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ABSTRACT: This paper discusses how a system developed for spatial composition using cases is able
to improve design integration and communication. Layouts are built interactively by users rather than
automatically generated as has been proposed by others. The design is incrementally parameterized as
cases are added and therefore, case adaptation, user interpretation and model activation can occur at
any stage. IDIOM supports designers through reducing constraint complexity and through managing
design preferences, thereby restraining proposed solutions and further adaptation during subsequent
project stages within globally feasible design spaces. Since this system finds global solutions for
constraints in an incremental manner, it is well suited for collaborative design and for increasing the
integration of spatial design with other activities. Practical applications, currently under way, are
demonstrating the advantages of IDIOM for communication and integration in construction.

KEYWORDS: integration, design, spatial configuration, case-based reasoning, constraint satisfaction,
model-based reasoning, preferences

1 INTRODUCTION

All complex engineering design tasks are carried out through cooperation between many partners.
Better communication and integration in construction show much potential for reducing product costs,
avoiding project delays and increasing product quality. Research related to improving communication
and integration in construction has largely concentrated on data representation and communication
only, leaving conflict management and consistency maintenance up to the users of the system. Dete-
ction and maintenance of globally consistent design solutions are often not addressed directly. When
these issues are discussed, inadequate measures are proposed to provide support.

Unfortunately, recent practical experience with collaborative engineering has not been encouraging.
Application of experimental communication networks to full-size tasks have resulted in lower quality
of projects, increased project costs and longer project durations. It seems that since project partners
can communicate information to every other partner at any time, they are less willing to follow tradi-
tional design flows and hierarchies and they are more likely to make important changes at late stages.
Once they have communicated their design information, it becomes the responsibility of the other
partners to ensure that their (the other partners’) aspects of the project are consistent with the new
project information. Partners become so overloaded with the quantity of design information that they
can no longer ensure such consistency. Moreover, when parameters that are interconnected amongst
requirements of several partners are involved, circular dependencies are created and this can lead to
divergent modifications as well as cycling - even when globally compatible solutions exist.

Computer support for layout configuration has been studied for more than twenty years. Studies include
techniques such as mathematical programming (Mitchell et al, 1976), optimization (Mitchell et al,
1976), space discretizations (Voss, 1994), genetic evolution (Gero and Schnier, 1995), graphs (ChoiC
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and Flemming, 1995; Coulon, 1995), hierarchical generate and test (Flemming, 1988) natural lan-
guage declarations (Fujii, 1995) and constraint satisfaction (Baykan and Fox, 1992; Medjdoub and
Yannou, 1996; Tommelein, 1989). Rather than automate the configuration task, we have developed a
system which supports designers as they compose designs themselves from parts of previous designs.
Practising designers who collaborated within the scope of this study emphatically did not wish to have
computer systems perform automatic layout generation.

This paper gives an evaluation of a system called IDIOM, which was recently developed for spa-
tial composition tasks, for use in a collaborative engineering environment. Algorithms, which solve
constraints rather than propagate parameter values, are described. Also, it is shown how models, pre-
ferences and constraint posting can be used to explore globally feasible solutions interactively. The
goal of this paper is not to provide all details of IDIOM. A more complete presentation of IDIOM is
given elsewhere, see Smith et al (1996).

2 IDIOM AND CASE-BASED DESIGN

Development goals for IDIOM did not specifically include improvement of design integration. We ini-
tially developed a system called Interactive Design using Intelligent Objects and Models (IDIOM) in
order to study design interactivity, the use of preferences, and explicit domain modelling for case ada-
ptation. Model-based adaptation was first proposed by Goel and Chandrasekaran (1989) for discrete
variables. The term, IDIOM, was chosen because its meaning reflects an aim of this research. A
dictionary definition (from Longman) for the word “Idiom” is

A phrase which means something different from the meaning of the separate words

This definition provides a useful analogy. We aim to support incremental composition of design ca-
ses while employing user interaction and domain models to include holistic considerations of groups
of objects. Models are applied to designs several ways. They are activated when certain groups of
objects are present in the design, they are used to interpret designs in certain contexts and they are
incrementally introduced by the designer as the design is composed.

