
CIB-W78 Workshop „Construction on the Information Highway“, Bled’96. Katranuschkov & Scherer, Pg. 1

SCHEMA MAPPING AND OBJECT MATCHING:
A STEP-BASED APPROACH TO ENGINEERING DATA MANAGEMENT IN

OPEN INTEGRATION ENVIRONMENTS

Peter Katranuschkov (1) , Raimar J. Scherer (2)

ABSTRACT: The interoperability of different engineering data models and the product data
exchange between heterogeneous design tools are among the most fundamental research problems
related to the development of open integrated environments for CAE/CIC. The successful solution
of these problems is of primary importance for the acceptance and the wide implementation of
product data technology on the basis of ISO 10303 (STEP).
This paper presents a flexible, non proprietary, STEP-based approach to design tool integration
that has been developed in the EU project COMBI. It focuses on the interoperability methods and
tools for product data management realised in the COMBI system: (1) a descriptive schema
mapping language which complements the EXPRESS specifications of the implemented product
data models, (2) an active object-matching mechanism which serves for providing the consistency
of the modelling objects across disciplines, time and design domains, and (3) a communication
management module which uses enabling World Wide Web CGI technology to allow for remote and
concurrent information exchange via the Internet. Along with a critical discussion of the described
integration concept, important future research topics targeting the development of a concurrent
engineering environment, which will be pursued in the COMBI follow-up project ToCEE, are also
briefly outlined.

KEYWORDS: Integrated Engineering Environments, Product modelling, Building product models,
Interoperability, WWW-based communication, STEP

1. INTRODUCTION

In the last years, with the growing trend towards organised in work groups collaborative product
development in building design and construction, the needs for establishing open integrated
software environments on the basis of product data technology have gained broad recognition.
The emerging standard STEP (ISO 10303-1) and several international pilot projects aiming at
STEP-based integration, like the European projects ATLAS (Böhms & Storer 1994), COMBINE 2
(Augenbroe 1995), COMBI (Scherer 1996) etc., have become powerful promoters of this new
information technology in the AEC domain. However, gathered experience has also shown that a
detailed specification of a harmonised, universal building product model that can serve as a
common database for all information needs in an integrated system does not seem very realistic
because of a number of specific conditions, inherent to the scattered and multidisciplinary nature of
the building industry.

(1) Sen. Research Assistant, Institute of Structural Mechanics and Applied Computer Science,

Dresden University of Technology, Mommsenstr. 13, D-01062 Dresden, Germany
E-Mail: peter@bbbsr1.bau.tu-dresden.de, Fax: +49 (351) 463-3975, Phone: +49 (351) 463-2251

(2) Professor, Institute of Structural Mechanics and Applied Computer Science, Dresden University of Technology
E-Mail: scherer@bbbsr1.bau.tu-dresden.de, Fax: +49 (351) 463-3975, Phone: +49 (351) 463-2966

C
on

st
ru

ct
io

n
In

fo
rm

at
ic

s
D

ig
ita

l L
ib

ra
ry

 h
ttp

://
itc

.s
ci

x.
ne

t/
pa

pe
r

w
78

-1
99

6-
33

5.
co

nt
en

t

CIB-W78 Workshop „Construction on the Information Highway“, Bled’96. Katranuschkov & Scherer, Pg. 2

According to (Hannus et al. 1995), these „boundary conditions“ for product modelling and product
data exchange are associated with the following issues:
• data exchange is primarily between different organisations using different applications and

operating within different domains of AEC, and the scope of exchanged data varies between
nations, companies, projects, project stages, application systems and current view of the actor;

• a large variety of heterogeneous software tools are being used, and the scopes of sending and
receiving applications are not likely to be known a priori;

• AEC has fuzzy boundaries and covers a wide range of technologies, i.e. information needs in
general are unpredictable.

