Construction Informatics Digital Library http://itc.scix.net/

paper w78-1995-90.content

ENGINEERING DATABASE
AS A MEDIUM FOR TRANSLATION

Hisham Assal and Charles Eastman”

ABSTRACT:

In this paper we describe the translation facilities as a component of EDM-2 database.
We introduce a new approach to translation that is different from the traditional
translators in databases and the standard neutral file approach. First, we define design
views, which are different from database views in that they allow manipulation of data,
and they represent the same object or information in different formats. Second, we
define object structures that capture the different representations of objects and define
the relationships among them. The two main relationships here are the specialization
lattice and the composition lattice. Third, we describe the basic steps of the translation
process and generalize the common ones. We provide facilities for developing
translators that take advantage of this generalization. We present an example of the
most common representations in engineering design (IGES and DXF) to illustrate the
various steps and structures in our model. :

INTRODUCTION:

In the process of designing an engineering product, a wide variety of information types

are generated, modified or deleted until a final product is reached. This information
involves both data and relations. Computer applications perform design tasks that
generate product information, access a subset of existing product information and
possibly modify it. Each application has its internal representation of the information it
requires and assumptions about its relationships. For example, CAD systems deal with
the geometry of the product and its spatial relationships, while analysis programs such
as daylighting or thermal performance deal with properties of materials of that
product. There is a growing number of applications that perform the same task in
different manners or using different models of analysis. Such programs are being
developed independently of each other and most applications use data structures
optimized for their operations. As a resuit, each application program has its own view
of the product characterized by its own representation. During design, there is a need
to integrate many tools to assist the designer or provide useful information about the
current state of the design. In an integrated design environment, these different
representations need a way of transferring information back and forth among each

*Dept. of Architecture and Center for Design and Computation, University of California, Los
Angeles, 90024-1476. E-mail: {hassal, chuck } @gsaup.ucla.edu. WWW: http://www.gsaup.ucla.edu

90

other. There are two approaches to deal with this issue. One approach is to develop a
universal representation that can accommodate all types of applications and require
that all components of the design system conform to that form. The second approach
is to accept the variety of representations of different applications and provide means
for transferring information from one view to the other. The universal representation
approach requires that all entities be predefined and given a specific reference to be
used by all modules that may need it later. The issues of modularity and extensibility
of CAD systems make this solution not attractive for several reasons. As technology
develops, new applications are introduced in many areas affecting design. There is no
guarantee that new applications will not require different formats for their internal
operations. New methods emerge that may require a different structure of information
or the representation of relationships that are not supported by the universal
representation. We believe that the anticipation of every possible need for future
applications is not feasible. In addition, using a representation that has more structure
and information than needed can be unnecessary burden on simpler applications.
During design, too much structure of information can hinder the effective use of the
system. We conclude that the ability to move among different representations within
the same environment is an important factor in integrating design environments.

In the second approach, the process of transferring information among views is
translation. There have been efforts to develop models for translation that can be
categorized in three approaches: direct translation (also known as the pairwise
approach), intermediate file format, and database view generation.

EXISTING APPROACHES TO TRANSLATION:

The pairwise translation approach develops a new pair of translators for each new
application. Each translator manipulates objects in a specific way based on
assumptions about the use of those objects in the target application. Any change in the
assumptions requires re-writing of some parts of the code. Adding a new application
requires N translators, where N is the number of communicating applications.

The intermediate (neutral) file format approach develops a general representation of all
the anticipated entity types. This representation may include some dependencies
among different types. The checking of these dependencies is the responsibility of each
application in the modules reading or writing from or to the neutral file format. The
neutral file format also makes assumptions about its entities both for their
representation and the methods of handling them. Examples of neutral file formats and
standards include IGES, DXF, and STEP. The advantage of using a neutral file format
over pairwise translation is that each application has to communicate with a central
format instead of all other applications, thus reducing the number of required
translators considerably, especially when the number of applications grows.

91

Application Translate(A,C) —— —
A Translate(C.A) PP l\ 1App 1c.
Neutral File
Translate(A.B) Aootiootion Applic. B Applic. E
Trans|ate{B,A) C
Application [Translate(C,B) | | '
B Applic. C Applic. F

Figure 1. Pairwise Translation Model Figure 2. Neutral File Translation Model

The third approach to translation is the database view generation. Traditional
databases can provide some help for the translation process by defining a view for
each added application, which groups the subset of information it uses. The DBMS
can provide tools to generate one view from another based on predefined queries.
However, this solution does not solve all the problem. The expected format and the
internal assumptions about the data and its relationships still have to be provided.
Also, there is a difference between database views in its traditional sense and design
views in design databases, as discussed below.

