
1

TOWARDS OBJECT MODELS FOR INTEGRATED INTELLIGENT
PROJECT MANAGEMENT

Tah, J.H.M.1

ABSTRACT: Current project management systems are too abstract and do not have a means
of representing concrete knowledge about a problem domain. Previous research in this area
has failed to address larger problem domains to a level of success significant enough to make
an impact in the construction industry. Object-orientation appears to provide a powerful
means of encapsulating knowledge in intelligent object classes and together with the product
modelling approach promise to provide a solution for larger problem domians. This paper
presents selected object models that have evolved from research work aimed at investigating
new approaches to the provision of knowledge-based decision support within large
integrated project management systems. The work utilises the object modelling approach to
software engineering and is precipitating in what may potentially progress from foundation
classes to software components for project management. The continual re-use and
development of such classes and components will evolve standard application information
requirements that can contribute towards ISO-STEPs efforts in developing application
protocols and standards for data exchange and interoperability.

KEYWORDS: object models, object-orientation, integration, intelligent, project
management, KBS.

BACKGROUND
Although there is a proliferation of software purporting to provide comprehensive project
management facilities, they have failed to meet the needs of project managers. These systems
are primarily founded on principles and methodologies derived from operational research
developed in the 1950's. These systems by their very nature have been designed to be generic
representing data at an abstract level. Consequently, there is little or no opportunity for them to
retain concrete knowledge about individual problem domains and as such provide little decision
support. They are designed to monitor the presence of a performance problem. They do not
have the ability to diagnose the root cause of the problem, nor do they suggest necessary
corrective action. It is the project manager's responsibility to diagnose the cause of the problem
and to implement an appropriate response strategy. Furthermore, these systems require a
considerable amount of effort in data input from the project manager which is both time
consuming and to some extent error prone. This is due to the fact that they have been developed
as stand alone systems with no ability to share data with upstream functions such as design.
Consequently, this does not assist both designers and the project managers who wish to examine
the consequences of alternative decisions and possible response strategies so as to select the best
solution to a problem.

The purpose of this research is to utilise emerging technology from Artificial Intelligence
research in an innovative approach to develop advanced knowledge-based decision support

1 Senior Lecturer, Project Systems Engineering Research Group, School of Construction, South Bank
University, Wandsworth Road, London, SW8 2JZ. Email: tahjh@vax.sbu.ac.uk

C
on

st
ru

ct
io

n
In

fo
rm

at
ic

s
D

ig
ita

l L
ib

ra
ry

 h
ttp

://
itc

.s
ci

x.
ne

t/
pa

pe
r

w
78

-1
99

6-
47

9.
co

nt
en

t

2

techniques for the deployment of future integrated project management systems. Previous
research in the area of decision support for project management utilising knowledge-based
systems techniques have failed to make an impact in the construction industry. This can be
attributed to the use of expert systems shells which are too restrictive and are suitable for
handling problems in highly specialised domains. Design and construction management
problems are characterised by a multiplicity of products and processes which include tasks or
work packages such as earthworks, temporary works, concreting, steelworks, drainage,
tunnelling, piling, and services. It is, therefore, difficult if not impossible to develop a
convincing all embracing knowledge-based system for say construction planning or estimating
using an expert system shell. The basis of this research is to acknowledge the existence of
several different work packages each with its own knowledge requirements, and investigate the
application of more advanced techniques currently emanating from the Product Modelling,
Object-Oriented Software Engineering, and Artificial Intelligence research communities. Our
intention is to investigate the use of object-oriented knowledge representation and reasoning
techniques together with the use of multi-agent and blackboard architectures to handle the
disparate nature of construction problems. Furthermore, construction management problems are
characterised by the presence of an abundance of quantitative or objective data. Solution
strategies to these problems involve the use of these data together with information of a
qualitative nature, often derived from experience. Therefore, new techniques should be capable
of handling both quantitative and qualitative data.

