
INTELLIGENT DESIGN TOOLS AS PRODUCT MODEL INTERFACES

Hauser M.1, Nollau C.1 and Scherer R.J.2

ABSTRACT: Concurrent engineering is understood as a methodology that can be used to increase
quality and reduce design effort and time-to-market of a product. Main aspects of concurrent engi-
neering are information sharing among multiple design agents and problem solving actions. Associ-
ated techniques are product models and intelligent design tools. In the paper the interrelationship of
product modelling technology and intelligent design support is reviewed.

A practical contribution to concurrent engineering by using design tools as intelligent interfaces
to product models has been done by the authors. The paper describes the concept and prototypic
implementation of two knowledge-based design tools in the domain of structural design. The tools
form integrated parts of a design environment linked via a central product model.
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1 INTRODUCTION

There is nowadays a broad consensus that product modelling technology is essential for future com-
puter aided engineering environments. Various product modelling frameworks and approaches exist.
Traditionally product modelling research focuses on issues concerning the translation of information
between different CAD/CAM systems, interoperability and conflict management. The question how
the data that is input into a product model is generated, is often neglected in favour of data manage-
ment issues.

On the other hand it seems obvious that when the integrated management of high-level product data
becomes achievable the design agents should be capable of using the inherent potential of product
descriptions with rich semantics. The best advantage of advanced product modelling techniques can
be taken when intelligent tools exist that allow the transfer of technical knowledge and specifications
via user-friendly interfaces into the product model.

2 PRODUCT MODELLING

The idea behind using product models in structural engineering design is to cope with the complexity
of the development of integrated environments for design. Generic uniform interfaces for the design
tools are necessary. In that sense product models schemes should serve as a common language for the
interchange of design information.

Product models are information models that define and instantiate product information that is relevant
to more than one design agent in the scenario. Building blocks of product models are descriptions of
design objects, design relations and constraints. By defining a common set of modelling schemes and
an associated syntax the integration of multiple design agents can be simplified.
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2.1 ISO-STEP for structural engineering

One of the most well known standardisation approaches in product modelling is the ISO 10303
(STEP) standardisation effort (ISO TC184/SC4 1994). STEP is dedicated to the implementation of
back-end translators between existing CAD systems. Application protocols (AP) determine how the
integrated resources defined in the basic parts should be used in supporting a particular application.
STEP standardisation especially relevant to structural engineering design is the application protocol
225. AP 225 covers the representation of shapes of structural building members such as walls, beams,
columns and slabs.

Common to the actual approaches is that the goal of providing common representation facilities for
design entities, their relations and associated constraints has not yet been fully met for structural en-
gineering design. When refering to structural engineering the above approaches are to date restricted
to modelling issues for geometry and topology. The exchange of complete design semantics is not yet
supported.

In distributed concurrent engineering environments data exchange using files is a common technical
solution. The exchange file format defined by STEP part 213 of STEP does not provide a mean
to solve the antagonism between exchanging semantically rich and thus highly interrelated entities
and incremental data exchange. There is no facility to formally define a given context for a partial
exchange.

When considering the objective of STEP to provide means for translating information between ex-
isting CAD systems the modelling shortcomings are also a consequence of today's design practise.
Mostly the design practise is still on the level of 2D drafting.

We claim that in order to introduce concurrent engineering in structural engineering design the product
modelling, data exchange and intelligent design support technology of today is not sufficient. There
is a gap between nowadays design tools and data exchange frameworks on the one side and the
requirements of concurrent engineering in structural engineering on the other side.

We propose that in addition to the actual standardisation activities for structural engineering and
related efforts a new level of design support and associated data exchange facilities is necessary.
The development of product modelling schemes for structural design with richer semantics should
be initiated by developing corresponding design agents and assistance systems that can deal with
semantics besides geometry.

2.2 Intelligent CAD and product modelling

To investigate design reasoning and associated semantics the research direction Intelligent CADhas
been established already about 30 years ago. Intelligent CAD deals with theoretical and practical
issues of design knowledge representation and problem solving activities (Akman, ten Hagen and
Tomiyama 1990, Tomiyama and Yoshikawa 1987, Forbus 1988). We consider research in this field to
be the potential originator for semantically rich data exchange and information sharing in concurrent
engineering environments for structural engineering design.

