need is to map model
instance data between one product model and another, when the two models
incorporate common information. These needs have resulted in the development of
mapping languages (Verhoef et al 1995). Two pieces of work are particularly
relevant here. EXPRESS-X (and its precedent EXPRESS-V) (ISO 1996; Spooner and
Hardwick 1997) is a schema translation language for both mapping among product
models in EXPRESS (Schenk and Wilson 1994) and between a model and its views.
As an extension to EXPRESS, EXPRESS-X allows the maps to be written entirely in
this product modeling language. EXPRESS-X supports the development of complex
maps, including one-to-one, one-to-many and many-to-many mappings. It only

supports only one-way mappings, however; that is, it does not support mapping back
to a source, updating existing instances. Another interesting mapping language is
VML (Amor et al 1995). VML specifies maps as bi-directional relations between the
source and target objects. Where applicable, this allows two-way mappings with one
map. Compared to EXPRESS-X, VML allows finer-grained maps, and can better
support incremental update. One weakness with VML is that it is not a full-fledged
programming language; writing complex maps requires the use of linking in code
written in a lower level language.

The research on specialized mapping languages, EXPRESS-X in particular, has
addressed model transformation or updating. The fundamental idea in maps is the
"coercing" of one type into another. Most computing languages provide some built-
in coercions, for example from variables of type REAL to INTEGER. In C and C++,
coercion is realized by cast operators. A mapping is between two models, a source
and a target. A mapping language allows the definition of very complex coercions. A
complex coercion is a hierarchical organization of lower level coercions. For
example, from the bottom-up, a point coercion will convert coordinate values from
one scale to another, then from one coordinate system to another, then to a new point
format -- from a vector to individual coordinates, say. Maps thus are built up, from
lower level maps to more aggregated level ones.

From the previous work in mapping languages and work at Georgia Tech, we
identify the following issues regarding development of a general mapping language,
capable of addressing any condition that may be encountered.

(1) Iteration of mapping operations in both directions require instance
identification of source and target, so that the proper instance can be identified
for updating. This allows just the update of the relevant entity and integration
of the update with other data carried by the receiving entity instance(s).

(i1) Maps must deal with conditions where the map is not between one source and
one target instance. Two different kinds of variations exist:

e One source instance may be mapped to multiple target types. This occurs
when a single entity type represents multiple entity types in the receiving
entity. An example might involve a schema having a single regular
polygon structure, defined by a center-point, radius and number of sides,
being mapped to a schema with rectangle, triangle and polygon entities.
Each mapping creates one of multiple possible entity types. The reverse
also may occur, where multiple source types may be mapped to a single
target instance. These are examples of the one-to-many and many-to-one
mappings.

e A source instance incorporating an aggregation structure maps to a
receiving entity class with a different aggregation structure. In this case,
the source entity part-of structure must be converted to a quite different
part-of structure. The example above applies to this case also: a regular
polygon inscribed in a circle has a different aggregation structure from
one defined as a sequence of connected points. In this case, the mapping is

from a set of entities to another set of entities.

(iii)) Mappings must deal with updates and also additions and deletions of
instances. That is, one of the models connected by maps may delete or add
entities, in addition to modifying them. Deletion and creation must be part of
the map capabilities. These also must be managed with regard to instance
identities.

(iv) Maps that involve a complex network of relations and not a tree, requiring
multiple traversals of the entity structure. This may include merging several
redundant entities into one or one into many. For example, multiple
coincident polygon vertices in one representation may be defined as a single
vertex in another representation.

No one mapping language has yet realized all these necessary conditions.

A related issue is that the map code, which does the updating from one model to
another, defines dependency relations between the source and target. That is, the
target data was defined through a dependency with the source data. If the source data
changes, their target should receive a new update. A range of capabilities dealing
with this and other types of dependencies has been developed in (Eastman 1996) and
(Eastman, Parker and Jeng 1997).

3.5 Process modeling, planning and coordination

The last issue regarding data exchange architecture is based on the recognition
that data exchange is embedded in the more general flow of work. The energy
consultant needed specific information to undertake her assessment of lighting. Final
layout of the service core in Scenario One could be realized only after other critical
decisions, such as floor-to-floor height, were fixed. Tasks are dependent upon each
other, requiring identification of which tasks and applications are needed to exchange
with which others. Each of the scenarios presented reflect a workflow of design
actions, coordinated between multiple people. Another general truth is that the
process operating on some data and the product model carrying that data are
interdependent. Modify the process—for example, change building fabrication from
on-site to off-site factory fabrication—and the building model may need to change in
response to different information needs.

