
GENO-OBJECT-CLASSES IN CONSTRUCTION IT

Kristian Agger, The Aarhus School of Architecture.

ABSTRACT

The Geno project intends to participate in the development of the next generation of
construction IT systems. Goals for this research should be: to loosen the design process from
the production of design documents, to free the geometry from orthogonal projection, to make
possible a full, variable, complete detailing without loosing consistency, to move the
development of building component specific IT modelling tools closer to the end user and to
improve the efficiency and capability of these modelling tools.

The Geno project works with three developer / user layers: 1. GenoObjectClasses, the basic
standardized data and functional structure, developed by IT specialists in a close dialogue
with the IAI IFC development. 2. ProtoObjectClasses: IT tools for modelling spaces,
construction elements and parts. Developed by IT specialized architects, engineers, on the
bases of Genotypes. Made available to the end user through Internet by component vendors.
3. PhenoObjects: spaces, construction elements and parts, specified, dimensioned and placed
and interrelated by the designer, to be analyzed and supply project information for all
participants in the construction and management process. The idea of this structure is to
improve dynamic and user influence on IT modelling tool development.

The standardized class structure for this, the GenoObjectClasses has to support three
concurrent models, namely the: 1. SpaceModel, an interrelated surface model, a non-detailed
division of the project space in functional spaces (living room, kitchen, bath etc.) and
construction spaces (foundation, wall, roof, slap, etc.). 2. ComponentModel, a successive
partitioning or filling the SpaceModel with building elements, components (facing wall, inner
wall, insulation, window, door, ceiling, roof construction, inventory, furniture, etc.),
interrelated and related to the SpaceModel. 3. EntityModel, a similar fill to the
Componentmodel with building parts (brick, joint, plaster, fitting, gutter, etc.) to make a
complete consistent product model possible.

The "three model structure" to be filled out successively, add flexibility to the design process.
When calculations and visualizations are performed the detailed model is used, but in areas
with no detailing the model on the lower detailing level is used. This means that the total
model will be "complete", if only the SpaceModel has been modeled. The development of
GenoObjectClases will build as close as possible on IFC, and seek to expand IFC where it is
necessary.

Status for the Geno project is that implementation has been started with AutoCAD
ObjectARX.

Keywords, product model, design process, generic object classes, design detailing .

C
on

st
ru

ct
io

n
In

fo
rm

at
ic

s
D

ig
ita

l L
ib

ra
ry

 h
ttp

://
itc

.s
ci

x.
ne

t/
pa

pe
r

w
78

-1
99

8-
1.

co
nt

en
t

INTRODUCTION

Next step in the development of the IT system for construction must concentrate on much
better modeling efficiency and access to full (but variable) detailing. This will make it
possible to build a model that can support analyses and generation of project documents at all
levels of detailing. Modelling efficiency can be obtained through the development of
specialized modelling tools for each single part of the building. These tools should be
implemented by specialist designers or by construction industry vendors as part of component
documentation available on the Internet.

A precondition for a tool development, independent of traditional CAD system development
is the existence of a standard object class kernel, a comprehensive product model. This
GenoModel should co-ordinate 3D geometry, attributes, construction and inter-connection of
functional spaces and building parts in one structure. All participants in the design and
construction and management process will model into and gain information from this object
database, and the traditional project documents will disappear.

Next generation of construction IT-system, built on these premises will:
• loosen the design process from the production of design documents,
• free the geometry from orthogonal projection
• make possible a full, variable, complete detailing without loosing consistency
• move the development of building component specific IT modelling tools closer to the

end user and
• improve the efficiency and capability of these modelling tools

SYSTEM DEVELOPMENT

None of the CAD systems in use in design offices today are fully optimised for building
modelling. The data models are not structured to hold a connected building product model,
and that is why the modelling tools available only offer efficient drawing edition and
modelling of simple 3D models for visualisation (AutoCAD, MiniCAD, Arris etc.). Still,
most building oriented systems (AutoCAD-Point, ArchiCAD, AllPlan etc.) only have
capacity for an integrated model that can support none detailed drawing production and
calculation. These CAD systems imitate the traditional design process and documentation,
without the profound renewal and improvement of the design process that is the potential of
IT, as seen in for example the car industry.