Our current research into case-based building design is motivated by two factors. The first factor is
the observation that although building designers frequently reuse designs, they rarely wish to adapt
whole building cases. Often, the cases which are most useful are spaces and collections of spaces
(Schmitt, 1993). The second factor is that most design domains cannot be modelled completely due to
a complex consideration of social, political and economic factors. As a result, it can be frustrating to
designers when a system performs automatic design and proposes just one solution. A much better role
for computer systems is to provide support for defining allowable spaces of acceptable designs. When
exploring these spaces, designers are able to introduce their interpretation of what is not modelled
through user interaction.

These two factors lead to the definition of an intelligent object that is used in this paper: an intelligent
object is a part of a successful design which has been enriched by designers for each new design task
through constraint posting, declaration of neighbourhood relationships, adaptation and model activa-
tion. Therefore, an object becomes intelligent at run-time. Such enrichment is used to accommodate
additional objects during subsequent design stages. The notion of an intelligent object is not new, for
example see Rigopoulos and Oppenheim (1992). An example of an intelligent object is a living room



            

Figure 1: An example of a case in IDIOM.

taken from a design of a previously built apartment building. This living room becomes an intelligent
object when i) the user interprets its new context by imposing conditions such as neighbourhood rela-
tionships and ii) when the user activates domain models to add additional constraints, such as the size
of the living room needed for the number of inhabitants in the apartment. More detail of the models
employed is provided in Section 2.2.

2.1 Cases in IDIOM

As mentioned earlier, IDIOM uses cases to build intelligent objects. Cases in IDIOM are parts of
designs of constructed apartment buildings. Cases have been carefully selected by an architect for
flexibility, compatibility and success as designs of parts of existing buildings. They are grouped into
types such as living rooms, kitchens, bathrooms and bedrooms. They contain windows, furniture and
doors. An example of a case is shown in Figure 1.

Grey rectangles within spaces represent furniture elements. The size of these rectangles include the
size of the element plus additional space necessary for adequate use. For example, the size of a re-
ctangle representing a dining room table includes an allowance for chairs as well as adequate room
for sitting in them. Other elements shown in Figure 1 are the window in the right wall and the door on
the left wall. The outer dimensions of the case as well as the positions of elements such as windows,
doors and furniture are treated as variables. Sizes of elements within cases are fixed. All variables
start with default values that correspond to their values in the original design. The origins of the case
are described by the location of the building and the name of the architect.

2.2 Models in IDIOM

Models in IDIOM are causal mappings from structural parameters to behaviour related to individual
objects (interpreted cases) and object groups. Behaviour is interpreted for a given context to cor-
respond to a desired function. Therefore, model formulation follows the no function-in-structure prin-
ciple (DeKleer and Brown, 1984; Gero, 1990). The definition of function, behaviour and structure
follows Gero (1990).



We employ models to provide domain knowledge as configurations are composed. Models are abducti-
vely implemented through causal inversion (desired behavior to required structure). Since abduction is
unreliable when a closed-world assumption is inaccurate, models in IDIOM are interactively activated,
thereby providing one of several ways for the designer to introduce a problem-specific interpretation
of the context.

3 INTEGRATION THROUGH CONSTRAINT SOLVING

Spatial composition of intelligent objects requires consideration of many interacting relationships between
variables. Integration of several viewpoints is supported through incrementally solving relevant constra-
ints, thus taking advantage of inter-relationships to reduce complexity.

Arrangements of intelligent objects and their elements such as doors, windows and pieces of furniture
are defined by sets of constraints. Constraint sets have to be solved rapidly in order to allow interactive
use, therefore we restrict these to linear and simple non-linear relationships. Relationships can be
equalities or inequalities.

One of the most important aspects of the solver in IDIOM is its compatibility with interactive adapta-
tion. When additional constraints are added, IDIOM finds a solution whilst maintaining positions and
sizes in the current design wherever possible. Many algorithms in linear programming cannot do this.
For example, those which employ pre-defined objective functions cannot dynamically add parametric
values to the optimization criteria.