Research in intelligent CAD is traditionally oriented towards mechanical engineering. Compared
to the area of mechanical engineering the efforts dedicated to design in the building industry are
relatively rare (Maher and Fenves 1985, Giretti, Spalazzi and Lemma 1994, Drach 1994, Zhang and
Maher 1993, Flemming 1990, Luth, Krawinkler and Law 1991, Hauser, Nollau and Scherer 1995).

3Part 21 “Clear text encoding of the exchange structure” is one of the parts of STEP that deal with implementation
methods, i.e. specify how STEP application protocols will map on to real software.



To enable advanced product data exchange as necessary for concurrent engineering in structural de-
sign there is a backlog for intelligent CAD research in the building industry sector. Present CAD
tools for structural design do not directly support the semantics of the designer's internal models.
Their modelling is often restricted to geometry and the user has to reduce and map his models on a
set of geometric primitives.

The output of the different design stages often remains to be paper-oriented. Collaboration and inte-
gration demand re-usable and machine readable data structures and output. Design systems should
allow the export of the design results and associated background knowledge for further processing
and use by other programs. Explicit representation and handling of design relations, constraints in-
side the design tools is a prerequisite. It can not be expected that the designers participating in a
concurrent engineering environment create and manage the complex data structures related to design
of the product building “by hand”. Thus persistence and exchange of design semantics are necessary
across multiple tools.

A first step to full-fill the objective target to deal with design semantics in concurrent engineering is
to set up a framework for intelligent design support. This framework should be especially suitable to
structural engineering design.

3 INTELLIGENT DESIGN TOOL FRAMEWORK

In the next sections we discuss the concept and prototypical implementation of work of the authors
that is on the one hand side seen as a contribution to intelligent CAD in the field of structural engi-
neering design and on the other hand side considered to be valuable preparatory research in the field
of product model interface technology for concurrent engineering.

3.1 Design product model

The model of the artifact that is to be designed is given by a set of interrelated design instances.
Design instances represent instantiated models of the domain's entities. In the context of structural
design this includes architectural elements and structural members and systems. A design Model MI �R

is given by a set of design instances I and the set of relations R between these instances.

3.1.1 Design instances

We use the terms instances and object class according to the commonly understood meaning. In-
stances are structured units of attributes (slots) and assigned values. Instances belong to one or more
object classes. Object classes represent categories of things and concepts. Attributes and methods
may be directly attached to an object class or may be inherited from one or more superior classes.

3.1.2 Design relations

We take an approach that explicitly models the relations between design instances. Relations are es-
sential for interpretation and consistent modification of a design model. An explicit representation of
relations is most effective to deal with the evolution of the design model. Relations reflect semantic
connections between design instances. Using an extensional description a binary relation4 R is de-
scribed by an associated predicate pR: I1 is related by R to I2 � pR�I1� I2�. Most common relations
are of sub-types aggregation, compositionand specialisation.

41-to-n or n-to-mrelations can be constructed with multiple separate binary relations.



3.2 Design reasoning

Since design is a cognitive process the most prominent aspect is the involved kind of reasoning.
Design mainly involves reasoning in the theory associated with the domain's design objects.

Cooperative work in a concurrent engineering environment demands that a given design agent is able
to classify the casual context and the intention of other cooperating design agents. Thus we consider
an explicit formalisation of different reasoning levels as essential.

For design task related to structural engineering we have identified three levels of reasoning5:

Strategic level Decisions of general nature are made and the abstraction level is high. Reasoning on
this level remarkably involves projection and anticipation. An example for a strategic decision
is to build a structural system as a skeleton.

Tactic level The degrees of freedom are limited by corresponding strategic decisions. The used mod-
els of the domain objects are increasingly detailed. In our modelling framework the concept
of dedicated tools is used to model tactic design actions. Tactic design actions relate to the
assignment of values to a focused set of design parameters. Design actions are embedded in the
context of previously committed and further anticipated actions. Tactic action are e.g. selection
of field-lengths for a floor system among several alternatives.

Reactive level On this level instances and models are rather detailed. Actions can be interpreted
as reactions to other actions or as reactions to the presence of given types of design instance
configurations. A reaction may be for example to re-dimension a given structural member
because the capacity of its cross-section proves to be exceeded.