The advent of Object-Oriented Programming (OOP) provides new opportunities for dealing with
the limitations of rule-based paradigms typically found in former expert system shells in the
handling of quantitative data. Object-oriented programming languages provide powerful
information modelling capabilities. Information is modelled in the form of objects which
represent and capture the structure and behaviour of real world entities, making them ideal for
simulation purposes. An object is a data structure that combines both data and procedures. The
encapsulation of procedures along with data gives it the ability to reason about its domain, hence
allowing intelligent operations to be performed. OOP allows the representation and application,
within an object, of both rules and procedures in ways that were impossible, or at least extremely
difficult, in former rule-based formalisms.

Decisions in project management are often made using incomplete or uncertain information,
particularly those pertaining to risk management. In such situations, project managers use their
subjective judgements to assess project risks likelihood and severity. The parameters involved
are described qualitatively in linguistic terms using imprecise non-numeric quantification. The
linguistic terms or variables can be translated into mathematical measures using fuzzy sets. The
object-oriented problem solving strategies developed in this research will incorporate
approximate reasoning techniques based on fuzzy sets theory. The intention is to demonstrate
the potential of fuzzy set theory in highly subjective decision making processes within
construction management systems.

OBJECT-ORIENTED SOFTWARE ENGINEERING

Software development has progressed from machine code and assembly language, through to
higher level languages. In addition there has been a progression from unstructured code, to
procedures and functions, to libraries, and to shared libraries. Object-oriented software has
been a logical next step in both of these trends. Similarly, the object-oriented software
engineering methodology has been the result of the evolution of structured software

3

engineering methodologies. The trend has been driven by the need to evolve high-level data
and procedural abstractions that facilitate the analysis, design, development, and maintenance
of software. This has precipitated in the concept of a class in the object-oriented
programming methodology as a behaviour-centred rather than a data-centred approach. These
developments allow us to begin to attempt to handle the inherent complexities of a
fragmented construction industry, with multiple disciplines, complex disparate processes and
sub-processes.

Object Oriented Design and Re-usability
Objects represent dynamic entities in computer memory that define data states and serve to
group data that pertain to one real world entity. An object encapsulates both state and
behaviour by having a set of procedures (or methods) that specify operations. Sets of similar
objects are grouped together under classes to simplify association of knowledge within
objects by keeping the implementation details private within each class and allowing
interactions between objects of different classes to be easily controlled and manipulated. The
information about how an object behaves is hidden from the behaviours of other objects, only
their interactions and relationships are visible, through the behavioural interface of the class.
The close coupling of the data and operations is one of the most important features of object-
oriented techniques.

The notion of classes is being used to develop class libraries or a set of common classes that
can be re-used in software development. Classes or objects are inherently units of reusable
code and systems built from them are extensible, using inheritance to add new or exceptional
features to the system. Designing object-oriented systems is hard, and designing reusable
object-oriented software is even harder. The process involves finding pertinent objects,
factoring them into classes at the right granularity, defining class interfaces and inheritance
hierarchies, and establishing the key relationships between them. The design should be
specific to the problem at hand but be general enough to address future problems and
requirements. It is desirable to avoid redesign, or at the very least minimise it.

Object-Oriented Analysis and Design Methodology
Modelling is used in diverse fields as a means of understanding a concept or an artefact and
communicating its essential properties to interested parties before actually building it. The
resulting model is a simplified version of a real-world concept. It is an abstraction of reality,
representing important properties, thus allowing humans to deal with the complexity of a real
problem. Modelling is a common practice in software engineering. Defining models in
computers involve: representing a model of the real- world using a methodology, usually
depicted graphically; transforming the model into source code; and allowing the user to use,
amend, and add information to the model.

The burgeoning interest in object technology has led to a massive proliferation of object-
oriented methodologies. These methods vary in complexity, scope and their degree of
conformance to the object-oriented perspective. We use the industry standard methodology
of Rumbaugh (1991).

The Rumbaugh’s Object Modelling Technique (OMT) is based on the use of an object-
oriented notation to describe classes and relationships throughout the software development
lifecycle. The lifecycle is divided into seven phases: conceptualisation, analysis, system
design, object design, implementation, testing/debugging, and deployment. During these

4

phases, three models are built and refined to provide three different but interrelated views of
the system. The Object Model is augmented with a Dynamic Model and a Functional Model
to describe all aspects of a system.

