
An Information Model for the Preliminary Design of Buildings 1

AN INFORMATION MODEL FOR THE PRELIMINARY
DESIGN OF BUILDINGS

Rivard H., Gomez N. and Fenves S. J.

ABSTRACT: This paper presents the current status of the information model of SEED-Config,
one of the modules of the SEED (Software Environment to support the Early phases in build-
ing Design) prototype being developed at Carnegie Mellon University and the University of
Adelaide. The goal of this information model is twofold: to store the design data as it is gen-
erated during the conceptual design and to support case-based reasoning. The main con-
structs of this information model are building entities, containment and domain specific
relationships, technologies, components, groups, and classifiers. Design knowledge is repre-
sented through technology hierarchies. This information model is being implemented in
SPROUT, an information language. The paper concludes with a discussion on the use of this
information model in support of case-based reasoning.

KEYWORDS: Product modeling, Conceptual Design, Structural Design, Case-Based Rea-
soning

1. INTRODUCTION

SEED (Software Environment to support the Early phases in building Design) is a multidisci-
plinary project that involves the Engineering Design Research Center, the Department of
Architecture, and the Department of Civil and Environmental Engineering at Carnegie Mellon
University and the Department of Architecture at the University of Adelaide. SEED consists
of three main modules: SEED-Pro, which supports the generation of architectural programs;
SEED-Layout, which supports the generation of schematic layouts; and SEED-Config, which
supports the generation of 3-dimensional configurations of spatial and physical building com-
ponents (Flemming and Woodbury, 1995). This paper presents the current status of the infor-
mation model for the SEED-Config module, updating the previous presentation in (Rivard et
al., 1995).

The information model presented here addresses the early design stages and supports design
evolution and the rapid generation and evaluation of alternative solutions to a design problem.
This contrast with current efforts for developing Standard for the Exchange of Product Model
Data (STEP) product models, which typically address later stages of design and do not explic-
itly support design evolution (Wix and Bloomfield, 1995).

2. THE INFORMATION MODEL

This section describes the main concepts of the information model of SEED-Config. First, the
building entities and their categories of information are described. The second sub-section
provides a description of the two types of relationships supported in the model. This is fol-
lowed by a description of how building entity attributes are aggregated into components.
Then, the technology hierarchy, which represents design knowledge in SEED-Config, is
briefly described. The mechanism for grouping entities is discussed next. Finally, the classifi-
cation of building entities through the use of classifiers is described.

C
on

st
ru

ct
io

n
In

fo
rm

at
ic

s
D

ig
ita

l L
ib

ra
ry

 h
ttp

://
itc

.s
ci

x.
ne

t/
pa

pe
r

w
78

-1
99

6-
43

5.
co

nt
en

t

An Information Model for the Preliminary Design of Buildings 2

The goal of this information model is twofold: to store the design data as it is generated during
conceptual design and to support case-based reasoning. Since the representation is identical
for the two, no translation is required to store the design data into a case. This simplifies the
implementation of the premise stated in (Flemming, 1994) that cases should be accumulated
as a side-effect of generative design activities.

2.1 Building Entities

The building is represented as an assembly of entities with relationships among them. Each
entity represents a concept meaningful to design participants such as a beam, a room or a
structural frame. An entity can be a system, a sub-system, a component, a part, a feature of a
part, a space or a joint (Gielingh, 1988). An entity includes the following categories of infor-
mation: functional unit components; design unit components; evaluation unit components;
spatial representations; relationships; technologies; and classifiers. Figure 1 shows, using the
OMT notation (Rumbaugh et al., 1991), the relationships between the building entity and the
other constructs to be discussed in the information model.

Design requirements, design descriptions, and behavior evaluations of an entity can be repre-
sented as attribute-value pairs where values may be an atomic type, a matrix, a derived value
(which may depend on other attribute-value pairs), a diagram, and so on. In this model, a
value cannot be a geometrical description, a relationship with another entity nor a reference to
a technology. The attribute-value pairs characterizing an entity are organized at two hierarchi-
cal levels: the unit level and the component level (described in sub-section 2.3). At the top
level, data are grouped into three subsets: the functional aspect, the design aspect and the
behavior aspect. The functional aspect includes the intended purposes, requirements and con-
straints on the entity; this aspect is called the functional unit (FU). These requirements have to
be satisfied in order to realize the intended purpose. The functional unit can be seen as a
design-problem statement (Gielingh, 1988). The design aspect includes all the physical and
spatial characteristics that define the actual design of the entity; this is called the design unit
(DU). The design unit can be seen as a solution alternative to the design-problem. The behav-
ior aspect includes the response to stimulations associated with different design conditions,
and is called the evaluation unit (EU). The evaluation unit gives access to the behavior com-
puted by external applications without the re-computation cost every time this information is

FU Component

Primary Spatial Rep.