Modern system implementation is object oriented, based on object classes, a code module
defining both data (attributes) and methods (functions) of the object. The advantage of this
structure, is that the Object class can be redeveloped without affecting the rest of the system,
as long as the naming of data and methods referenced by other objects is not changed. An
object can represent a very concrete thing, a building part, a window with dimension
attributes, parameters for framing, and methods for placing, calculation, etc. Object classes
can also be something more abstract, for instance a relation between a window object and a
wall object, securing that the window follows the wall during modelling and that the area of
the window is subtracted from the wall area. An editing (modelling) command is also
implemented as an object. A modeling object calls the relevant functions in the objects that
take part in the modelling operation.

Traditional CAD systems are developed by the CAD vendor. Most systems allow the
advanced user to adjust and expand the system to a more specific use, with a programming
tool. In AutoCAD it is ObjectARX that gives access to add new classes on top of existing
classes. MiniCAD offers MiniPascal, that is without object structure. And ArchiCAD has a
graphic programming language GDL, to build parametric components from, but without the
facilities to expand with new objects or functions.

The GenoProject tends to offer a developer / user structure with 3 layers:
• GenoTypes, the basic object (data / function) structure developed by IT specialists, in

accordance and dialogue with IFC (Industry Foundation Classes developed by IAI).
GenoObjectClasses hold attributes: the geometrical form, material and surface
characteristics and relations / bindings to other objects, and methods: to visualise the
object in different projections and cut, to calculate quantities, area, volume, point of
gravity, weight. Methods to receive and transfer forces and heat in the static or thermal
systems. Methods to model geometry and topology. General methods to parameterise and
to group objects. This basic kernel system is to be developed by traditional CAD vendors.

• ProtoTypes, are the tools to model spaces, construction elements and parts, developed by
specialized architects/engineers for design offices and building article producers. Based
on GenoObjectClasses by heritage of methods and attributes, ProtoObjectClasses will be
developed with its own set of data and functions, making the ProtoType a modelling tool
specialised for designing different space types and different building parts: walls,
windows, doors, columns, slabs roofs, panels, stairs, boarding, covering, etc.. ProtoTypes
can be distributed via Internet as part of building article information.

• PhenoObjects, are spaces, building elements and parts, specified, dimensioned and placed
by the designer, to establish a project model that allows every participants in the building
process to generate analyses and all kinds of documentation.

This structure will bring the development of modelling tools closer to the user. As each
element type of the building needs its own tools to be built, each part of the building needs its
own modelling tools to be modelled effectively. New building articles need new modelling
tools, ProtoTypes, so the development will be a continued process. As ProtoTypes are based
on GenoTypes they will “plug in” to every Geno based kernel IT system.
The GenoProject define GenoObjectClasses, and develop ProtoObjectClasses to test and
refine the kernel.

GENO-OBJECT-CLASSES

In the search for the essence of the GenoTypes, it has been important to find a structure that
will support the design process. No single theory describes the designers methods.
Registrations of the process often find a pattern where the designer relatively fast jumps to a
conclusive idea to be evaluated and refined. Another observation is that some details are
developed to a conclusion very early in the process. The reason for this could be that the
detail influences the rest of the geometry, that it visually plays an important role, or just that it
is nice to record ideas immediately. These considerations have led to a structure, where the
GenoObjectClasses must support 3(4) concurrent models, the:
• ConstructorModel (hardly a model), consists of points, curves, planes, that the same way

as gridlines, support and guide the construction of the:
• SpaceModel, an interrelated surface model, a non-detailed division of the project space in

functional spaces (living room, kitchen, bath etc.) and construction spaces (foundation,
wall, roof, slap, etc.).

• ComponentModel, a successive partitioning or filling of the SpaceModel with building
elements, components (facing wall, inner wall, insulation, window, door, ceiling, roof
construction, inventory, furniture, etc.), interrelated and related to the SpaceModel.

• EntityModel, a similar fill to the ComponentModel with building parts (brick, joint,
plaster, fitting, gutter, etc.) to make a complete consistent product model possible.

The idea of more concurrent models to be filled out successively, add flexibility to the design
process. When calculations and visualizations are performed the detailed model is used, but in
areas with no detailing the model on the lower detailing level is used. This means that the
total model will be "complete", if only the SpaceModel has been modelled.