Therefore, various more flexible approaches towards integration, addressing the problem of
interoperability, i.e. sharing of AEC information distributed among heterogeneous models and
agents, have been proposed recently. For example, in the COMBINE-2 project (Augenbroe 1995)
the idea of a common building model (IDM) that integrates all actors’ views has been implemented.
Information exchange and interoperability are supported by a generic data exchange system (DES)
which contains a data exchange kernel, off-line and on-line data interaction managers based on an
SDAI binding for C++ (ISO 10303-22), and a knowledge-based communication control module
using blackboard technology. Since the IDM is semantically richer than each application model,
mapping is reduced to „meshing“ and „stripping“ the application models to/from the IDM.
The ATLAS project (Böhms & Storer 1994) also relies strongly on the concept of semantic
integration, which is achieved by means of a rich set of hierarchically organised reference models.
Information exchange between the ATLAS applications is realised on the basis of these common
reference models with the help of a set of data conversion tools. Semantically different
representations are handled by means of a rule-based language with late LISP binding, which allows
the rules to operate on top of SDAI data storage (Poyet et al. 1994). In the SEED system
interoperability is achieved with the help of a meta-level agent communication language, which
implements schema mapping through a shared neutral object model and appropriate language
bindings. This neutral object model only exists conceptually for the applications which partially
share its schema (Killicote et al. 1995). ACL/KIF supports an advanced knowledge-based agent-to-
agent communication which includes translation of different data abstractions and logic processing
of messages between different knowledge-based applications (Khedro, Genesereth & Teicholz
1994). However, both SEED and ACL/KIF propose their own integration strategies, which are not
compliant to STEP.
In the remainder of this paper we present the interoperability methods and tools developed in the
ESPRIT project COMBI, which provides a STEP-based framework for an open integration environ-
ment promoting the idea of „product model integration by communication“. A detailed survey of
other proposed approaches can be found in (Liebich et al. 1995).

2. THE INTEGRATION FRAMEWORK OF COMBI

COMBI focuses on design tool integration, with special consideration to the heterogeneity of
engineering applications - traditional, widely accepted numerical analysis programs, knowledge-based
design tools, expert systems, conventional CAD etc., which can range from simple stand-alone
programs to complex systems based on proprietary local integration environments. The conceptual
schema of the COMBI framework is described in detail in (Ammermann et al. 1994). It is comprised
of a set of product models, a set of external (remote) design tools and a central control kernel,
responsible for the interaction and the coordination of all other components. The principal
architecture of the COMBI system is outlined on fig. 1, concentrating on the structure of the developed
integration prototype - PROMINENT (Katranuschkov & Scherer 1995).

CIB-W78 Workshop „Construction on the Information Highway“, Bled’96. Katranuschkov & Scherer, Pg. 3

Product Models

The set of object-oriented product models forms the knowledge base of the integration framework.
It is hierarchically structured in the following three levels of data abstraction and data reduction:
• application models, which are most detailed and contain very specific application related objects,
• partial aspect models, which are more general and depict the common properties of objects that

have to be shared within each design domain, and
• a neutral domain-independent kernel model, which - contrary to most other existing approaches -

does not attempt to provide an integrating superset of the separate partial and application models,
but serves rather for maintaining the persistence and preserving the integrity of the product
model instances in each specific design project context, and for „bridging“ the different semantic
representations of the modelling objects across disciplines and design domains.

This intentionally sought minimal common kernel model is a unique feature of the COMBI
framework, which allows greatest autonomy in the development, implementation and future
extension of the individual partial and application models, putting the emphasis of the integration
strategy on the use of intelligent interoperability mechanisms, rather than on the semantic
homogeneity of the representation.

Fig. 1: System architecture

Each model in the framework is by itself comprised of 3 interrelated components: the generic
schema of the model, which provides the typological representation of engineering knowledge for
the considered modelling perspective, an instantiated project context, which contains the actual
instances of the modelling objects and is capable of representing the dynamic changes of the data
during the design process, and active control methods, which support the data transformations
within the system kernel, the communication with the external applications, integrity checking etc.

CIB-W78 Workshop „Construction on the Information Highway“, Bled’96. Katranuschkov & Scherer, Pg. 4

Interoperability

To provide for a successful product data exchange between the remotely used engineering
applications in the integration environment, COMBI addresses the following interoperability issues:
(1) the transformations between the different object representations in the different partial and
application models, (2) dynamic object evolution and object re-classification and (3) WWW-based
communication management.
The separate models in the COMBI framework are specified formally in EXPRESS (ISO 10303-11).
They use as far as possible the integrated resources defined in (ISO 10303-41, -42, -45). Interopera-
bility is achieved with the help of a schema mapping language, which complements the EXPRESS
specifications, and an active object matching mechanism installed in the communication
management module of the system, which is responsible for the consistency of the product data. Fig.
2 shows schematically the full scope of the developed product models and the basic methods used
for transforming the different semantic representations of the design information from one
modelling space to another.