Technology

Classifier

Building Entity

Containment
Relationship

Attribute-Value Pairs

DU Component
Attribute-Value Pairs

EU Component
Attribute-Value Pairs

Group Relationships

FIG. 1: A building entity using OMT notation.

Domain
Specific
Relationship

2

Secondary
Geometrical Rep.

An Information Model for the Preliminary Design of Buildings 3

accessed. It can also be used to record the designer’s comments after implementation. Exam-
ples of data recorded in the evaluation unit are costs, stresses, heat flow, condensation rate,
and in-service performance.

The geometrical description of an entity is classified in two categories. The primary spatial
representation is its high-level geometric description which is used primarily for reasoning
about its topological relationships with other entities, while secondary representations of an
entity are its domain-specific geometric representations. Each entity has only one primary
spatial representation, but it may have several secondary representations which are part of the
design unit. This representation scheme relies on the premise that topological relationships of
physical entities are invariant with respect to their domain-specific secondary representations
(Zamanian, 1992). A non-manifold boundary representation scheme is used, since topological
relationships can be represented without being affected by the various dimensionalities used in
representing the geometric entities.

2.2 Relationships

Relationships among entities are classified into two categories: containment relationships
(also known as aggregation relationships) which capture the link between an entity and its
parts, and domain-specific relationships which contain other relationships of interest. The
containment relationship supports the hierarchical decomposition of the design problem.
Complex artifacts with their parts can be modeled as entities linked by containment relation-
ships. The result of the hierarchical decomposition is a tree of entities. The designer can look
at the design at any level of abstraction simply by going to the corresponding depth in the tree.
The complex object is treated as a unit in many operations, although physically it is made of
several parts. Other essential relationships are stored in the second category of relationships,
called domain-specific, and are further described below. Spatial relationships, such as next to,
above, spatially contained in, and adjacent are not stored explicitly in this information model
since they can be obtained directly from the geometric modeler.

A building entity may have several distinct domain-specific relationships (DSR) with other
entities. Examples are gravity-supports, lateral-supports, controls, and so on. Even though
a DSR refines the design of a building entity, like a DU component, it is stored at the building
entity level for ease of access. Each DSR is implemented as an object which specifies the
roles of the two building entities that it relates. DSR’s are created and assigned to the two
related entities by the technology that identified the relationship. For instance, a gravity-sup-
ports DSR, which is used to define a load path among two structural entities, would have sup-
ports and supported-by as the roles fulfilled by the two related entities. Figure 2 shows how
two building entities are related through a DSR. The different types of DSR are implemented
as different specializations of the generic DSR class.

Building
Entity

Domain
Specific
Relationship

role1
role2

Building
Entity

FIG. 2. Representation of a domain-specific relationship.

An Information Model for the Preliminary Design of Buildings 4

2.3 Components

At the second level of data aggregation, the attribute-value pairs of an entity are combined into
small cohesive subsets, each of which is called a component. Component is preferred to the
term “primitive” which was introduced in (Rivard et al., 1995) based on (Howard et al., 1992).
This approach supports multiple discipline-related views, schema evolution and data integra-
tion. Another advantage of encapsulating data within component objects is that the data
stored can be of multimedia type, since the component has the appropriate methods to display,
edit and input its data. Thus, a component could contain images, sounds, texts and even video.

The definitions of the FU, DU, and EU components are inherited from a common superclass
called Component. These generic classes are shown in Figure 3. Every component stores the
name of the designer who is responsible for its creation, refers to the building entity to which
it belongs, and has a built-in help mechanism that provides a description of the data stored in
it. A component can have both attributes and methods (or procedures). These component
methods are used to compute values based on other attributes or components and provide sup-
port for dependencies among data (e.g., the area of a rectangle can be obtained by multiplying
its length and width). The specialized DU component class stores, in addition, a reference to
the technology node that was used to instantiate it, a status which could take one of three val-
ues: candidate (alternative is not explored yet); explored (alternative has been explored but not
selected); and committed (alternative represents the current design), and references to the
group the DU component is a member of and to the building entities that own the DU compo-
nent (see sub-section 2.5). The actual components stored in a building entity are instances of
classes that specialize the FU, DU, or EU generic component classes.