The Object Model
The Object Model describes the static structure of the system. It shows the structure of
objects in the system and provides the foundation for the Dynamic and Functional Models.
The Object Model consists of the following: class diagrams; object diagrams; sub-system
Diagrams; and data dictionary.

The Dynamic Model
The Dynamic Model describes the control, or time-dependent, behaviour of the system. It
shows the events and the allowable event sequences for each object. The Dynamic Model
can consist of graphical representations shown by the following: state diagrams; use case
diagrams; scenario diagrams; event flow diagrams; and object interaction diagrams.

The Functional Model
This describes the functional, or transformational, behaviour of the system. It models the
aspects of the system with changeable values. The Functional Model can consist of graphical
representations shown by the following; data flow diagrams; and object interaction diagrams.

The Object Model is most suitable for depicting the notion of re-use and as such will be used
in the rest of the paper to present reusable classes and software components. The reader is
refereed to Rumbaugh et. al. (1991) for the details of the notation used in the diagrams
presented in this paper.

INTEGRATED INTELLIGENT PROJECT MANAGEMENT OBJECTS MODELS

Scope
Project management is a very large problem which cannot be fully tackled within the time
scale of this research. Therefore, it is necessary to choose more specific representative
problem domains that can be more manageable, and can demonstrate the capabilities of
object-oriented knowledge-based systems (KBS) techniques for decision support more
convincingly. Two problem areas of project management were selected. These are the
formulation of a construction programme and the corresponding risk management through
qualitative risk assessment. The programme formulation process consists of the following
tasks: establishing general information concerning project details; developing a suitable Work
Breakdown Structure (WBS) to represent tasks; establishing the quantities of work involved
for each task on the WBS; selecting a method of concreting; selecting resources to suit the
method of construction; and determining the duration of each task. The risk management
process involves performance monitoring, risk identification, risk assessment, risk analysis,
and risk handling. We focus on the in-situ concreting class of work covering both reinforced
concrete and mass concrete structures associated with multi-storey building construction. To
further delimit the boundaries of the knowledge sources the work covers only the super-
structure element and the associated components.

Modelling Framework

5

Integrated project management involves several disciplines, each with its own view of data.
Therefore, it is important to establish a framework that allows the categorisation of data into
different levels of abstraction. Iosifidis et. al. (1995) propose a “Three Level Model” comprising
of a discipline level, a view-point level, and a data level. The selection of a discipline and
examination of its view of data, allows data to be gathered and organised for a particular area.
The integrated project management problem presented in this paper involves two disciplines: the
structural design; and the project management discipline.

This paper concentrates on the data level which involves the identification of objects, attributes,
and their relationships. The first task in this process is to identify objects and to group them into
classes. Once a sufficient number of classes has been identified, a decision has to be made as to
whether they are part of an aggregation or inheritance hierarchy. An aggregation hierarchy
allows a large composite object to be broken down into its component parts. It can form multiple
levels where each level increases in detail, for example a building structure can be broken down
into the sub-structure and the super-structure. If an object is a sub-type (i.e. a specialisation) of
another it becomes part of an inheritance hierarchy, for example, a column and a beam are
specilisations of a structural component. Once aggregation and inheritance hierarchies have
been established, the relationships between them are defined to reflect dependencies in the read
world. Other associations may be defined between classes. The relationships and associations
model most of the semantics within a product model. Attributes and methods are then added to
individual classes. In the ensuing section we present selected key object models that have been
developed to reflect the data, behaviours, knowledge, and their inter-relationships. These
include: a reinforced concrete structure object model; a task object model; and a risk
management object model.

The concrete structure object model
The object model in Figure 1 represents the object classes within a reinforced concrete
building structure. The building structural system is composed of the sub-structure and the
super-structure, which are both composed of structural members. The structural member class is
a base class for concrete structural members which may be a column, beam, wall, slab, etc. A
structural member may or may not contain reinforcement. The structural member reinforcement
class represents reinforcement within a structural member and it uses a reinforcement material
database through the class reinforcement, the details of which are not shown in the diagram.
The diagram shows that a structural member may be constructed by a task. The task class
provides the link to the task system through the “set_task” method which sends a message to the
task class to set appropriate work packets or units of work needed to construct the member.