Fig. 2: Product model schemata and inter-schema relationships in the COMBI framework

CIB-W78 Workshop „Construction on the Information Highway“, Bled’96. Katranuschkov & Scherer, Pg. 5

The actual product data exchange with each application is realised intentionally only on the basis of
STEP physical files (ISO 10303-21), since this requires no (or only minimal) changes in the internal
data structures of the applications. The whole data exchange process, presented schematically on
fig. 3, is identical for all integrated application tools and is controlled by the COMBI Communi-
cation Manager (CCM). Its basic components are described in detail in the following sections.

Fig. 3: Principal data exchange process with an application on the basis of STEP files

3. SCHEMA MAPPING

The correspondences between the data belonging to different model spaces of the COMBI frame-
work are defined formally with the help of a specially developed for that purpose schema mapping
language (CSML). Despite the nowadays existing wide range of mapping languages, for example
EXPRESS-V (Hardwick 1994), EXPRESS-M (Bailey 1995), VML (Amor 1994) etc., we decided to
create a new mapping language for COMBI for several reasons. First, all known languages have
been developed in parallel or shortly before CSML and are still in an experimental phase, i.e.
mapping continues to be a hot research topic. Second, only a few of these languages provide
suitable programming language bindings for the COMBI integration platform (which is LISP-
based). At last, it was found that all examined approaches target different interoperability areas, and
while all they are certainly useful in a number of concrete situations, none would match sufficiently
the requirements of the COMBI integration approach.

The CSML Language

In our understanding, mapping is a one-directional process, for example mapping data of application
A1 to application A2 without being aware of the context (i.e. the locally stored data) of application
A2. Due to the different semantic richness of the separate partial models in the COMBI framework,
an inverse mapping may not always be possible or would require a different specification (in fact,
such situations may arise in any other integration environment).
A mapping operation always creates new data. These can be: a new model, new object classes in an
existing model, complete or partial transformations of object instances belonging to one model into
object instances of another model. In other words, given a source model with schema ′S and instan-
tiated context ′C with instances { ′ci }, and a respective target model with schema ′′S and context ′′C ,

a mapping operation can be defined as:

CIB-W78 Workshop „Construction on the Information Highway“, Bled’96. Katranuschkov & Scherer, Pg. 6

() () { } { } { } { }map op: S S C S C S c c c C c Ci i m k k n i k− ′ ⇒ ′′ ′ ′ ⇒ ′′ ′′ ′ ⇒ ′′ ′ ⊆ ′ ′′ ⊆ ′′
= =1 1.. .. ,with

class mapping full instance mapping partial instance mapping

CSML meets all these requirements. It is based on a declarative modelling paradigm, which means
that the development of a particular mapping specification can be concentrated on describing what
transformations have to be done, rather than on prescribing how (in what order) to execute the ne-
cessary mapping operations. In that respect CSML is, together with VML (Amor 1994), remarkably
different from all other examined approaches.
The implementation of CSML is based on LISP and thus uses a LISP-like notation style. It contains
constructs that provide means for partial and complete mappings of the entities defined in an
EXPRESS schema, covering the cardinality cases 1:1, 1:0, 0:1, 1:N and (with some restrictions)
M:N, and allowing the following transformations of EXPRESS data types:
• simple data type ⇒ simple data type | null
• constr. data type ⇒ constr. data type | set of attributes | entity instance | null
• list of attributes ⇒ constr. data type | set of attributes | entity instance | null
• entity instance ⇒ entity instance | set of entity instances | attribute | set of attributes | null
• entity reference ⇒ entity reference | attribute | set of attributes | null.
A mapping specification in CSML consists of a header and a body that can contain the sections
CLASSES, DEPENDENT-CLASSES, GLOBALS, FUNCTIONS. The most important and in fact the only obligatory of
these sections is CLASSES. It is used to describe the correspondences between the data in the source
and the target model, while all other sections have complementary functions and are used only in
certain specific situations. CLASSES can itself contain any number of the following mapping
definitions: CREATE-CLASS - which describes new classes (and resp. instances) to be created in the
target, COPY-CLASS - which represents exact equality between source and target instances, MAP-CLASS -
which expresses any kinds of 1:1 or 1:N transformations, and MAP-GROUP - which is a compound spe-
cification that may contain any number of the other 3 types and is used to describe M:N mappings.
The main and most frequently used mapping construct in CSML is MAP-CLASS. Its syntax (in BNF) is:
map_class ::= ((MAPMAP--CLASSCLASS class FROMFROM class-list