A necessary component of complex data exchange scenarios, then, especially in
a concurrent multi-user environment, is that there needs to be effective means to
coordinate processes, introduce new ones, and to facilitate this coordination.

Currently, all examples of large-scale integration of computer applications in
building start with a fairly fixed process model, allowing the information flows
between applications to be planned for. CIMsteel has a general, fixed sequence of
exchanges. The COMBINE project developed precedence models, called Project
Windows, that depicted processes represented as Petri-nets. The current VEGA
project is also is addressing process coordination.

Different processes carried out during the building life cycle will have different
requirements for process representation. Some processes, such as building

maintenance, will be scheduled and planned and the process model can be defined
beforehand. Construction scheduling has a well developed set of practices and tools
for process planning during the construction phase, but these change for each project.
There have been some efforts to define a fixed process model for design phase
activities. However, architects frequently make decisions during design that modify
the future processes that are to be undertaken. Processes often change as design
proceeds.

scheduling
and

process
_/task allocation

Fig. 6: A process layer is part of a building model, used to coordinate data

exchanges

The recent Ph.D. thesis by Jeng (1998) proposes a multilevel structure for

integrating process modeling for architectural design activities. The different levels
have different associated functions.

1.

The top level schedule is static, is based on inter-organization agreements and is
often reflected in contracts. The process plan here is a linear sequence of
processes, whose completion reflects various milestones. Payments and other
organizational events are associated with the completion of processes defined at
this level. The AIA standard contract, for example, outlines a five to seven phase
process plan.

The second level is a task allocation level. All the top level activities are
disaggregated to this level. The specific activities typically vary from project to
project but have a general structure that is often defined well in advance (but may
change occasionally). This level maps the overall process to groups or
individuals, who assume responsibility for the activities. The sequencing of
processes may reflect some general types of dependencies, but detailed
interactions are assumed to be resolved at a lower level.

The third level of processes are the coordination and collaboration processes. The
activities are dependency driven, being initiated in response to dependencies
identified at the task level. They are adaptive, changing with the structure of the
design. The activities involve communication and exchange of goals and low
level schedules as well as design data. These processes are seldom scheduled in

current practice.

4. The bottom level are individual atomic activities carried out by individuals. They
are the low level operations that are combined by an individual to accomplish the
task laid out at the second level, augmented by the communication and
collaboration tasks defined at the third level.

This four level structure distinguishes the fixed contractual coordination from
scheduled task assignments that are assumed as responsibilities, separate from a
dynamic coordination and communication level and a bottom level atomic level
carried out by individuals. It offers a functionally defined framework for
distinguishing process planning at different levels of aggregation, each level having
its own functionality.

As an area of intellectual endeavor still in early development, the functionality
supported by process modeling varies greatly. Some of the relevant functionality
associated with process modeling are:

e Static versus dynamic definition of processes: A growing amount of software
supports workflow management of information. These packages are based on
repetitive and static workflows, requiring compilation and debugging. A few
allow easy adaptation and change.

e Explicit representation of resource allocation: By their nature, process modelers
represent processes. But when processes are allocated to machines or people, then
there is a possible complementary representation of each resource that depicts its
utilization over time.

e Goal tracking: As tasks are segmented and allocated, the goals associated with
those tasks are also decomposed and allocated.

e Change propagation: Processes provide one means to track changes resulting
from dependencies. A change in one activity implies the need to review all later
processes that succeed the changed one.

e Support for task execution: Automating information used in processes can

facilitate:

e automated information distribution to enhance availability and productivity
e review and approval processes

e audit trail of process changes

e resource allocation and management of bottlenecks

Different subsets of these features may be needed for representing the processes
used in various building related tasks. Process modeling is receiving renewed
attention as applications attempt to embed more functionality into process models.
However, process models will need to be part of the work environment where data
exchange is carried out at a distance.

4 Summary

It is fairly clear to anyone looking at the current building models and the tools
now available to support them that there is a large gap still existing between what has
been done and what is still needed. This paper has attempted to fill in parts of the
gap.

The scenarios presented in Section 2 point out the importance of better
specifying the detailed use and user requirements for data exchange, so that the
exchange technology can be developed to support it. This calls for a human-computer
interaction (HCI) perspective. While HCI is a growing area of study within the
computer science field, there is a general lack of its application to the tasks within the
architecture and building industry. Work is needed in this area to better understand
the detailed structure and flow of information within different types of design,
engineering and construction organizations.