The design process can be interpreted as a search for feasible design solutions within a design space.
In general complete search as a “brute force” approach is not possible because of the complexity of
the design space. Corresponding to our terminology of strategic, tactic and reactive design levels on
each of those levels distinct knowledge to direct and constrain the design search is used. Each level
provides an own granularity of search steps in the design space. In that context design strategy can be
interpreted as anticipation of a promising search path through the design space. Design tactic can be
seen as a selection of search nodes. Reactivity refers to local modification of search nodes. In general
these local modifications are assumed to be compatible with the tactic or strategic decisions.6

3.2.1 Design approach planning (strategy level)

The strategic design reasoning level deals with anticipations and expectations. Therefore reasoning
does not relate to concrete design instances but to abstractions and facts in form of features. This
includes the features present in the current design state as well as those anticipated to be generated
by the design approach. Feature descriptions are a priori defined in parametric schemes. Control
knowledge for the design process is represented in the design operators used for the planning of the
design approach.

Design operators represent parameterised types of design steps. An operator specification defines
predicates when a given operator type is applicable and the transformation to the design state that
is expected. This transformation is defined with a set of new features that are expected. A design
operator OC�F is given by a set of conditions C that define its applicability and a set of features

5These levels might as well apply to other domains but that is beyond our current scope.
6Nevertheless if the modifications prove to be non-local propagation steps have to be triggered. Propagation of changes

is a procedure associated with the reactive design reasoning level.



F that are assumed to be present after the operator is applied. An operator is applicable when all
conditions in C are satisfied by the set of actual present features F . Conditions may be of simple type,
disjunctions or quantified.

When a design operator is applicable there is in general a set of valid parameter bindings. A design
operator that is instantiated with a selected parameter substitution Θ is written as opC�F�Θ. When a
design operator instance is integrated in the planned design approach the related features are antic-
ipated to be present in the model after the actions corresponding to the design operator have been
committed, i.e. Ot

C�F�Θ� tα�� f � F : MI �R� fΘ�. The form tαp denotes the fact that the predicate p
is assumed to be satisfied after time t.

The time-mark ti that is associated to a design operator instance opti
Ci �Fi�Θi

during the planning phase
of the design approach is a virtual mark used to define a total ordering for the sequence of operators.
When an approach is committed, i.e. corresponding design actions on the tactic level are instantiated,
the time mark ti is mapped on a real time tr

i denoting the actual time of execution.

A design approach is a sequence of operators opi . Design reasoning on the strategic level can be
interpreted as the problem to find at least one valid design approach for a given model state MI �R and a
set of desired conditionsC. A design approach is valid when: opt1

C1�F1�Θ1
�opt2

C2�F2�Θ2
� � � ��optn

Cn�Fn�Θn
�

�c�C : satis f ied�c�F1�F2� � � ��Fn�.

In this interpretation the problem to find a design approach is a classical planning problem. AI re-
search has invented different planning algorithms and paradigms. Since in the actual state of de-
velopment we assume that we do not have to handle uncertainty in planning we use the classical
goal-oriented planning approach of AI. We do not consider the above assumption to be critical since
planning in our system architecture is deliberately situated on the level of expectations. Corrections
and adaptions can be carried out on the tactic or on the reactive level.

The design focus comprises the set of actual identified possible design approaches and the focused
operator instances in these approaches. For a given design approach exactly one focused operator
instance exists. The focused operator instance for a design approach is the operator instance follow-
ing the latest applied operator instance. Focused operator instances can be integrated in the design
path. The operators are hierarchically organised, i.e. it may be necessary to expand abstract operator
instances in sub-approaches.

We distinguish between primitive and expandable design operator schemes. A primitive operator
expands the operator notion OC�F with a set of applicable tools T to OC�F�T. Tools model design
actions (see description of tactics level below).

An expandable operator OC�F�Cex specification is extended with a set of conditions Cex that serve as
goals for a hierarchical expansion of the design approach. The integration of an expandable operator
instance in the design path triggers the generation of approaches for the sub-problem defined by the
expansion goals Cex and thus a new design focus is generated. Design reasoning continues on the
strategy level.

The integration of a primitive operator leads to the execution of design actions. Reasoning is then
displaced to the tactic level.