[[{ ATTRIBUTESATTRIBUTES { attr-mapping-op }+ }+ |
{ CONDITIONSCONDITIONS { cond-op }+ }* |
{ CHECKCHECK check-specs }*]]))

The individual clauses of MAP-CLASS have the following meaning. The FROM clause declares the
objects in the source schema that have to be mapped. The CONDITIONS clause describes when (i.e.
under which conditions) the MAP-CLASS definition can be applied. It may contain one or more predicate
functions which must all be true to allow the mapping to take place. The ATTRIBUTES clause defines
what are the equivalences between the attributes of the source object(s) and those of the target.
These equivalence specifications can range from direct equality and standard data type transfor-
mations to complex relations like chains of references, built-in, in-line and user-defined functions.
At last, the CHECK clause describes how to treat the newly created target objects after the mapping
operation (in fact, this clause contains instructions for the object matching procedure; it does not
influence directly the mapping and is included in MAP-CLASS for compactness of the definition).
A simple practical example derived from the prototype implementation of COMBI can serve to
illustrate the use of CSML (see fig.4). It depicts a portion of the mapping specifications needed to
transform typical structural objects like nodes and nodal_results into objects for foundation design,
which is necessary to allow the design cycle preliminary structural design ⇔ foundation design
to be performed properly, i.e. to transform reactions into loads and, inversely, computed foundation
stiffnesses into spring coefficients for frames and shear walls. This example gives a fairly good

CIB-W78 Workshop „Construction on the Information Highway“, Bled’96. Katranuschkov & Scherer, Pg. 7

notion of the often very different representations of the building objects an integrated system has to
deal with. Other more complex examples can be found in (Katranuschkov & Scherer 1995).

 ;;; FORWARD MAPPING: preliminary structural design -> foundation design
 (MAP-CLASS load FROM node nodal_results ; note (1)

CONDITIONS (RULE !check_foundation_pt node.SELF $elevation) ; note (2)
ATTRIBUTES
 (MAKE id FROM node.SELF) ; note (3)
 (MAKE loadcase_ref FROM nodal_results.load_id) ; note (4)
 (MAKE load_magnitude FROM (MAPLIST (LAMBDA (X) (* X -1.0)) nodal_results.reactions)) ; note (5)
 (MAKE appl_pt FROM (LIST (REF node.coord FOR x) (REF node.coord FOR y) (REF node.coord FOR z))) ; note (6)

)

 ;;; INVERSE MAPPING: foundation design -> preliminary structural design
 (MAP-GROUP spring node WITH ; note (7)

(MAP-CLASS node FROM spread_footing load ...) ; note (8)
(MAP-CLASS spring FROM load ; note (9)

ATTRIBUTES
 (MAKE id FROM SELF) ; note (10)
 (MAKE node_list FROM (LIST (NEWOBJECT node.SELF))) ; note (11)
 (MAKE hinge_list FROM spring_coeffs) ...) ; note (12)

)

Notes: (1) - Starts the description of the inter-schema relationship b/n the classes load and {node, nodal_results};
(2) - Applies a user-defined predicate function to the node entity and the global variable $elevation (defined

elsewhere) to determine if the mapping of a particular node instance can proceed. In this case, requires that a structural
node is a support and lies on a flat foundation with a preset elevation defined in the global coord. system of the building;
(3) - Assigns the implicit entity identifier of the source (node) to the explicit attribute id of the target (load);
(4) - Performs a simple attribute assignment;
(5) - Uses a built-in and an in-line function to transform a list of attribute values in the source instances to a respective