ConstructorModel

Vertical

Tilted

Horizontal

ConstructorModel

Purpose
The ConstructorModel is the first rough outline of the site and the possible building volume.
The “model” is established successively when it is needed and functions as a guide during
design of the SpaceModel, so that the surfaces and edges of the SpaceModel can be related to
one or more of the elements, “constructors”, in the ConstructorModel. A move or turn of an
element in the ConstructorModel will cause the related elements from the SpaceModel to
follow. Thus the constructors can be used to control the superior geometry.

Object Classes
The elements of the ConstructorModel, the Constructor, can be a point, a curve (straight or
curved) or a plane (flat, curved, sculptured).
The ConstructorObject defines type (point, curve, plane), geometry (form, placing) and
relations to other ConstructorObjects.
Examples: site border, building line, height controlling plane defining the exterior limits for
the project and, grid line, and floor, ceiling and roof plane controlling the interior geometry.

Modelling
The constructor plane can be defined by:
• Intersection curve with another constructor plane, in a given angle.

• Parallel connection to another constructor, in a given distance.
• Tangential connection in a point.
• Three or more 3D points.
• Lofting, extrusion, point interpolation, etc.
Single curved constructor curve is defined on a flat plane, double curved constructor curve on
a curved plane, and constructor points by co-ordinates.

Relations
The constructor can be defined as fixed or related to other constructors by angular, parallel
displacement or tangential relations. The floor plane constructors can for instance be
interrelated with parallel displacement. If one floor to floor distance is changed all interrelated
floor plane constructors will adjust.

Visualisation
The visual appearance of the constructor depend on the type and whether is to be shown in the
projection plane or just somewhere else in the view cone.

placing/type (colour) Point (red) Curve (green) Plane (blue)
In the projection plane Bold cross Bold line Bold intersection line

Elsewhere Cross Line Grid

Analyses and Documentation
No analyses can be generated solely based on constructors.

The constructor can be shown on drawing documents for example as grid lines.

SpaceModel

SpaceModel

Roof /
 Ceiling

Floor

RoomExterior

Wall

Terrain Foun-
dation

Purpose
The SpaceModel is a superior subdivision of the total project space into functional rooms and
constructional spaces. A sketch model, able to deliver data for rough calculations and
visualisations. The SpaceModel is a surface model, where the surfaces can be related to
Constructors and to each other, and where the surfaces constitute the relations between the

spaces, so that generation of calculation data is possible. The degree of detailing is like a
cartoon model, but it is possible to successively fill the SpaceModel with components,
building elements, inventory, furniture, etc..

Object Classes
The most important object classes in the SpaceModel is the SpaceObject and the
SurfaceObject:
• The SpaceObject, the room, contains data about the room type (functional rooms: living

room, kitchen, bath, workshop, concert hall, exterior, etc. or spaces for construction:
exterior wall, interior wall, horizontal division, ceiling, roof stair, etc.) and attributes
(Functional activity descriptions: Proportion limits, orientation, access relations, etc. or
preliminary building element specifications: Cost, U-value, density, construction duration,
maintenance cost, lifetime cost, etc.), visual appearance on sections (colour, raster),
relations to other SpaceObjects, and relations to SurfaceObjects, that constitute the shape,
relations to ComponentObjects (se later) filled into the space.

• The SurfaceObject, planes that separate the spaces, has data describing, geometry: type,
placing and contour, visual appearance: contour line, colour, texture and references to the
two spaces it separates. It has relations (eventually) to Constructors and other
SurfaceObjects, to control placing and contour. The SurfaceObject will be related to the
ComponentObjects through their EnvelopeObjects (see later under ComponentModel
definition). These relations cause the EnvelopeObjects to “make a hole into” the
SurfaceObjects, so that when the models are visualised the components will be shown
where they are present.

Modelling
Modelling the SpaceModel includes the creation of the SpaceObjects directly during the space
programming phase or indirectly when modelling the SurfaceObjects.
Modelling the spaces can take the following forms:
• Modelling one single SurfaceObject with references to two spaces it separates, and

relations to other SurfaceObjects and Constructors, and graphical 3D input on constructor
plan or through snap to existing points

• Modelling a complete room or an extension to a space (and thereby reduction of
neighbouring spaces) by extruding a SurfaceObject to a given height or to a constructor
plane. This includes a process where the generated surfaces are properly related to
surrounding spaces and surfaces.