3.2.2 Design actions (tactic level)

When suitable completed design approaches are available the designer proceeds along these antici-
pated design paths by committing the associated foreseen actions.

On the strategic level expectations about a transformation of the design model that takes place when
corresponding actions are applied have been specified by the design operators. Design actions actually



cause a change of the design model.

A design action is:

1. add a design instance i. This is a model transition MI �R�MI�ihull�i��R�rhull�i�

2. evolve a design instance i to i�

i � faj 	

�
slotvalue�aj� i�� 
ai � Attributtesi� : ai � aj

slotvalue�aj� i� �
g

3. remove a design instance i. This is a model transition MI�ihull�i��R�rhull�i��MI �R

When adding or removing design instances it has to be considered that domain specific dependencies
between classes of design instances exist, e.g. the plate and the beams as parts of a structural plate
system depend on the aggregated design instance plate-system. The above used function ihull�i�
computes the transitive hull of design instances dependent on the instance i. The function rhull�i�
denotes all relations related to the instance i or its transitive dependents.

To commit design actions we use the notion of tools. Tools model design actions. Design actions
actually modify the design model state MI �R. The procedural knowledge that is involved when actually
committing a design step is defined by tool specifications.

A tool specification T consists of an interaction part defining the iconic representation in the user
interface, a predicate pT for the validity of target objects, furthermore a constructor CT for instantiat-
ing or evolving design objects, a set VT of possible variations of constructor parameters and a credit
assignment function cr.

When TA� fta1� ta2� � � �tang is the set of possible targets that have been identified by user interaction
then a target tai is valid if pT�tai� is true. For a chosen valid tai the application of CT to each tuple
�tai�Paraj� with Paraj being a variation of parameters derived from VT , results in a set of alternatives
fa1�a2� � � � �ang. The alternatives ai are presented to the user for selection ranked according to the
credit assignment cr�ai�.

Tools appear to the user as icons in a palette of available tools. By dragging the icons on the represen-
tation of design instances in graphical user interface the user can manipulate the corresponding design
objects, e.g. commit dimensioning or system definitions. As building blocks for the definition of the
constructors and evaluation function serve the general structural mechanics computation functions
defined in an object library specific to the structural design domain.

A tool application has a feedback to the strategic reasoning level. All design approaches that are not
compatible with the given tool application are removed from the set of focused design approaches. A
design approach with a focused instance of the operator scheme OC�F�T is compatible to an application
of tool t if t � T .

3.2.3 Design modifications (reactive level)

Design actions are deliberately taken and correspond to the anticipated design approach strategy. They
result from strategic and tactic reasoning. Design modifications are situated on the reactive reasoning
level. Design modifications result from direct manipulation of design instances by the user or may
also occur when pre-defined constraints are violated by design actions.

Constraints are used for the detection of conflicts. In our approach we do not use constraints for
synthesis purposes or for the computation of possible solution sets. Design constraints are attached to
domain object classes and a given design context, i.e. the application of a design action. That means



for each instance of the specified class the constraint is instantiated and checked every time when the
specified design action is applied.

A design constraint coclo�test�pa�con�R defines an owner class clo, a predicate test, a relevance context
con and a set of reactions R. The constraint cocl�test�p�con�act is attached to an instance i when the
class of i is subsumed by the class clo. When i is involved in design actions in the context con the
predicate test�i� pa�i�� is evaluated. The function pa defines possible conflict partners for i for the
given constraint. Typically pa makes use of the design relations of i. If test evaluates to true a set
of possible reactions Ri�pa�i� is instantiated. The elements of Ri�pa�i� are presented to the user for
selection. Each m� Ri�pa�i� represents a design modification.

A design modification is a modification of the attribute values of a design instance. Design mod-
ifications are recursively propagated from the design instances to which they have been applied to
related instances that should also be modified to keep the design model consistent. For this purpose
propagation rules can be specified.

A propagation rule r�S�M�succ�history� is given by the design instance class S, a modification type
M and the functions f and succ. If a modification mi to instance i occurs the rule r�S�m� f �succ�
is applicable when the type of mi is subsumed by m and the design instance class of i is subsumed
by S. If the rule is applicable then after the modification is committed and propagated to the design
instances computed by a propagation function succ. In consequence additional propagation rules may
be applicable.