list of values in the corresponding target instances;
(6) - Constructs a list from three chained references: node → coord → x (y , z)
(7) - Starts the mapping specification for a group of classes and establishes a local scope for all their instances in the

subsequent mapping declarations within the MAP-GROUP block;
(8) - Describes the mapping for the class node (the concrete equivalences for the attributes are omitted for brevity);
(9) - Starts the description of the mapping for the class spring;
(10) - Same as for note (3), but because there is only one source class (load), it must not be stated explicitly as in (3);
(11) - Defines explicitly a list type attribute from the associated node object(s) to each newly created instance of spring;
(12) - Performs a simple attribute assignment, where both source and target are lists (no type conversion necessary).

Fig. 4: Mapping specification example

CIB-W78 Workshop „Construction on the Information Highway“, Bled’96. Katranuschkov & Scherer, Pg. 8

Comparison to Database Operations
CSML manifests an equivalent expressive power to the basic operands required in a relational
database system (Ullman 1982) and thus can be easily used to perform all typical data transfor-
mations that can be applied to database schemata. Fig. 5 shows how CSML emulates the operands
projection, selection, union, set difference, cartesian product and intersection. It can also be used for
comparison to the VML language, since it deliberately follows the examples given in (Amor 1994).

ProjectionProjection
Given: a source entity with attributes S1..Sm to produce
a target entity with attributes T1..Tn
Mapping: (MAP-CLASS T from S

ATTRIBUTES
... (MAKE Tj FROM Si) ...)

SelectionSelection
Given: a source entity S with attributes S1..Sm and a set
of Boolean formulae F which work on S to produce T
Mapping: (MAP-CLASS T FROM S

CONDITIONS (RULE !F ... S i ...) ...
ATTRIBUTES (MAKE T1 FROM S1) ...)

UnionUnion
Given: R (R1..Rm) and S (S1..Sm) ⇒ T
Mapping: (MAP-CLASS T FROM R

ATTRIBUTES (MAKE T1 FROM R1) ...)
 (MAP-CLASS T FROM S

ATTRIBUTES (MAKE T1 FROM S1) ...)

Cartesian ProductCartesian Product
Given: R (R1..Rm) and S (S1..Sm) ⇒ T
Mapping: (MAP-CLASS T FROM R S

ATTRIBUTES (MAKE T1 FROM R1) ...
 (MAKE Tm FROM Rm)
 (MAKE Tm+1 FROM S1) ...
 (MAKE Tm+n FROM Sn))

Set DifferenceSet Difference
Given: R and S, which have key attributes R1..Rk and
S1..Sk and attributes R1..Rm, to produce a target entity T
Mapping: (MAP-CLASS T FROM R S

 CONDITIONS (RULE lambda (R1 ... Rk S1 ... Sk)
 (and (not (equal R1 S1)) ...

 (not (equal Rk Sk))))
 ATTRIBUTES (MAKE T1 FROM R.R1) ...)

IntersectionIntersection
Given: R and S, which have key attributes R1..Rk and
S1..Sk and attributes R1..Rm, to produce a target entity T
Mapping: (MAP-CLASS T FROM R S

CONDITIONS (RULE lambda (R1 .. Rk S1 .. Sk)
 (and (equal R1 S1) ...

 (equal Rk Sk)))
ATTRIBUTES (MAKE T1 FROM R.R1) ...)

Fig. 5: Specification of the basic operands of relational databases with CSML

However, though powerful enough to support complete and partial model transformations - both
horizontally, i.e. directly between applications, and vertically - to/from the persistent neutral model,
CSML alone is not sufficient to capture all dependencies and ensure the consistency of the product
data, because the static mapping specifications cannot take into account all dynamic changes to the
modelling objects and their evolution during the design process. Therefore, the implementation of
CSML requires an active data management component that can track correctly the modifications of
the data structures resulting from the mapping operations.