The information representing a building entity, encapsulated within components, is accessed
through a search mechanism. First, the requester (which may be a user or a computer applica-
tion) must specify one of the categories where the search is to be made: functional unit, design
unit or evaluation unit. Second, the requester must provide the name of the component class
that is of interest. There can be only one instance of a component class stored in a building
entity. Hence, the name of the component class uniquely identifies one subset of attributes.
For example, a requester interested in checking the concrete characteristics of a structural ele-
ment needs to provide the following request to the building entity: design unit (concrete char-
acteristics). The system then looks among the components stored in the design unit and
returns the one with the matching name if it is found.

FIG. 3. The generic component classes.

Component
Author (string)
...
// Set of attributes
// Set of methods
..
Owner (B. Entity)
Help (text) FU_Component EU_Component DU_Component

Technology (Technology)
Status (du_status)
Group_membership (Group)
Owner (B.Entities)

An Information Model for the Preliminary Design of Buildings 5

2.4 Technologies

The set of technologies is SEED-Config’s encapsulation of design knowledge. The knowl-
edge required to implement a design utilizing a specific constructed system or component
(e.g., a rigid frame configuration or a reinforced concrete slab) is stored in a technology node.
Thus, the knowledge base is modularized into nodes which are then organized in a hierarchy
ranging from the most abstract concept (e.g., braced frame, rigid frame) to the most specific
(e.g., a reinforced concrete beam). A technology node also stores the range of applicability of
the constructed system. Technologies advance the design of a building entity by creating DU
components, classifiers, and relationships according to the domain knowledge, and appending
them to the building entity.

Since many design tasks require decomposition into subtasks for ease in problem conceptual-
ization and solution, technology nodes are employed to aid in decomposing more abstract
entities into more manageable and more specific entities (e.g., a frame may be decomposed
into beams, columns, and connections, or a steel deck-on-joists slab can be decomposed into
its joist and slab components). Technology nodes which perform this kind of elaboration cre-
ate new, less abstract building entities and link them to the original entity through the contain-
ment relationship. These elaboration technologies are rare in the hierarchy, as compared to
refinement technologies which perform the bulk of the design activities by expanding the
descriptions of the building entities.

Also, if the problem specifications change, technologies may be employed to modify an exist-
ing design by pointing out which previously used technology nodes, if any, are no longer
applicable and which alternate technology nodes may be utilized. Figure 4 presents an exam-
ple, illustrating design evolution, where the design context is changed and as a consequence,
previous choices become inapplicable. In the figure, solid nodes and dashed nodes represent

Two-Way-
Concrete

One-Way-
Concrete

Concrete-
Hollow-Core

Concrete-
Joist

Concrete-
Solid-Slab

Building Entity 1

Technology
DU Components

Concrete-Strength

Strength
Technology

Design-Span

design-span
Technology

Section-Prop

depth
width
mom-of-inertia
designation
Technology

Horizontal

Concrete-
Single-Tee

Concrete-
Double-Tee

Concrete-
Horizontal

Timber-
Horizontal

Steel-
Horizontal

FIG. 4. Dynamics of information model and its relationships to technology hierarchy.

An Information Model for the Preliminary Design of Buildings 6

technologies that were respectively applicable and inapplicable before the change, and shaded
nodes show the selected ones, resulting in the creation of the DU components shown on the
left. After the change, the subset of the technology hierarchy associated with the current
building entity is reassessed in the modified design context; the crossed-out nodes symbolize
previously applicable technologies that can no longer be used to solve the problem. The
designer only needs to re-select an alternative applicable technology node to complete the
design (e.g., Concrete-Solid-Slab). This method of redesign is specially useful in case adapta-
tion, an important part of the case-based reasoning capabilities of SEED-Config.

2.5 Grouping Entities

When several building elements possess some similarity, designers typically consider only the
most constraining one and apply that design to all of the elements. This is typical because it
facilitates the design, construction, and management of these entities. In SEED-Config, a set
of entities can be grouped together and designed simultaneously. Three different types of
groups have been identified: same means that all the entities are assigned the same design
components according to the most constraining entity of the group; similar means that all the
entities are designed with the same technology but may have design components with differ-
ent attribute values; and identical means that all the entities in the group have the same dimen-
sions and are subject to the same conditions and hence can be designed just by designing one
of the entities. As for same, the entities grouped by identical are assigned the same design
unit components. While the two groups same and similar are specified by the user, the group
identical is created by default by elaborating technologies.