DATABASE VIEWS AND DESIGN VIEWS

In relational database systems, a view is a subset of the conceptual database or an
abstraction of part of the conceptual database [Ullman, 83]. Dealing with views allows
access to its data, either stored or derived. It does not, however, allow changing this
data directly in the view. Changes have to be made to the canonical database,
representing all integrity relations in the canonical model, and then have the view
regenerated. This is because of the ambiguity of the effect of changing the view on the
attributes that are not represented in that view. Also, all integrity relations involving
the changed variables and incorporated in the core update program must be respected.
In object-oriented systems a view of a class type can be considered a subclass of this
type and methods can be used to define the values in the subclass in relation to their
inherited attributes of the super class [Monk 94]. (This approach transforms the
instance from one view to the other; to use a previous view it has to be transformed
back!) Efforts te define mechanisms for deriving views in object-oriented systems
include [Abiteboul & Bonner 91].

A design view is a representation of (a subset of) design objects that satisfy the data
needs of a specific design task. Design views are used by members of a design team or
cooperating design applications that can produce new data or change existing values.
Therefore, design views must have equal stature and allow modification of data within

92

the view. The change in one view must be reflected into all the views of the same
object. For example, if the glazing area of a window is changed by a daylighting
application, this change should be visible to the acoustics application and vice versa.
Thus, current implementations of database views are incompatible with the concept of
design views.

Problems with Existing Approaches

There are several problems in all of the above approaches to translation. First, the
representation of input and output formats has certain assumptions about the well-
formedness of its entities. These assumptions are hidden, but any application has to be
aware of it. For example, the DXF representation of an arc assumes that if the two end
points are coincident, then the entity is reduced to a point; while in IGES this
assumption is that the entity, under the same condition, becomes a full circle. Second
problem is that the mapping of entities from one representation to another is
predetermined. It is possible that one entity type can map to more than one type in
another representation. Object types can be arranged in 2 hierarchy that defines the
relationships across them and conditions for type subsumption. The subsumption
relationship among two types (A and B), denoted by A > B, states that A subsumes B
if all the characteristics of A can be represented by B. This arrangement is useful in
type conversion among applications as well as within the same application. A more
detailed discussion of the subsumption relationship among representations is presented
in [Stouffs et al., 1995]. For example, it may be desirable to represent a simple arc in
DXF as a spline in IGES. This is acceptable in principle, since the spline representation
is subsumed by the arc representation. However, traditional translators predetermine
the type conversion of all types. Third problem is that the type conversion process
does not make use of the structural relationships among types. These relationships
include the well-formedness conditions of entity types. Type conversion of entities
within the same representation is one of the translation tasks and structural relations
among types can determine the possibility of converting between two types. In
addition, there is the problem of isomorphism between types in different
representations. Isomorphism of types can be defined in terms of the subsumption
relationship in the following manner. Two types, A and B, are isomorphic if and only if
(A > B) and (B > A). This means that all characteristics of type A can be defined in
terms of attributes of B and all characteristics of B can be defined in terms of
attributes of A. If types in two different representations are not isomorphic, then exact
translation from the subsuming representation is allowed but only in specific
conditions. If no subsumption relationship holds, then approximation has to be applied.
There is usually more than one method of approximation for each type conversion .
process. For example, a spline can be approximated to a number of straight line
segements (AutoCAD igesout translator). This may lead to accumulated errors, if the
approximated type is used in a subsequent conversion. It may also lead to loss of

93

information in translating in the opposite direction. For example, the approximated
spline in the above example loses all information about curvature and control points
and cannot be translated back to its original type.

In this paper we propose an approach to translation that deals with the above
problems. In this approach different representations can be stored in a unified database
that provides means for translating from one representation to the other.
Representations are not fixed and new ones can be added as design proceeds.

EDM APPROACH TO TRANSLATION

The Engineering Data Model (EDM) is a data model and a database implementation
(EDM-2) developed to provide a platform for both representing design information
and supporting translation between different application views. [Eastman et. al. 91].
The design database is the repository of all information pertaining to the product being
designed, for re-use by all applications that need it. In order to make translation a task
of the database, EDM defines some structures that capture the relationships of the
object types and provides mechanisms for managing the integrity of the views when
they are updated, possibly in an arbitrary order. It also provides a mechanism for
deriving dependent data and generating and maintaining equivalent views.