The task object model
The task system object model in Figure 2 represents the information required in the planning and
controlling of the production process of the space, separation, and structural systems. The task
system is centred around the construction project plan which consists of one or many
construction planning activities or tasks. An activity can be assigned to one or many resources.
A resource can be a plant, material, labour, sub-contractor, or a resource group consisting of
more than one resources, as shown in Figure 3. The resource object model is used to develop a
generic object-oriented database of construction resources including labour, plant, materials,
sub-contractors, and resource group build-ups. The task class is sufficient for general planning
systems as is typical of current packaged project management software. However, for a
knowledge-based system the task class is too abstract. Thus, the task class is specialised into
more concrete classes. A task can be a

6

memb_id
description
depth
width
breadth
material_type
orientation
CSArea
volume

get_dimensions
set_material_type
get_location
get_reinforcement
calc_csarea
calc_volume
set_task

Structural
Member

Base

Footing

Pile_cap Column BeamGround_slab

Blinding

Slab

Wall

Sub_OR_Super
section
block
Floor
zone
position

Location

building_ID
description
height
num_storeys
storey_height
shape

Building

sub_struct_ID

Sub-
Structure

Sup_struct_ID
material_type
material_descrp
Comp_Config

Super-
Structure

located_at
reinf_density
rd_units
reinforcement

get_reinf_density
get_reinf_details

Structural
Member

Reinforcement
contains

Reinforcement

uses

Building
Structural

System

Task
Constructed_by

FIG. 1: The building structure object model

7

task_id
task_name
task_type
early_start_date
early_finish_date
late_start_date
late_finish_date
actual_start_date
actual_finish_date
target_start_date
target_finish_date
total_float
free_float
original_duration
remaining_duration

set_dates
calc_total_float
calc_free_float

Task

units_assigned

Assignment

company_title
plan_id
project_title
project_type
project_descrp
actual_start_date
late_start_date
actual_finish_date
late_finish_date
num_of_tasks
bugeted_cost
actual_cost

get_proj_details
calc_num_of_tasks
calc_actual_cost

Construction
Project Plan precceded_by

succeded_by

name
methodID
quantity
uq_units
labour_resgrp
plant_resgrp
labour_output
plant_output
op_units
estimated_duration
ed_units
labour_cost
lc_units
plant_cost
pc_units
material_cost
mc_units

get_quantity
select_method
sel_plant_resgrp
sel_labour_resgrp
retrieve_output
adjust_ouput
calc_durations
set_est_durations
calc_lab_cost
calc_plant_cost
calc_material_cost

Unit_of_Work

reinf_material

retrieve_output

Fix
Reinforcement

form_material

retrieve_output

Erect
Formwork

conc_material

retrieve_output

Place
Concrete

name
UoW_list

Work
Packet

Resource
assigned_to

Fix Bar
Reinforcement

Output

Fix Fabric
Reinforcement

Output

Erect
Formwork

Output

Place
Concrete

Output

uses uses uses uses

FIG. 2: Task system object model

8

“work packet” or a “unit of work” (UoW). The “unit_of_work” class acts as a base class to
more concrete units of work which may be “fix reinforcement”, “erect formwork”,
“place_concrete”, “strike_formwork”, etc. A work package consists of many units of work. The
unit of work is very significant for the purposes of knowledge representation and intelligent
decision support. Through its methods, several knowledge sources can be triggered to provide
information and advice on the selection of for example methods of concreting, the selection of
appropriate resources, and the retrieval and adjustment of output rates for task duration
estimation.