The grouping is done at the level of DU components because one building entity can be in sev-
eral different groups based on different DU components. For instance, several slabs could be
grouped in such a way that they have different depths, the same material, and similar rein-
forcements. Each characteristic (i.e. depths, material and reinforcement) corresponds to dif-
ferent DU components.

The grouping concept is illustrated with an example of the use of same group. In this exam-
ple, a structural engineer decides to assign the same concrete characteristics to a group of enti-
ties. A number of entities are assembled in a same group, which is then passed as an argument
to the desired refining technology. Once the technology has verified its applicability with each
entity within the group it creates one DU component with the concrete specification and
assigns it to all the building entities of the group. Having only one DU component for a group
of entities ensures that any changes will be applied to all entities (i.e. there is no redundancy).
This example is illustrated in Figure 5 below. For a group of similar entities, the technology
would add a new DU component to each building entity.

Another example illustrates the use of identical grouping. When elaborating a structural slab
into intermediate or “filler” beams and slab segments, the technology creates a number of
beam-entities and deck-entities. All these entities are associated with the slab entity through
the containment relationship. Each distinct sub-entity is needed because each one has its own
distinct primary spatial representation. To simplify design, all the beam-entities are automati-
cally grouped into an identical group and thus consistency between the beams is ensured.
When a technology refines the beam-entities, it assigns the same DU components to all of the
entities in the group. The same process applies for the deck-entities. Figure 6 below illus-
trates the creation and design of the beam entities.

An Information Model for the Preliminary Design of Buildings 7

2.6 Classifiers

A classifier is a label assigned to a building entity. Classification is the process of systemati-
cally arranging entities into conceptual groups and is an important aspect of problem-solving
tasks. The classification process assigns to a particular entity the name of a class to which it
belongs. In design, the designer unconsciously assigns labels to the building entity description
being generated. This label assignment is a classification.

Classifiers are required to classify the generic building entities as they are being refined during
the design process. They categorize entities in domains and sub-domains. Classifiers are also
used as indexes for querying the database and for retrieving cases. They provide access to
building entities independently from the design sequence that generated them. A given build-
ing entity may have several classifiers assigned to it, each of which offers a different access to

G
ro

up
 o

f
Sa

m
e

E
nt

iti
es

Entity
DU

DU Component

Name: Concrete Characteristics
f’c : 4000 psi
Water-cement ratio : 0.40
Air-content : 6%
Max. agg. size : 3/4”

Entity List

FIG. 5. Representation of a group of same entities.

Refining
Technology

Entity
DU

Entity
DU

Entity
DU

Name: Beam
Depth
Depth: 18”

DU Component

Slab Beams

FIG. 6. Representation of a group of identical entities.

Elaborating
Technology

Entity
DU

Entity
DU

Entity
DU

Entity
DU

Entity
DU

Group of
Identical
Entities

An Information Model for the Preliminary Design of Buildings 8

retrieve it. Hence, a search can be based on a unique classifier or on the conjunction of a set of
classifiers.

Classifiers are assigned automatically to the building entity by the technologies selected by the
designer. A classifier is used whenever the value of an attribute is a symbolic value selected
from a predefined set. An example of a predefined set of symbolic values is the type of struc-
tural material: steel, concrete, timber and so on.

The classifiers are arranged in a classification hierarchy. Classifiers are more specific as one
travels down and more general or abstract as one travels up the hierarchy. Classification hier-
archies are in fact semantic networks, which provide an efficient mechanism for supporting
reasoning about the generalization or specialization of concepts. This is essential for widen-
ing the space of applicable cases when a query results in a limited number of matches. Say,
for instance, that the retrieval of a structure to help design a swimming pool facility has been
unsuccessful because no similar cases exist in the case base. The query can be generalized,
through the semantic network depicted in Figure 7, to sport facilities or even to halls in order
to find, possibly, the structural design of an auditorium that could be used as a starting point.

The KL-ONE family of knowledge representation (Brachman and Schmolze, 1985) is very
efficient at representing and reasoning about classifications. We are planning to use one of
these systems, CLASSIC, to implement the case retrieval system and the database query facil-
ity of SEED-Config. CLASSIC will function as a knowledge server to build, manage, infer
about, and query the classification hierarchy.