4. OBJECT MATCHING

We understand object matching as a process of associating the entities of a structured data set -
typically in the form of object instances and their relationships - to multiple classification hierar-
chies reflecting different modelling aspects for these data. In other words, object matching can be
interpreted as a mechanism for dynamic object classification.
The necessity for „matching“ object instances against the class specifications in the generic
schemata of a product model arises when the mapping transformations are applied for updating
already existing product information. To focus the discussion, let us consider again the example
given in fig. 4. At the first iteration step of the presented design cycle, i.e. after the preliminary
structural design tool has completed the initial configuration of the structural system of a building
and the relevant data are passed to the foundation design tool to determine the appropriate
foundation system, no consistency problems will arise, since the foundation design objects will be
created for the first time and added as new items to the product data base of the project. However,

CIB-W78 Workshop „Construction on the Information Highway“, Bled’96. Katranuschkov & Scherer, Pg. 9

when returning to analyse the bearing structure - this time taking into account its interaction with the
foundation - the situation will be different because the newly created foundation objects can affect
the structural system in various ways. First, the actually computed stiffnesses of the designed
foundations will as a rule cause changes to the presumed support conditions of the pre-designed
frames and shear walls and hence will lead also to changes in their overall stiffness. This may,
however, lead further to partial or full re-design of the structural system if its components do no
longer satisfy the defined mechanical, serviceability and constructability requirements. Thus, it may
become necessary to re-dimension beams and columns, which would result, in turn, in new loads to
the foundations and can also influence architectural or HVAC design. It is also possible that some
structural assemblies must be entirely reconfigured, in which case they might no longer match the
determined foundation layout. At last, because of changes in their properties, certain elements might
even need to be re-classified, e.g. spread footings may „migrate“ to strip footings, or the whole
shallow foundation system may need to be substituted by pile foundations.
This simple interaction example shows that even small, at first glance „harmless“ changes in one
partial model can cause cascadingly propagating changes in one or more other models leading to
serious consistency problems. In the integration environment of COMBI such problems are handled
by the specially developed object matching mechanism residing in the system control kernel. It is
activated automatically whenever an application tries to update its corresponding information
context, i.e. create a new version of its instantiated model, or when the results of a mapping ope-
ration have to be verified against the constraints defined in all other relevant models.
The developed method follows the frame-based modelling paradigm and is strongly related to the
hierarchical architecture of the COMBI framework. Its key idea is to use the persistent neutral
model of the framework as a reference structure for all other modelling representations by means of
associating each object instance in a given context to instances of primitive object classes (1) defined
in the neutral model. These primitive object classes cover only basic, domain-independent model-
ling aspects like the topological representation of the building elements, their implicitly maintained
unique identification, generic object-to-object relationships like is-part-of, has-part, depends-on,
connected-to etc., while domain-specific aspects, including among others the explicit shape repre-
sentation of all tangible building objects, are dealt with in the respective partial and/or application
models. Thus, it is possible to establish a „bridge“ across the separate modelling spaces which can
still be managed locally and independent of each other, as far as their inter-relations are not
concerned.
Though labelled „primitive“, the generic classes defined in the neutral model are not simple.
Besides attributes and methods determining their behaviour, they do contain also specific rules
which, when triggered, allow to recognise if an object instance can be associated to a particular
class. In order to let these „matching“ rules work on arbitrary objects whose structure is not known a
priori, at the same time avoiding the classical multiple inheritance technique which would lead to an
enormous complexity of the data structures, we use dynamically established „when-needed“
delegation links (2), as proposed by (Zucker & Demaid 1992). In this way, a unified approach to all
partial models is applied, and the matching rules are concentrated only in the neutral model which
greatly simplifies the complicated matching process.
As a concrete example of the technique outlined above, let us examine again the design interaction
case presented in fig. 4, now focusing on the process of updating the existing structural system after

(1) We use here the term „primitive“ to emphasize that the neutral model is not a superset of all other integrated aspect

models, but contains only minimal, domain-independent information which has the primary task to „glue“ the
different modelling spaces together.

(2) Delegation is a regime of object-to-object communication which allows one object to have temporary enhanced
capabilities by acting as an extension of another object.