• Editing the SpaceModel through changes to the ConstructorModel or to changes in
parameters in relations to other SurfaceObjects or Constructors.

Relations
Relations that are internal to the SpaceObjects as part of the spatial program are: distance in
between (max. min.), access (direct, indirect or none), daylight (access and orientation), view.
SpaceObjects have relations to their bounding SurfaceObjects, which are pointing back to the
two SpaceObjects they are common to.
The placing relation between SurfaceObjects and Constructors and other SurfaceObjects can
be angular, parallel displacement or tangential. SurfaceObjects can have a common contour
with another SurfaceObject. And there can be a “hole making” relation to an EnvelopeObject
of a ComponentObject.

Visualisation
The SpaceModel can be visualised as a wire frame model with or without hidden lines or as a
surface model with coloured, shaded and shadow casting surfaces. The model can be shown
in section of every orientation and in parallel, isometric or perspective projection. Each
SpaceObject, or a selected group of objects can be separately visualised. When the
SpaceModel and the ComponentModel and EntityModel are visualised together, the
SpaceModel only shows where no components or entities has been modelled.

Analyses
The highly integrated SpaceModel can generate data for a row of sketchy analyses:
• Economic estimates.
• Area overview and analyses.
• Thermal calculations, heat loss and gain.
• Static calculation, loads and stability.
• Acoustics and sound insulation.
• Time planning and logistic.
• Running costs, cleaning and maintenance.
• Ecological lifetime accounting.

Documentation
• Reports from sketchy analyses.
• Sketch drawings and visualisations.
• Superior, non-detailed specification of rooms, constructions, building elements and

surface materials.

ComponentModel

ComponentModel

Purpose
The ComponentModel is a detailing of the SpaceModel. The construction space can be
divided into building elements or components and functional space can be equipped with
inventory and furniture.

The ComponentModel and the SpaceModel are created simultaneously. Contrary to the
common SpaceObject surfaces of the SpaceModel a ComponentObject has a discrete
geometry bound by a set of surfaces called EnvelopeObjects. The envelope can be equal to or
close to the outwards geometry of the component. It is related to SpaceObjects,
SurfaceObjects or to EnvelopeObjects of other components. Placing a ComponentObject is
regarded as a subtraction of the component’s volume form the SpaceObject it is placed into.
An envelope of a component that is related to a SurfaceObject will (in calculations and in
visualisations) be subtracted from the surface. If a component is placed in a domain where no
spaces have been modelled there will be a duplication of the envelope so that it will function
as a SurfaceObject too.

A component or building element is described geometrically by its envelope and detailed by
the objects of the EntityModel or by its own internal geometrical structure. This structure has
to be known by the kernel system’s calculation and visualisation methods or the object must
have internal methods for that. The components must have the ability to have their shape and
dimension defined by parameters.

Object Classes
The primary objects of the ComponentModel are the ComponentObject, the EnvelopeObject
and the JointObject:
• The ComponentObject contains data about: type (Sfb classification table 1), specification

(material, construction, product, key to cost, U-value, density, construction duration,
maintenance cost, life time cost, etc.), visual appearance on sections (colour, raster),
relations to the container SpaceObject, and relations to its own EnvelopeObjects.

• The EnvelopeObject has data describing, geometry: (type, placing and contour), visual
appearance: (contour line, colour, texture). It can have references to SurfaceObjects, that
control placing and contour, and will be related to the ComponentObject and
neighbouring EnvelopeObjects. There can be relations to envelope’s of EntityObjects
These relations “course a hole in” the EnvelopeObject of the component, so that ,when the
models are visualised, the entities will be shown where they are present. All these
relations can also go through a JointObject.

• The JointObject is a relation between two EnvelopeObjects belonging to two components.
The data in the JointObject are: distance (tolerance, thickness), material, colour.

Modelling
Modelling the ComponentModel is basically:
• Creating the ComponentObject, with data and relation to the containing SpaceObject.
• Graphical input of a single EnvelopeObject.
• Modelling the full component envelope or an extension to a component by extrusion, and

relating the EnvelopeObjects generated hereby.