CLASSIC is a frame-based knowledge representation system which differentiates between
terminological and assertional aspects of knowledge representation, and which focuses on the
key inferences of subsumption and classification (Brachman et al., 1991). The terminological
knowledge aspect describes classes of individuals through the use of concepts and their classi-
fications, while the assertion knowledge aspect records constraints or facts that apply to a par-
ticular domain (Mac Gregor, 1991). A subsumption inference is the process of recognizing a
concept to be part of a larger encompassing concept. CLASSIC supports complex information
retrieval, handles evolving schemas, manipulates partial knowledge or incrementally evolving
descriptions, automatically detects inconsistent knowledge (with a truth-maintenance facility),
and enforces constraints (implemented as “trigger”-like rules) on collections of facts through
strict inheritance.

3.0 KNOWLEDGE REPRESENTATION THROUGH TECHNOLOGIES

To be of greater benefit to the design process and to model design knowledge efficiently, tech-
nologies must do more than model specific real-world construction solutions. In order to
allow the design to proceed in meaningful steps, the technology nodes must be arranged so

Gymnasium Swimming Pool

Sport Facility

Hall

Entertainment

TheaterAuditorium

FIG. 7 A classification hierarchy.

An Information Model for the Preliminary Design of Buildings 9

that high-level decisions can be made without over-committing to a design methodology (e.g.,
a material such as reinforced concrete can be chosen without having to select a structural con-
figuration such as waffle slab). Technologies must be able to query information from the
design context represented by the collection of building entities (e.g., calculate loadings by
following load paths, getting topological information, etc.).

In addition, technologies must be able to perform in many design situations. They must be
usable in SEED-Config’s three generation modes: manual, in which the designer attempts to
apply a selected technology node; interactive, in which the system guides the designer by dis-
playing all applicable expansions at the next level from the current state; and automatic, in
which the system expands every possible alternative to a target level. In all three modes, the
designer must explicitly commit to one alternative. As described in section 2.5, groups of
building entities may be designed simultaneously and technologies must handle that contin-
gency as well.

A technology node maintains relationships only with other technology nodes, but it can inter-
act with other entities when the latter are sent as parameters or are created by the technology
node. Technologies can be used in the three generation modes, in simultaneous design, and in
redesign. Which behaviors a technology takes on depends solely on what accesses the tech-
nology (e.g., a group of building entities or a single building entity). In general, a technology
node is defined by three components: how it relates to other technology nodes, what con-
straints it must meet to be applicable, and what its output is. The first defines prerequisites,
the second defines applicability, and the last defines the design action. These make up the
interface of a technology node as used by the other entities in SEED-Config.

3.1 Prerequisites

How a technology node relates to other nodes describes where the node fits in the technology
hierarchy. Thus, the hierarchy is maintained by the inter-relationships of the nodes them-
selves, not by some higher construct. This follows naturally from object-oriented methodol-
ogy and makes the hierarchy more maintainable. When applied to a building entity, a
technology node must make sure that any prerequisite nodes have already been applied to that
entity. The prerequisites may be described in any boolean combination (e.g., a concrete solid
slab technology requires that the material technology and an “action” technology (one-way or
two-way) be previously selected). This prerequisite check may be easily performed by query-
ing the building entity’s DU components, which always maintain relationships to the technol-
ogy nodes.

The inverse relationship of “prerequisite” is “possible-successor”. These latter relationships,
which are automatically maintained by the implementation environment, SPROUT, are used
to guide the design after the current node is applied. The successor nodes can be used as the
next level of expansion to be explored. In automatic mode, all applicable immediate succes-
sors are generated and explored, whereas in interactive mode, all applicable successor nodes
are presented to the designer.

This approach to modeling the hierarchy offers many benefits over our previous strict tree rep-
resentation. The biggest advantage is that the user is no longer forced into making design
decisions in a rigid order. The hierarchy approach also increases modularity of the knowledge
representation. This will make it easier to create and append user-defined technologies or to

An Information Model for the Preliminary Design of Buildings 10

reorganize the hierarchy to better match certain project contexts. The arrangement of the hier-
archy is expected to mainly be a function of data modeling, but correlations to the domain
knowledge must be maintained.

3.2 Applicability

Once the prerequisites of a technology node are met, its applicability must then be tested. As
mentioned earlier, constructed systems generally have constraints on their applicability (e.g.,
a dome is applicable for large indoor spaces but not for single-family housing, whereas the
opposite can be said of a timber pitched roof). Constraints are associated with technology
nodes based both on feasibility (e.g., a timber beam cannot meet high fire-resistance require-
ments) and on economy of design (e.g., although a concrete solid slab can be made deep
enough to resist a load over a particularly large span, a concrete joist slab is more efficient).
Engineering expertise and heuristics (e.g., see (Schodek, 1980)) are used to determine appro-
priate constraints for the more abstract technologies. For more specific technology nodes,
constraints are obtained from product catalogs and/or design standards.