3.1 Sources of Constraints

There are three sources of constraints: the library of cases, the interpretation of the design by users and
domain models. When a case is introduced into a design, all its associated constraints are added to the
current set of constraints. Designers and other actors then add further constraints in order to interpret
the case in its new environment. The most important constraint is the specification of the topology
of the design, done by defining neighbourhood relations between objects. In addition, the user can
specify constraints on the sizes, distances and alignments between objects and their elements. Before
a new solution is calculated for the layout, constraints from active domain models are added to the
current set of constraints. All constraints restrict values of continuous variables.

Equalities in the constraint set reduce the degrees of freedom of design spaces. This approach has been
used in statistics (Krishnaiah and Kanal, 1982) and image recognition (Saund, 1989) and was proposed
for case-based design by Faltings (1991). Subsequent development established that equalities can be
used to reduce the number of variables occuring in inequalities (Hua, 1994). IDIOM thus uses Gauss-
Jordan elimination to perform dimensionality reduction and to identify dependent and independent
variables. In the inequalities, dependent variables are substituted by independent ones, thereby finding
the matrix of coefficients of the equalities and inequalities.

For inequalities, IDIOM employs the Fourier-Motzkin elimination method. The procedure involves
eliminating all variables one by one until a simple inequality-system with only one variable is found
(Schrijver, 1986). Using intervals of possible values, it is easy to find a solution which is as near to
the current solution as possible. The solver chooses a value for a variable by checking its interval of



possible values. If the current value of the variable is within the interval the solver will use this value.
If the value is outside it will be set to the nearest interval boundary.

3.2 Preference Activation

Constraints in IDIOM may be fixed or preferred, hereafter referred to respectively as fixed constraints
and preferences. Fixed constraints must be fulfilled while preferences may be deactivated if they are
in conflict with other preferences or fixed constraints. Preferences are reactivated when possible. The
priority of a preference can be defined and preferences may have equal priority. IDIOM fulfils all fixed
constraints and as many preferences as possible using the following heuristics :

� A preference that conflicts with fixed constraints is deactivated

� If two preferences with different priorities conflict, the higher priority preference is activated

� If two preferences with the same priority conflict, IDIOM activates the preference which confli-
cts with fewer lower priority preferences

� IDIOM re-activates preferences whenever possible

Preferences are divided into groups of equal priority and activated in order of importance. For example,
six preferences are divided into three groups according to priority. The most important group g� con-
tains p�, p� and p�, the second group g� contains p� and p� and the least important group g� contains
p�.

The activation of preferences starts with none activated; as many preferences as possible are activa-
ted in the first group through checking feasibility with all fixed constraints. This is performed incre-
mentally for each preference. Several feasible combinations of preferences may have the maximum
number of preferences activated and therefore these are stored into a list of solutions. In this example,
two preferences out of g� can be activated and the following combinations are possible: fp�� p�g and
fp�� p�g. Then L, the list of solutions after treatment of g�, is :

L � �fp�� p�g� fp�� p�g�

The activation of preferences then sequentially considers all entries in the list with additions from
g�, and stores all combinations which have the maximum number of preferences activated. Thus the
combination fp�� p�g is considered first and IDIOM finds that only p� can be added. Then preference
activation treats the combination fp�� p�g and finds for instance, that only p� can be activated together
with this second combination. Thus two solutions are found and a new list is created :

L � �fp�� p�� p�g� fp�� p�� p�g�

After treating all preference-groups in this manner, preference activation terminates with a list of fe-
asible combinations which contain as many important preferences as possible. One of these is then
used to recalculate the new values of the design’s parameters and for subsequent adaptation. For example
the preference in g� can be added with the second combination in L, but not with the first combination.
The final list contains one combination of feasible preferences which is used in further calculations.

L � �fp�� p�� p�� p�g�



4 IMPLEMENTATION AND SCENARIO OF USE

IDIOM is implemented in C and C�� with OpenGL and Motif as the user interface platform. The
following is an example of a possible design scenario using the system (each step performed by the
user):

1. Define the dimensions of the site where the layout must be placed

2. Choose a case from the case browser and place it into the site. At this point, constraints contained
in the case and those activated by models are added to the constraint set

3. Define neighbourhood relationships with adjacent objects. This action automatically adds more
constraints to the constraint set

4. Where needed, post additional constraints

5. Request solution. Here the system calculates the feasible solution space through conflict resolu-
tion with preferences and dimensionality reduction and selects a solution that involves minimal
changes to the case and to the current design

6. Interactively adapt positions of walls, furniture, windows and doors to obtain configuration re-
quired

7. If design is incomplete, return to step two

8. As design evolves through detailing and construction, update decisions in order to ensure that
new requirements do not conflict with constraints posted during initial layout composition.