3.3 Exchanging design semantics

In the design framework we have envisioned the semantics related to the design process and the
artifact. We focused on the different levels of reasoning. When a common understanding of the
reasoning levels exists, then besides pure product data also associated design strategies, tactics for
the actual approach, change propagations and expected or present design features can be exchanged
between multiple design agents. This will enable true concurrent engineering support.

In the next section we discuss prototypic implementations of design agents aligned with the discussed
framework.

4 PROTOTYPIC IMPLEMENTATIONS

Two prototypes of intelligent design tools have been implemented in the domain of preliminary struc-
tural design and in the domain of reinforcement design on the basis of a generic framework that has
been derived from the above outlined considerations. The prototypes have been implemented based
on the Generic INteractive Application(GINA) framework (Spenke and Beilken 1990) in the CLOS
object system of COMMON LISP (Keene 1989).

4.1 Preliminary structural design

This section introduces the design system for preliminary structural design developed in respect to
our paradigms for intelligent CAD tools (Hauser and Scherer 1995, Hauser and Nollau 1995). The
design system serves as an assistant to the designer (architect, structural engineer) and helps to derive
early conclusions on the structural system of a building and the dimensions of its main members. The
quality and correctness of these first assumptions and kernel ideas govern the extend of corrections
that are necessary for the exact structural calculations for the final design and thus is essential for the
effectiveness and quality of the design as a whole.



The preliminary structural design prototype has been used and demonstrated in the ESPRIT project
COMBI. (Scherer 1995) A description and user manual is available (Hauser et al. 1995). The knowl-
edge base of the system contains operators and tools that define sequences and alternatives for (partial)
system definitions and member dimensioning.

Figure 1 shows a snapshot of the desktop of the system7.

FIG. 1: Preliminary structural design application desktop

4.2 Reinforcement design

To date a second prototype is implemented for the domain of reinforcement design. For common
standard reinforced concrete (partial) systems – e. g. slabs, beams and columns – many software
tools which support the design from the structural analysis to the CAD drawing of the reinforcement
system are already available. But these existing solutions are only applicable to for those structural
elements, which can be calculated with simple rules. In the reinforced construction of a building
as a whole there are many critical construction details which need special dimensioning rules and a
lot of engineering knowledge. Especially the transition from design data concerning assumptions on
the reinforcement placement to resist bending moments, shear and compression forces to the correct
layout of reinforcement needs a lot of experience in construction and technology of this process.
With a prototypical application for continuous girders we test the application of our conception for
intelligent CAD tools in the field of reinforcement design. The design process captured involves
calculation of the required reinforcement, reinforcement layout and instantiation in the girder fields.

Due to a common paradigm for interaction and design support the desktop of the reinforcement design
system (figure 2) appears similar to the above shown desktop of the preliminary design system. The
difference is that geometric navigation and viewing is rather organised in element sections, girder
fields and reinforcement layers.

7The snapshot shows a situation in which an instance of the constraint scheme 'No-Intersection-Of-Cols' is violated
and recovery actions are suggested.



FIG. 2: Reinforcement design application desktop

4.3 Prototype integration scenario

The preliminary structural design assistant system has been integrated in the product modelling frame-
work of the ESPRIT project COMBI8(Scherer 1995).

The COMBI prototype scenario yields a methodology which is ready to serve as a platform of
network-based design in a virtual enterprise. The scope of COMBI is the management and con-
trol of product data. The COMBI methodology is already prepared for an extension to concurrent
engineering. The developed integration tools provide means for process control, consistency mainte-
nance of the product data base, object management, model mapping – i.e. transformation of the data
connected with one application to another – communication with remote applications via the Internet.

5 Conclusions

We claimed that concurrent engineering in the structural engineering domain needs more sophisticated
data exchange facilities. We related the lack of such advanced data exchange means to the shortage of
intelligent design tools in the structural engineering domain. To overcome this shortage we developed
a conceptual framework for intelligent design support. The generic framework has been successfully
specialised for the two application prototypes that have been briefly presented.

The framework is not related to a certain software organisation and programming logic but rather
defines reasoning and model structures we consider essential for interactive intelligent systems for
CAD. We believe that on the basis of these structures also an advanced framework for exchanging
design semantics is feasible.
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