Constraints are established in different ways. They may take the form of geometric limitations
such as a suitable span range or a required aspect ratio. The technology must retrieve these
values from the primary spatial representation or from DU components linked to the current
building entity. Constraints may also take the form of usability requirements such as loadings,
minimum deflections, and voids required. The technology must obtain these values from
functional unit components associated with the current building entity. In addition, since
some technologies must be used in combination with other technologies (e.g., a pre-cast hori-
zontal system should not be supported by an unbraced frame, whereas a cast-in-place system
can be (Schodek, 1980, p. 484)), the technology may also need to check if related building
entities are implemented using compatible technologies. This necessitates that related entities
be obtained from the current building entity and checked for compliance.

3.3 Action

Action specifies what a technology must do to expand the current building entity once both the
prerequisites and the applicability constraints are met. Mostly, technologies expand the build-
ing entity by refining its design, and are thus termed refinement technologies. This refinement
process may include the addition of DU components, classifiers, or domain-specific relation-
ships. For example, a concrete one-way slab is refined into a concrete single tee by the addi-
tion of a DU component describing cross-section properties which are calculated based on
span and loading, and the addition of a classifier indicating the use of pre-fabricated elements
(see Figure 3). Relationships are appended when necessary. The supports/supported-by rela-
tionship, for example, only makes sense when the structural action (e.g., one-way or two-
way) of a horizontal 2-dimensional entity is selected.

For elaboration technologies, the process specifies what contained building entities need to be
created, what relationships, if any, should exist between them, and which technology nodes
should be associated with the new entities. The methods to carry out the elaboration are also
included in this section of the technology node. The existence of these methods is what iden-
tifies an elaboration technology, whereas the existence of DU component and classifier
appending methods identifies a refinement technology.

An Information Model for the Preliminary Design of Buildings 11

4.0 SPROUT SPECIFICATION

SPROUT (SEED representation of Processes, Rules, and Objects Utilizing Technologies) is
an information modeling language that supports the specification of information models, and
particularly building product models (Snyder et al., 1995). SPROUT’s goals are to administer
the persistent storage of objects, to support case-based design, to foster communication
between different SEED modules, to manage versions, and to integrate external applications.
Complex information models can be specified in this neutral schema definition language. The
resulting schemas are used as an interface between the module (e.g., SEED-Config) and the
object-oriented database, other modules and external applications. SPROUT can provide
objects in the representation required by the retrieving module even if the object was origi-
nally generated by a module using a different internal representation. The foundation for all
these capabilities are the schemas, or SPROUT specifications, from which SPROUT can auto-
matically generate the required computer programs and database schemas. SPROUT can be
seen as the “software glue” that integrates the various SEED modules along with the various
support software that are being used in implementing SEED (i.e., the database system
UniSQL, the interface builder ET++, the geometric modeler ACIS, and the knowledge repre-
sentation system CLASSIC).

The SPROUT specification of a model serves as the basis for an application to communicate
with the database, other modules and with support software. A portion of the SPROUT speci-
fication for the information model presented in this paper is shown in Figure 8. This example
illustrates the description of three classes: the Component superclass; the DU_Component
class; and an example of a DU component class. The expressive power of SPROUT cannot be
presented here due to space consideration. However, the example gives a sense of what the
SPROUT syntax looks like. Items in bold are SPROUT reserved words. A class is a list of
slots which can be either a value or a relationship. The definition of a value (or an attribute)
consists in the name of the slot followed by its domain or class. Domains such as real, string
and text are provided by SPROUT while other domains such as du_status are defined specifi-
cally for the model. The definition of a relationship consists in the name of the slot followed
by the class of objects referred, within parentheses, and the type of relationship.

Versions are ubiquitous in design. In SEED, version management is handled by SPROUT
through a time travel approach. In this approach, each database instance is identified by a two-

class Component is
value author string; // Name of designer who created it.
value help text; // Text describing the component.
end

class DU_Component superclass Component is
value tech Technology;
value status du_status;
relationship entities (BuildingEntity) many_to_many;
relationship group_membership (Group) many_to_many;
end

class Concrete_Characteristics superclass DU_Component is
value fc real; // Compressive strength of concrete.
value water_cement_ratio real;
value air_content real;
value max_agg_size real;
end

FIG. 8 Example of a SPROUT specification.