The last step is the most important for communication and integration. It is not suprising therefore, that
this aspect has created so much interest amongst designers who have agreed to contribute to further de-
velopment of IDIOM. IDIOM provides an opportunity to create a link between constraints considered
in the design office and inevitable downstream changes.

The screens shown in Figure 2 refer to step 2 on the left and step 5 on the right. On the left, a do-
uble bedroom is being added to the design. After user interpretation, in this case specifying that the
hall should share the length of the right wall through declaration of a neighbourhood relationship, the
solution proposed is shown on the right. Note that the vertical dimensions of both the hall and the
bedroom have changed.

Once a layout has been composed, user may change positions of walls and elements within objects
while maintaining integrity with respect to design requirements. This is carried out through clicking
on a wall or element. The results of the dimensionality reduction are used to calculate the range of
adaptation possible. Arrows show the range of globally consistent solutions. The screens in Figure 3
show that moving a wall may change other dimensions that are linked in the parameterization. Here,
the living room has been constrained to have the same length to width ratio, the bathroom dimensions
have been fixed and the kitchen wall is required to share the whole right wall of the living room.
Therefore, moving the living room wall results in a reduction in size of the single room at the top.



                        

Figure 2: Adding a case to a design (left) and solution proposed after user interpretation and resolution
with relevant constraints (right).

                        

Figure 3: The figure illustrates Step 6, interactive adaptation. The user clicks on the right wall of the
living/dining room (left) and drags it to the desired position (right). Note the changes to dimensions
of the single room at the top.



5 APPLICATION EXPERIENCES

Designers in industry have been very fast to recognize IDIOM’s potential for improving design com-
munication and integration. Several people can contribute to IDIOM’s constraint set without loss of
functionality. More importantly, IDIOM gives them the possibility to attach consistent design requ-
irements to designs in way that they are able to stay with the design up to and including construction
stages. Current design applications under study are residential building design and exhibition floor
layout. IDIOM is also under study for an application in construction site layout. Again, the general
contractor who is responsible for site layout is interested in IDIOM mostly because the system is ca-
pable of maintaining globally consistent solutions throughout the duration of construction. Support
initial configuration task (the original goal of IDIOM) is seen almost as a nice extra.

6 RELATED WORK

6.1 Design Integration and Communication

Earlier work includes IBDE (Fenves et al, 1988) and DICE (Sriram et al, 1990). This work concentra-
ted on acheiving local consistency through creation of blackboard architectures. More recent work
has focused on communication systems where designers perform most of the negotiation and conflict
management required to complete globally consistent designs. Work at Boeing (Klein, 1995) proposed
rules for achieving global consistency. Other work includes Oh and Sharpe (1995), Saad and Maher
(1995), Fructer (1996), Petrie (1995), Pena-Mora et al (1995), the SHADE system at Lockeed (McGu-
ire et al, 1993), SHARE (Toye et al, 1995) as well as European projects such as COMBINE, ATLAS,
CIM-Steel and COMBI (Scherer, 1995). Most of this work concentrates on improving the communi-
cation of design information only, leaving conflict management and consistency maintenance up to the
users of the system. When support for conflict management is provided (Klien, 1995; Oh and Sharpe,
1995) global consistency between all design viewpoints is not maintained explicitly. IDIOM offers
a direct and reliable method for calculating feasible solution spaces through solving all relationships
together. IDIOM is limited however to equalities and inequalities between continuous variables that
are linear or can be approximated by sets of linear relationships (Smith et al, 1996).