While the EXPRESS language and associated tools have allowed significant
progress to be made in the definition of data models for representing building
information, this paper suggests that the information processing environment needed
to support production activities within the building industry has not been as well
developed. Among the areas needing development are:

e new, richer forms of exchange, including incremental updates, merging the
output of multiple applications and distribution from one application to several

e exchange architectures that include multiple models which are not merged but
are coordinated regarding their consistency

e Dbetter means to track data after it has been exchanged and allowing updates if it
later changes

e coordination of data exchanges using a process model, so that critical
predecessor and successor tasks are identifiable; the process model must be
easily and possibly automatically modifiable

When considered closely against the requirements set forth in the scenarios, it
becomes quite clear that EXPRESS was developed to explicitly support batch level
file exchanges. It was also hoped that these facilities would be sufficient for more
complex forms of exchange. However, clear requirements for more complex
exchanges have not yet been developed. This is a clear need if we are to progress
with effective data exchange in the building industry.

5 References

Amor, R., Hosking, J., Mugridge, W. (1995) A Declarative Approach to Inter-schema
Mappings", in Modeling of Buildings Through Their Lifecycle: Proceedings,
CIB Publication 180 Palo Alto, CA, Eds M Fischer, K Law, B Luiten pp 223-
232

Augenbroe G. Ed. (1995) COMBINE 2 Final Report, EU DG XII JOULE Report.
Technical documentation on COMBINE is available from:
http://erg.ucd.ie/combine.html. The COMBINE Building Model is available
from http://dutcul5.tudelft.nl/~combine/.

Bailey 1. (1996) EXPRESS-M Reference Manual 1ISO TC184/SC4/WGS N243
(CIMIO Ltd, Brunel Science Park, Surry, England)

BCCM (1996) ISO TC184/SC/WG1 Part 106 Draft T100 Building Core
Construction Model; available at: http://www/nist/gov/sc4/step/parts/part106/

ClMsteel (1993) CIMsteel: The Logical Product Model, Version 3.3, University of
Leeds, Release 2.0

Doherty P. (1997) Cyberplaces: The Internet Guide for Architects, Engineers and
Contractors (R.S. Means, Kingston, MA)

Eastman C.M. (1996) "Managing Integrity in Design Information Flows” Computer
Aided Design, 28(May) pp 551-565.

Eastman C.M., Parker D.S., Jeng T.S. (1997), "Managing the Integrity of Design
Data Generated by Multiple Applications: The Principle of Patching" Research
in Engineering Design 9 pp 125-145.

Elmagarmid, A.K. (Ed.) (1992) Database Transaction Models for Advanced
Applications (Morgan-Kaufmann, San Mateo, California)

Goldfarb, C. Prescod P (1998) XML Handbook, (Prentice Hall, N J)

IAI (1997) International Alliance for Interoperability Industry Foundation Classes,
Release 1.5 TAI, 2980 Chain Bridge Road, Suite 143, Oakton, VA

ISO (1996) EXPRESS-X Reference Manual, TC184/SC4/WG5Working Draft, Lab
for Industrial Infrastructure, Rensselear Polytechnic Institute, Troy, NY

Jacobsen K., Jeng T.S., Eastman C., (1997) "Information management in Creative
Engineering Design and Capabilities of Database Transaction", Automation and
Construction, 7(1), pp 55-69

Jeng, T.S. (1998) Design Transactional Flow Management: structuring design
processes for CAD frameworks, Ph.D. Thesis, College of Architecture, Georgia
Institute of Technology, Atlanta GA

Jeng, T.S. and Eastman C., (1998) "Database architecture for design collaboration",
Automation and Construction 7(6), pp 475-484

Part 22 (1993) ISO WD 10303-Part 22, Standard Data Access Interface, SOLIS
Repository, NIST, Gaithersburg, MD

Part 225 (1996) ISO DIS10303 Part 225, Building Elements Using Explicit Shape
Representation ICS 25.040.40

Schenk D.A., Wilson P.R. (1994) Information Modeling the EXPRESS Way (Oxford
University Press, New York)

Spooner D.L., Hardwick M. (1997) "Using Views for Product Data Exchange" /IEEE
Computer Graphics and Applications 17(Sept/Oct) pp 58-65

Verhoef M., Liebich T., Amor R. (1995) "A Multi-Paradigm Mapping Method
Survey" in Modeling of Buildings Through Their Lifecycle: Proceedings, CIB
Publication 180 Palo Alto, CA, Eds M Fischer, K Law, B Luiten pp 233-247