An Information Model for the Preliminary Design of Buildings 12

tuple containing a logical object identifier (LOID) and a time stamp. The LOID is persistently
stored in the database and keeps track of its instances which have different time stamps. Only
one of these instances is identified as the current one. This approach supports the following
operations: overwrite which updates the time stamp to the current time and, if there has been
changes, records the changes onto the current instance hence deleting the old instance; anchor
which creates a new instance with the same LOID but with a new time stamp hence creating a
new version; delete which permanently removes the instance from the database; and copy
which makes a new instance of an object with a different LOID. Figure 9 illustrates the oper-
ations and an example of version management where each number represents a version and
each arrow corresponds to one of the operations. These operations can be propagated over
relationships depending on how they have been defined by the user hence providing a great
control over configuration management.

Alternatives, which represent different solutions for a given problem, are not directly managed
by SPROUT. Each SEED module must implement its own alternative model since each has a
different notion of what is an alternative. In SEED-Config, the designer is encouraged to
explore any or all of the alternative technologies applicable at any stage of design expansion;
however, only one of these technologies may be committed (i.e., instantiated) in a particular
version of the emerging design database. To initiate a new alternative, the state of the building
entities just prior to the alternative creation is reconstructed (if necessary, by deleting later DU
components, relationships, and contained building entities) and anchored. Further expansion
starts from the newly created building entity instance. Controls will be implemented to test
whether an alternative is complete in the sense that all functional requirements are satisfied.

5.0 CASE-BASED REASONING SUPPORT

Since creating a new design requires prior experience, or exposure to someone else’s design
experience, a computer tool that would store prior design experiences and make them avail-
able to designers could be of great help for seasoned as well as for novice designers. A design
system incorporating case-based reasoning represents such a computer tool. It could help
designers to remember previous and appropriate cases which could be used as sources on the
basis of which a more relevant solution to the current problem can be developed. Designers
use previous designs because they do not like to waste time solving problems that they have
already solved before and because the concepts have been tested and proven effective in the
past. Case-based reasoning is an attempt to implement this natural design process in comput-
ers (Kolodner, 1993). This section describes how the information model presented here pro-
vides support for case-based reasoning.

<LOID1, time1>
Anchor

<LOID1, time1>

<LOID1, time1>

<LOID1, time1>

<LOID1, time1>

<LOID1, time2>

nil

<LOID1, time1>

<LOID1, time2>

<LOID2, time2>

Overwrite

Delete

Copy

5

1

4

2 3

6

A

A

O A
C

A

FIG. 9. The operations and an example of version management.

An Information Model for the Preliminary Design of Buildings 13

The case representation in SEED-Config supports the hierarchical decomposition of design
cases. Every level of a containment hierarchy is represented in the same way as a building
entity. Hence, the parts of a case are as simple to access as the actual global case. Because
each part is stored as a whole, it is indexed independently. It can thus be accessed independent
of the global case. Furthermore, the grouping of attribute-value pairs in components supports
the retrieval of cases (or entities) with multiple functions (or views). Multifunction entities
are frequent in building design and must be supported by a case-based reasoning system.

The division of a case (i.e., building entity) data into functional unit, design unit and evalua-
tion unit allows retrieval to be based not just on the problem specification, but also on the solu-
tion and on the outcomes. The performance of a design can be tested by comparing the
behavior stored in the evaluation unit with the requirements set forth in the functional unit.
Dividing the case’s data into these three subsets provide greater flexibility, guides the exami-
nation of the content of a case, and classifies the attributes according to their role within the
design process (Maher et al., 1995).

Classifiers provide a powerful means for retrieving cases. Classifiers are used as a deep index-
ing mechanism that allows generalization or specialization of queries. Also, the fact that a
component refers back to the entities it belongs to allows a case search to be done from bot-
tom-up. Hence, the name of the component classes can also be used as an index to limit the
search to a particular type of component. It is also possible to limit the search of a case to a
given technology or to exclude a given technology from the search. Once a set of cases (or
building entities) are retrieved based on one of these three mechanisms, the case that best
matches the current situation can be found through a matching and ranking process.

Both the solution and the reasoning steps are stored in a case. The reference to the technology
nodes actually refers to the knowledge used in designing the case or entity. Technologies can
be seen as solution operators. They can be re-used for rapid adaptation or for redesign of a
case. The set of technologies used in designing an entity also provides a limited way of
describing how its solution evolved.