6.2 Spatial Configuration and Case-Based Design

The system most closely related to IDIOM is CADRE (Dave et al, 1994; Hua, 1994; Hua et al, 1992).
Similarities include i) the use of dimensionality reduction and run-time parameterization to simplify
adaptation and ii) certain aspects of user interaction, such as the use of arrows for defining feasible
modifications. IDIOM differs from CADRE in the following ways: i) IDIOM employs intelligent obj-
ects to compose topological configurations where the CADRE implementation combines predefined
configurations, ii) IDIOM accommodates preference constraints whereas in CADRE, all constraints
are fixed, iii) in IDIOM, elements within spaces, such as furniture, doors and windows are included in
the parameterization whereas in CADRE, only spaces and structural elements are included, iv) IDIOM
employs a more reliable algorithm for accommodation of inequalities during case combination (Smith
et al, 1996), v) IDIOM employs explicitly defined domain models that are activated by the user whe-
reas in CADRE domain knowledge was loaded into the system at the beginning and finally, vi) the



opportunities for interactivity in IDIOM correspond more closely to the needs of building designers
who were interviewed than in CADRE. Perhaps the most important difference between IDIOM and
CADRE is that in IDIOM, the topology is determined interactively by the user, thereby avoiding dif-
ficulties of complexity experienced with CADRE when generating topologies.

The FABEL project, coordinated by GMD, St. Augustin (Baktari et al, 1993) focuses upon the appli-
cation of case based design to heating and ventilating configuration of buildings. Although most of
the effort in this project has been concerned with case indexing, recent work includes a study of three
adaptation methods (Boerner, 1995). FABEL uses fixed grids to model spatial information and does
not perform case-combination. Other work includes the SEED project (Flemming, 1994) where large
numbers of cases are stored and indexed for retrieval using functional units. Although a case editor is a
available for adaptation, no other computational support is reported. Our approach is different to these
two systems due to our capabilities to combine complex objects through run-time parameterizations
that include design preferences, constraints from user-activated models and other opportunities for user
interpretation.

An extension to CADSYN (Zhang and Maher, 1993) employs constraint satisfaction techniques for
verification and repair of adapted designs. CADSYN ensures local consistency between constraints,
thereby limiting its effectiveness to constraint networks where risks of divergence, looping and empty
solution spaces are low. Our experience with geometric design has revealed that relevant constraint
networks are highly interdependent and therefore, local consistency approaches are unreliable.

WRIGHT is another constraint based system created for layout synthesis (Baykan and Fox, 1992). La-
youts are automatically generated and local consistency is achieved through use of the Waltz algorithm,
thus risking cycles and divergence. In a comparison with methods based on hierarchical generate
and test (Flemming et al, 1992), it was concluded that constraint propagation techniques are more
efficient under certain circumstances. Since WRIGHT performs monotonic search, soft constraints
are never reactivated if weakened. IDIOM differs from WRIGHT in the following ways : i) layouts
are not generated in IDIOM – the user defines topology incrementally, ii) IDIOM does not propagate
constraints but solves them, and together with the Fourier-Motzkin algorithm, identifies globally fe-
asible solutions without running the risk of propagation cycles and iii) IDIOM may demonstrate non-
monotonic behaviour as cases are added since preferences may be reactivated.

Work on layouts is being performed by Giretti et al (1994). They report on a CBD system for archite-
cture that supports graphical interaction. Their “theories” are similar to the models in IDIOM and “sce-
nes” are analogous to groups of intelligent objects. However, run-time parameterization and subsequ-
ent dimensionality reduction is not performed. Therefore, performance problems would be expected
for designs of realistic size. In addition, it is not clear whether local or global consistency is achieved
during constraint solving. Finally, grids are used to adapt previous designs and topological adapta-
tion is performed automatically. These functionalities were avoided during development of IDIOM
because designers who were interviewed thought they would hinder rather than help layout design.

7 CONCLUSIONS

IDIOM provides a useful framework for integrating activities related to spatial composition. Through
solving constraints contained in cases, those generated during user interaction and those obtained from
model activation, users are able to explore a range of design solutions within globally consistent design
spaces. This exploration is further enhanced by the accommodation of preferences in constraint sets



and the opportunity to alter preference priorities interactively. Algorithms are sufficiently fast and
reliable to support exploration in an interactive manner. Reactions from designers indicate that IDIOM
provides a good mix of computation and user support for spatial configuration. Since constraints are
solved rather than subjected to value propagation, constraint circularity does not restrict maintenance
of globally consistent solutions in the system. This facility shows much potential for the AEC industry.
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