CIB-W78 Workshop „Construction on the Information Highway“, Bled’96. Katranuschkov & Scherer, Pg. 10

mapping the objects contained in the foundation model onto the structural model. In a first step, the
mapping operation creates temporary objects (with temporary, implicitly assigned identifiers),
which represent only that portion of the structural system which ensures the contact to the
foundation. The task of the matching procedure is then to verify the correctness of these objects in
respect to the overall building model and to merge them into the instantiated structural model
context, thus updating its state. In order to do this, all temporary objects are first associated to
respective objects in the neutral model on the basis of their topological properties, as well as by
using predefined in the CHECK clauses of the mapping specifications „monitoring values“, which can
be object attributes or calculated at run-time Boolean expressions. Thus, load objects, spread
footings, structural nodes and springs become associated to vertex points, strip footings are
associated to line edges etc. After that, the corresponding objects in the existing data structures of
the product model can be easily identified and checked, and their state can be correspondingly
updated - eventually creating new instances or re-classifying existing ones when appropriate. For
example, if a spring element has not been defined previously because the support nodes of the
columns have been assumed „fixed“, it will be created and added to the project data base. On the
opposite, if the support conditions become very stiff, e.g. by changing the design from shallow to
deep foundations, it may be necessary to remove existing spring elements and at the same time re-
classify foundation elements from spread footings to piles. However, it should be noted that since
the developed matching mechanism does not yet support conflict management, all such changes are
at first merely recorded and proposed to the user(s), but are executed only after explicit permission.

5. COMMUNICATION CONTROL

In order to provide support for real cooperative design work, an integration environment has to
include also - besides efficient interoperability and data exchange mechanisms - a communication
management layer which is capable of controlling the purpose of actor-to-actor communication, i.e.
„supervise who can do what and for what purpose at each stage of the design process“. Without
such control, information exchange can easily become chaotic unless forcedly squeezed into a very
restrictive schema.
In COMBI, this task is performed by the developed Communication Control Center (CCC), which
monitors all transactions to/from a common data pool via the Internet, using enabling World Wide
Web CGI technology on the basis of the capabilities of the standard httpd demon (Luotonen &
Berners-Lee 1994). While the complete details of the communication control mechanism realised in
COMBI will go beyond the scope of this paper, we shall provide below a broad outline of its most
important features to complete the discussion of the presented integration approach.
CCC is a relatively simple tool, planned to be considerably enhanced in the COMBI follow-up
project ToCEE (ToCEE 1995). It is implemented entirely on the WWW which allows concurrent
asynchronous access to the common data pool of a project by all project participants. CCC supports
different process related operations like: storing / retrieving / viewing STEP physical files (by using
one of three alternative protocols - http, ftp or mail), posting messages to other participants in pre-
specified formats, requesting summary reports of the state of the project and the possible further
design steps at each stage of the design process. In order to provide control over the transactions
between the distributed on the global network design agents, CCC uses an additional information
layer containing the following components: (1) a project description schema, which identifies the
involved participants, their network addresses, roles, access rights, used tools etc., (2) a process
description schema implemented in the form of a Petri-Net, which allows to determine the
meaningful transactions and possible further design tasks by means of explicitly stored control items
for each implemented model (extracted from its current instantiated context), and (3) a facts base
realised in the form of a blackboard, which stores all communication messages accompanying the
product data exchange and helps reasoning about possible design actions.

CIB-W78 Workshop „Construction on the Information Highway“, Bled’96. Katranuschkov & Scherer, Pg. 11

6. CONCLUSION. CURRENT STATE AND FUTURE WORK

The described interoperability methods developed in the COMBI project are a promising beginning on
the way towards STEP-based concurrent engineering systems. As proof of concept, they have been
tested in a prototype environment including a knowledge-based system for preliminary structural
design, a proprietary integrated system for structural analysis, dimensioning and CAD, a decision
support system for soil characterisation and foundation design and a conventional, general-purpose
CAD system. The obtained results have verified the potential power of the suggested approach.
To give an impression of the current state of the system, on fig. 6 below is presented a snapshot of the
developed prototype integration platform PROMINENT, showing a run-time reflection of the example
sketched on fig. 4. It illustrates the WWW-based communication with the foundation designer, the
graphical user interface implemented as support environment for CSML (exposed on the main desktop
of the integration platform), and the on-line interaction with the used general-purpose CAD system
(presenting, in particular, the overlapping of the structural and the foundation model for visual
evaluation of the obtained solution - not possible in this form in any of the two involved design tools).