FIG. 3: The resource system object model

The risk management object model
The risk management object model in Figure 4 represents the information requirements for a
risk monitoring and control sub-system. The classes within this model a centred around the
risk class and reflect the processes involved in risk management. The risk catalogue class
represents all possible risks that may be encountered in any project. The action catalogue
class represents actions that can be taken in response to risks. The risk action catalogue class
is a link representing risks and their associated actions. These three classes are used to
maintain a generic database that can be utilised for individual projects. The risk class
represents risks identified for a particular project and it uses the risk catalogue class for
obtaining the details of risks. Risks may affect the whole project in which case they are
considered global risks or they may affect individual tasks in which case they are described as
local. The performance monitor class represents measured cost, schedule, quality, and safety
performance deviations for individual tasks. The risk analysis class allows inter-
dependencies between risks to be represented, qualitative assessments of risks likelihood and
impact to be made, fuzzy computations of risk magnitude and prioritisation, and the selection
of appropriate risk actions from the risk action catalogue. The risk handling class allows a
project manager to use the results of the risk analysis to recommend appropriate response
strategies to be implemented.

9

risk_ID
brief_description
full_description
project_member_ID
date_raised
status

Risk

Construction
Project Plan

Task

task_ID
schedule_dev
cost_dev
quality_dev
safety_dev
cost_CPI
schedule_SPI
quality_QPI
safety_ZPI
threshold_CPI
threshold_SPI
threshold_QPI
threshold_ZPI
interval
state

Performance
Monitor

risk_ID
brief_description
full_description
risk_centre_id

Risk Catalogue

risk_ID
action_ID
comments

Risk
Action

Catalogue

action_ID
brief_description
full_description

Action
Catalogue

risk_ID
manage_date
manage_time
strategy_ID
strategy_cost
project_member_ID
comments

Risk Handling

risk_ID
dependants
dependence_levels
assess_date
assess_time
qualitative_likelihood
qualitative_impact
magnitude
characteristic
timing
priority
comments
project_member_ID

Risk Analysis

strategy_ID
brief_description
full_description

Strategy

risk_ID
action_date
action_time
action_ID
completed_date

Risk Action

use

affect (local)

has

recommend

recommend

use

affect (global)

use

Figure 4. The risk management object model

10

INTELLIGENT DECISION SUPPORT

We are currently using the object models presented above as the basis for developing new
approaches to address the application of KBS techniques within large integrated intelligent
software environments for the construction industry. We are currently investigating the use of
object-oriented knowledge representation and reasoning techniques together with the use of
multi-agent and blackboard architectures to handle the disparate nature of construction
disciplines and problems. The object modelling approach has facilitated the development of an
ontology of terms for describing project knowledge. The ObjectStore (1994) C++ based object-
oriented database development tool has been extended to support C++ -based knowledge-based
systems reasoning mechanisms. ObjectStore has been extended to incorporate an object-
oriented knowledge-base repository, backtracking and forward chaining inferencing
mechanisms. We are using server-enabled active Object-Oriented Databases as the blackboard
(or the repository) on which all generic data resides in the form of intelligent object classes
which expose their functionality to the outside world. Multiple problem solving agents
representing knowledge sources can, therefore, access information, solve problems co-
operatively, and contribute information to the blackboard. Agents are being developed for the
following problems: an agent for the semantic enhancement of design (CAD) data (Iosifidis et.
al. (1995), Tah et. al., 1995); an agent for the automatic generation of construction programme
work-breakdown structures; several agents for method and resource selection and activity
duration estimation for different classes of works; an agent for construction programme
formulation from historical data using case-based reasoning; and a risk management agent
utilising fuzzy logic for the quantitative assessment and analysis of risks using natural language
expressions.

Although, advances have been made in knowledge representation and problem solving
techniques, the problem of capturing and storing knowledge of experiences and decisions made
as a historical database for future use, remains to be addressed. In the area of project
management , the lack of a systematic approach to storing past construction plans and problems
that were encountered together with the solutions that were used to overcome these problems
means that plans have to be produced from scratch every time a new project is to be planned.
We are currently investigating the potential offered case-based reasoning (CBR) to address this
problem. Cased-based reasoning is a technique of solving new problems by adapting solutions
that were used to solve previous ones, via retrieval and modification.