But the detailing of spaces with components has to be done with modelling tools, ProtoTypes,
specialised for each different type of component or building element.

Relations
The relation between the EnvelopeObject and the SurfaceObject is guiding the placing and
forming of the envelope eventually with a minor offset. Envelopes are related to other
envelopes in the same ComponentObject through common contours. And an EnvelopeObject
can be related to an envelope in another component, eventually through a JointObject.

Visualisation
The ComponentModel can be visualised as a wire frame model with or without hidden lines
or as a surface model with coloured, shaded and shadow casting surfaces. The model can be
shown in section of every orientation and in parallel, isometric or perspective projection. Each
ComponentObject, or a selected group of objects can be separately visualised. When the
ComponentModel is visualised, the SpaceModel shows where no components or entities have
been modelled.

Analyses
The ComponentModel will be able to deliver data to the same analyses as the SpaceModel.
The analyses are performed with greater accuracy as the components are modelled.

Documentation
• Reports from component based analyses.
• Drawings for the authorities and visualisations.
• Specifications for building regulations.

EntityModel

EntityModel

 Purpose
The EntityModel is the final possibility of completely detailing the components of the
ComponentModel. The entities fill out the component and have a set of enveloping surfaces
that describe the outward geometry of the component precisely or nearby.
Placing an entity in a component can be regarded as a subtraction of the entity volume from
the component and a visual take over. The EntityObjects can be interrelated via JointObjects.
The entities must have the ability to have their shape and dimension defined by parameters.

Entity modelling will be used in parts of the building that are constructed on the site, by
concreting, brick laying, covering, etc., whereas component based parts of the building are
fully detailed by the component’s internal geometry.

Object Classes
The primary objects of the EntityModel are the EntityObject and the two objects
EnvelopeObject and JointObject defined for the ComponentModel.
• The EntityObject contains data about: type (Sfb classification table 2 and 3), specification

(material, construction, product, key to cost, U-value, density, construction duration,
maintenance cost, life time cost, etc.), visual appearance on sections (colour, raster),
relations to the container ComponentObject, and relations to its own EnvelopeObjects.

Modelling - Visualisation – Analyses - Documentation
The EntityModel follow closely the ComponentModel in the definition of modelling, relations
and visualisation. The main difference is that visualisation and analyses are more accurate.

Documentation covers a full detailed set of:
• Reports from entity based analyses.
• Working plans, sections, detail drawings and visualisations.
• Detailed specifications.
The GenoProject, as stated before, has no intention of imitating the traditional building
project documentation, but is anticipating a situation where participants in the design,
construction and facilities management process seek relevant information in the project object
database.

MODELLING TOOLS

Modelling an integrated model effectively with creation, geometrically definition,
specification and internal relations of ConstructorObjects, SpaceObjects, ComponentObjects
and EntityObjects can only be done with highly specialised modelling tools, for constructors,
for spaces, and for different component and entity types.

The specialised modelling tool, ProtoTypes, in the following called a Modellor, is an object
class developed on the basis of GenoObjectClasses. The Modellors create GenoObjects and
call GenoObject methods to write or read data values, relevant to the modelling process.

The Modellor is specialised for a specific part of the building, component, or element.
Samples could be:
• Modelling functional spaces. Creating wall and ceiling surfaces by extruding the floor

plan up to a Constructor. Or the same by horizontal extrusion of a wall surface.
• Modelling openings in a wall by drawing the opening profile on one surface and extrude it

to the other.
• Modelling building elements in the construction space exterior wall. The space has to be

divided into a front wall, an empty space and a back wall. The front wall has to follow the
plinth and go to the base of the roof, say on the first floor. The back wall has to follow the
plinth too, but is split where the floor division is.

• Mounting a window includes making an opening in the front wall, with room for the joint,
and making an opening in the back wall with inclined side rabbets, extended to the front
wall.

• Making piping for drinking water, with fittings, valves and cut through walls, etc..

• Covering a bath floor with tile. Lay out a board along the walls. Planning for slope.
Choose lay-out with joint in the middle or tile in the middle. Experiment with board width
to obtain less divided tiles, etc..

• Covering the roof with tile. Laying out felt underlay on the rafters, lathering, laying out
tiles. Etc..

All known modelling techniques will be used, but adjusted precisely to the type of object.