Fig. 6: Snapshot of the COMBI integration platform

The presented integration approach is a promising contribution on the way towards computer-aided
collaborative product development. However, it has to be enhanced considerably in order to meet the
requirements of a real concurrent engineering environment. Future development efforts have to be
directed towards extending communication control to a full-scale information logistics service,
enhancing the interoperability of the integrated system to include methods for conflict resolution,

CIB-W78 Workshop „Construction on the Information Highway“, Bled’96. Katranuschkov & Scherer, Pg. 12

estimation of the impact of early design solutions on the whole life-cycle of a building, document
management, auditing, interface to computer-interpretable building codes and regulations etc. These
and other related research issues will be investigated in the follow-up ToCEE project (ToCEE 1995),
launched in January, 1996. The funding of both the COMBI and the ToCEE projects by the European
Commission, which enabled this research work, is herewith gratefully acknowledged.

REFERENCES

Ammermann E., Junge R., Katranuschkov P., Liebich Th. & Scherer R. J. (1994): Concept of an
Object-Oriented Product Model for Building Design, Rep. 1-2/94, Inst. of Structural Mecha-
nics and Applied Computer Science in Civil Eng., Dresden Univ. of Technology, Germany.

Amor R. (1994): A Mapping Language for Views, Dept. Rep., Computer Science Dept., Univ. of
Auckland, New Zealand.

Augenbroe G. (1995): COMBINE 2 Final Report, EU / CEC Joule Programme, Project JOU2-
CT92-0196, TU Delft.

Bailey I. (1995): EXPRESS-M Reference Manual, ISO TC184/SC4/WG5 N243.
Böhms M. & Storer G. (1994): ATLAS - Architecture, methodology and Tools for computer-

integrated LArge Scale engineering, Proc. JSPE-IFIP WG 5.3 Workshop, DIISM’93, Tokyo.
Hannus M., Karstila K. & Tarandi V. (1995): Requirements on Standardised Building Product Data

Models, in: Scherer R. J. (ed.), Product and Process Modelling in the Building Industry, Proc.
First ECPPM’94, Dresden, Balkema Publ., Rotterdam.

Hardwick M. (1994): Towards Integrated Product Databases Using Views, Rep. 94003, Design and
Manufacturing Inst., Rensselaer Polytechnical Institute.

ISO 10303-1, -11, -21, -41 to -45 (1992-94): STEP Parts 1, 11, 21, 22, 41-45, ISO TC184/SC4.
Katranuschkov P. & Scherer R.J. (1995): User Manual of the Product Modelling Integration

Environment for Building Design - PROMINENT v.1.1, Rep. 2/95, Inst. of Structural Mecha-
nics and Applied Computer Science in Civil Eng., Dresden Univ. of Technology, Germany.

Khedro T., Genesereth M.R., Teicholz P.M. (1994): Concurrent Engineering Through Interope-
rable Software Agents, Proc. First Conference on Concurrent Engineering: Research and
Applications, Pittsburgh, PA.

Killicote H., Garrett J.H., Choi B. & Reed K.A. (1995): A Distributed Architecture for Standards
Processing, in: Pahl P.J. & Werner H. (eds.), Computing in Civil and Building Engineering,
Balkema Publ., Rotterdam.

Liebich Th., Amor R. & Verhoef M. (1995): A Survey of Mapping Methods Available Within the
Product Modelling Arena, working paper, EXPRESS User Group, ISO TC184/SC4.

Luotonen A., Berners-Lee T. (1994): CERN httpd Guide, CERN Rep.
Poyet P., Grivart E., Brisson E., Besse G., Irvine M., Greening R. & Böhms M. (1994): ATLAS:

Implementation of Knowledge Base Extensions, ATLAS Deliverable D301a, EU / CEC
ESPRIT III Project No. 7280, Brussels.

Scherer R. J. (1996): COMBI Final Report, EU / CEC ESPRIT III Project No. 6609, TU Dresden.
ToCEE (1995): Project Programme, EU /CEC ESPRIT IV Project No. 20587, Brussels.
Ullman J. D. (1982): Principles of Database Systems, Second ed., Computer Science Press.
Zucker J. & Demaid A. (1992): Modelling Heterogeneous Engineering Knowledge as Transactions

Between Delegating Objects, in: Gero J. (ed.), Artificial Intelligence in Design ‘92, Kluwer
Academic Publ., Rotterdam.