The work involves determining how much of the information used in construction project
planning and control can be captured and stored away for future re-use. Construction
programmes for a large number of multi-storey concrete-framed buildings have been analysed
and some interesting patterns between structural components and tasks needed for their
construction have emerged. There appears to be a relationship between component types and
work packets which can be exploited for case-based reasoning purposes. The information
requirements for the CBR work necessitated the re-use of all the object models or system
components previously presented, which were initially designed for work involving KBS and
the integration of design and construction.

11

CONCLUSIONS

Rather than viewing the world in terms of one individual object acting on another in a neat
causal chain, we view the world in terms of decentralised interactions and feedback loops
amongst simple components. We are studying how complex behaviours can emerge from
interactions among simple components with local rules, and how complex patterns can
emerge from interactions among these components. Local rules, though simple, encode the
global essence through the inter-relationships amongst simple components. The object
classes presented here provide a powerful means for representing knowledge and providing
decision support in a large problem area. It has facilitated the use of a blackboard architectures
and multiple agents representing knowledge sources to handle the disparate nature of
construction disciplines and problems. The object modelling approach has facilitated the
development of an ontology of terms for describing project knowledge. Our experience of
object-oriented analysis and design is that it is difficult if not impossible to get it right the first
time. Continual re-use results in several modifications each time. The classes presented in
this paper have evolved through several projects and continue to be enhanced.

However, the adoption of an industry standard methodology has enabled us not to solve every
problem from first principles. Rather, we have been able to reuse solutions that have worked
in previous projects. This has been due to the recurring nature of patterns of classes and
communicating objects in the systems within our problem domains. These patterns address
specific design problems and make object-oriented analysis and designs more flexible,
elegant, and ultimately re-usable. They help us to re-use successful designs by basing new
designs on prior experience and allow the sharing of software components between projects.
We believe that the continual re-use and development of such components will evolve
standard application information requirements that can contribute towards ISO-STEPs and
the Industry Alliance for Interoperability (IAI) efforts in developing application protocols and
standards for data exchange and interoperability.

The object-oriented programming techniques of interface-based access to encapsulated data
and methods are currently being exploited in components software technology to develop
independent software modules that can interoperate and be replaced by modules with the
same behaviour. By developing the interface of a component module based on a standard
protocol, then the module can interoperate within any system that complies with the standard.
Several standards for component software standards are emerging. The most notable are the
Common Object Request Broker Architecture (CORBA) from the Object Management Group
(1992) and the Component Object Model (COM) developed by Digital Equipment and
Microsoft and forms the basis of Microsoft’s Object Linking and Embedding (OLE). A
detailed overview of these standards can be found in Orfali and Harkey (1995). It is
sufficient here to say that these interfaces provide three basic services: unique identification
of a running software component, a consistent way for components to present their interfaces
or capabilities, and facilities for components to exchange information with one another. The
future will be dominated by distributed computing standards such as CORBA and OLE which
will allow the deployment of intelligent agents on enterprise networks for the co-operative
solving of problems and decision support.

12

Acknowledgements

The support of the EPSRC in providing funding for this work under grant refs: GR/J42175
and GR/K26516 is gratefully acknowledged.

References

Iosifidis, P., Tah, J.H.M., and Howes, R. “An advanced object-oriented architecture for
information exchange through shared objects”. Modeling of Buildings Through Their Life-
Cycle, CIB Proceedings, Publication 180, August 1995, pp102-110.

Object Design, Inc. “User Guide - Objectstore Release 3.0 for Windows NT and Win 32s”.
25 Burlington Mall Road, Burlington, MA 01803, May 1994.

Object Management Group. “Common Object Request Broker Architecture and Specification”.
John Wiley, New York, 1992.

Orfali, R. and Harkey, D. “Client/Server with Distributed Objects”. Byte, April 1995, pp151-
162.

Rumbaugh, J., Blaha, M., Premalani, W., Eddy, F., and Lorensen, W. "Object oriented
modelling and design". Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1991 .

Tah, J. H. M., Howes, R., and Iosifidis P. “Capturing Semantic Data in CAD for
Construction Project Planning”. Product and Process Modelling in the Building Industry,
Scherer (ed.), Balkema, Rotterdam, 1995, pp287-293.