6.0 CONCLUSIONS

The information model presented is specifically designed to serve two objectives: to assist
designers to rapidly generate alternative conceptual structural configurations, and to serve as a
case base of previous designs so that relevant cases can be recalled and adapted as elements of
the solution of new design problems. The overall goal is to assist the structural engineer in the
exploration of the total building design in collaboration with the owner, architect and other
design professionals participating in the conceptual design phase by evaluating structural con-
sequences of architectural decisions and by suggesting architectural configurations that result
in effective structural schemes. For recurring building types (e.g., hospitals, schools, etc.) a
case base of previous designs can greatly enhance the engineer’s ability to develop appropriate
and proven configurations or components.

Case-based reasoning and the encapsulation of generative knowledge into technologies serve
the further purpose of providing customization potential to individual user organizations, so
that the designs produced can reflect each organization’s design style and accumulated exper-
tise.

An Information Model for the Preliminary Design of Buildings 14

References

Brachman, R. J. and J. G. Schmolze (1985). “An overview of the KL-ONE knowledge repre-
sentation system.” Cognitive Science, Vol. 9, No. 2, pp. 171-216.

Brachman, R. J., D. L. McGuinness, P. F. Patel-Schneider, L. A. Resnick, and A. Borgida
(1991). “Living with CLASSIC: When and How to Use a KL-ONE-Like Language”, Prin-
ciples of Semantic Networks, John F. Sowa Editor, Morgan Kaufmann Pub. Inc., San
Mateo, pp. 401-456.

Flemming, Ulrich (1994). “Case-Based Design in the SEED System.” Knowledge-Based
Computer-Aided Architectural Design, G. Carrara and Y. Kalay (editors), Elsevier, New-
York, pp. 69-91.

Flemming, Ulrich, and Robert Woodbury (1995). “Software Environment to Support Early
Phases in Building Design (SEED): Overview.” Journal of Architectural Engineering,
ASCE, Vol.1, No. 4, pp. 147-152.

Gielingh, W. (1988). “General AEC Reference Model.” ISO TC 184/SC4/WG1 doc 3.2.2.1,
TNO Report BI-88-150.

Howard, H. C., Jamal A. Abdalla, and D. H. Douglas Phan (1992). “Primitive-Composite
Approach for Structural Data Modeling.” Journal of Computing in Civil Engineering,
ASCE, Vol. 6, No. 1, pp. 19-40.

Kolodner, Janet (1993). “Case-Based Reasoning.” Morgan Kaufmann Pub. Co., San Mateo.

Mac Gregor, R. (1991). “The Evolving Technology of Classification-Based Knowledge Rep-
resentation Systems”, Principles of Semantic Networks, John F. Sowa Editor, Morgan
Kaufmann Pub. Inc., San Mateo, pp. 385-400.

Maher, Mary Lou, M. Bala Balachandran, and Dong Mei Zhang (1995). “Case-Based Reason-
ing in Design.” Lawrence Erlbaum Associates Publishers, Mahwah, NJ.

Rivard, Hugues, Steven J. Fenves, and Nestor Gomez (1995). “An Information Model for
Multiple Views of Buildings.” Proceedings of the W78/TG10 Workshop “Modeling of
Buildings Through their Life-Cycle, CIB Proceedings, Publication 180, pp. 248-259.

Rumbaugh, James, Michael Blaha, William Premerlani, Frederick Eddy, and William
Lorensen (1991). “Object-Oriented Modeling and Design.” Prentice Hall, Englewood
Cliffs, NJ.

Schodek, Daniel L. (1980). “Structures.” Prentice-Hall, Inc., Englewood Cliffs.

Snyder, James, Zeyno Aygen, Ulrich Flemming, and Jonah Tsai (1995). “SPROUT - A Model-
ing Language for SEED.” Journal of Architectural Engineering, ASCE, Vol.1, No. 4, pp.
195-203.

Wix, J. and D. P. Bloomfield (1995). “Standardisation in the Building Industry: The STEP
Building Construction Core Model.” Publication 180, International Council for Building
Research Studies and Documentation (CIB), Stanford, California, pp. 184-195.

Zamanian, K. M. (1992). “Modeling and Communicating Spatial and Functional Information
about Constructed Facilities.” Phd thesis, Department of Civil Engineering, Carnegie Mel-
lon University, Pittsburgh, PA.