IMPLEMENTING GENO PROJECT VERSION 1.

The following sketches what is to be implemented in Geno Project version 1., to try out and
develop the GenoObjectClasses, described above. No EntityModellor will be implemented in
ver. 1. as the technique of the EntityModellor is similar to the ComponentModellor. Before
implementing an object it will be checked with IFC object classes to see whether there is
some definitions that can be used directly, or to se whether it is necessary to prepare a
suggestion for new IFC objects based on GenoObjectClasses.

ConstructorModellor
Ver. 1. will only have straight and plane constructors. It should be possible to establish
constructor plane, line and point, with internal angular and “parallel with distance” relations.
ConstructorObjects will be able to have a relation to the SurfaceObjects of the SpaceModel.

SpaceModellor
The SpaceModel ver. 1. is restricted to plane surfaces. The SpaceModellor include:
• Creating a SpaceObject directly in writing the space program or indirectly when

modelling SurfaceObjects.
Space modelling can take the form of modelling a single SurfaceObject:
• That is, stating the two spaces and relations to constructors and/or other surfaces and

drawing the surface parallel to a constructor or by snap to existing points.
Or modelling a full SpaceObject or space extension:
• By extruding a surface or constructor line to a given height/length or against a constructor

plane. Followed up with automatic or semiautomatic relating of the surfaces generated by
the operation to spaces, surfaces and constructors.

• Editing the SpaceModel by moving constructors or by changing relational parameters
(angel, distance).

ComponentModellor
As mentioned the ComponentModellors are highly specialised to different building element
types. In ver. 1. only a non-specialised generalised modellor is implemented with:
• Creation of the ComponentObject, stating data and relations to the containing

SpaceObject.
• Drawing and relating a single EnvelopeObject or
• Modelling a full component or component extension by extruding an envelope plane or a

constructor line to a given height/length or against one or more surfaces. Followed by
stating relations.

Visualisation and Calculation
The principle of letting the ComponentModel overrule the SpaceModel in visualisations, if it
is present, will be implemented in ver. 1..

A calculation of quantities of objects in the SpaceModel and the ComponentModel will be
implemented in ver. 1..

System Development
AutoCAD ObjectARX used with Microsoft Developer Studio and Visual C++ has been
choosed as development tools.

The time schedule for implementing GenoProject Version 1. Is:
• April-June. Learning programming tools.
• May-June. Detailed object specification and verification with IAI/IFC
• August-September. Implementation.

Exploring new concepts for the Construction IT System, as the GenoProject aims at, is a big
task. But the integration with IAI makes a contribution to the development possible and
ensure that the results will be used.

LITTERATURE

• Cesar Martinell y Brunet, Gaudi –his life, his theory, his work, Barcelona, (1967)
• Kristian Agger, Datastructures for function and geometrical description of buildings,

paper, CAD76, London, (mar. 1976).
• Bryan Lawson, How Designers Think, Butterworth Architecture, (1980).
• Tom Søgaard Larsen, Projekt 90, rapport, PAR, København (1990).
• Laila Dybkjær, Computer-Aided Floor Plan Sketching –A study of Knowledge

Representation in Architectural Design, Ph.D. Thesis, DIKU, København, (1991).
• Jan Karlshøj, Principper og metoder for opstilling af datamodeller til byggeteknisk

anvendelse, rapport, DTU ABK, (1994).
• Informationsteknologi i byggeriet, -Fou-strategi, ATV, København (aug 1994).
• Per Galle, Product Modelling for Building Design, -annotated bibliography, DTU,

Lyngby, (1994).
• Bo-Christer Björk, Requirements and information structures for building product data

models, VTT, Espoo, (1995).
• Carsten Rode og Karl Grau, Implementation of a pragmatic system for integrated Building

analyses, SBI, Hørsholm, (1996)
• ArchiCAD / GDL Reference Manual, Graphisoft, Hungary, (1997)
• Industry Foundation Classes, Release 1,5, IAI Members CD, IAI, (1997).
• Kristian Agger, Traditionel projektering eller projektering med IT, AbbNYT nr. 6

Taastrup (1997)
• Kristian Agger, IT modellering, -Status og Perspektiver, (Abb)NYT nr 1, Taastrup, (1998)