Primitives:

The primitives of EDM-2 language include domains, constraints and maps. Domain is
a type or a set of allowable values. EDM-2 is a strongly-typed language which
requires all variables to be of declared types. Constraints define relations among object
attributes or among objects and are defined globally with type reference only. To
invoke a constraint for a specific instance, a constraint call is used to identify the
required instance reference and the actual input parameters. A state value is associated
with each constraint to manage the integrity of the model. Maps are specialization of
constraints that have an output set and its implementation allows the changing of the
database variables and schema. As with constraints, map calls are used to identify the
object reference and the actual input/output sets. The inherited state value is used to
indicate the validity of the current values that were generated by the map call. If a
variable in the input set of a map is changed, the state value is set to blank, marking
the output set variables as invalid. Constraints and maps can be implemented in any
available programming language and then linked to the database as object methods.
EDM-2 provides a management system for checking constraints and invoking maps,
which maintains the state value of both and checks the parameter types.

94

Structures:

The main structure in EDM is the Design Entity (DE). There is a class definition for
DE which carries all its attributes and constraints. DEs can be arranged in a
specialization lattice, to allow inheritance of higher level DE attributes. Composite
objects are defined using a ‘composition’ structure which identifies a set of parts that
make up the composite object and a set of constraints that define how the parts are put
together. The checking and maintenance of the integrity constraints may follow a
precedence order, i.e. certain constraints have to be checked before others. To allow
this precedence order EDM provides an ‘accumulation’ structure which has two sets
of constraints: preconditions and postconditions and is associated with either a DE or
a composition. Maps are defined in reference to a DE and can be applied to any
instance of that DE.

TRANSLATION WITHIN THE EDM DATABASE:

Translation is mapping the set of objects in one representation into the set of objects in
a different representation. This mapping takes place on various levels of the
representation. As described above, the ‘map’ construct in EDM-2 provides a method
for mapping between two attribute type sets: input set and output set. In translation,
the main construct for defining identity is the DE. A high level DE carries all views of
the identical object. In some cases equivalence is only supported if certain rules or
conditions hold. These conditions are defined by constraints. If a map has precondition
constraints that must be satisfied before execution, then an accumulation is used to
specify those preconditions and control the execution of the map. A DE may be
defined as a composite object and a map translates the DE and all the parts defined in
the associated composition. In this case the scope of the map is all the DEs in the
composition.

Here, We foucus on three types of translation based on the object definition above.

1. The first type is view translation. This type generates one view of the object from
another view of the same object. Different applications have different views of the
same object and these views are used in the presenting the object and manipulating
it. For example, the circular arc is represented in one view by three points, center,
start point and end point; in another view it is represented by a center point, radius
and two_angles. It is obvious that one view can easily be generated from the other.

2. The second type of translation is object type conversion. Object types can be
defined in terms of other object types by applying some restrictions to a more
general type. For example, the rational B-spline curve can represent a variety of
curve types including the straight line and conic sections. The general
representation of the B-spline is restricted by some constraints to represent the
conic section curves and by other constraints to represent segments of straight

95

lines. Now, given a straight line that is represented by its two end points, it may be
desirable to convert its representation into a rational B-spline representation, e.g.
to modify it as such so that it describes a more sophisticated shape. Type
relationships can be defined in general terms in a lattice for the common geometric
entities. '

The third type of translation is composite object translation. A composite object is.
an object that is made up of a set of simpler objects. For example, a polygon is
made up of a set of lines. A composite object can be represented as a set of
enumerated components and a set of relations (constraints) describe how they are
put together. In this case relations specify that the lines are two connected and non
intersecting. Alternatively, the polygon can be described as a single entity defined
by a sequence of vertices. The translation of composite objects can take place in
one of three ways: Single object to composition, Composition to single object and
Composition to composition. In the third case a decomposition operation is
required in order to generate a set of components that can be used to create the
new composition.

Processes of Translation.

We identify the steps of the translation operation and their language commands in
EDM as follows:

1.

Definition of input format: data structures, integrity rules, and type hierarchies.
These definitions match the relations that already exist in the given format. A
model is defined in EDM constructs to represent this format isomorphicaly as
shown in the example below.

Definition of output format: data structures, integrity rules, and type hierarchies.
The required output may have a set of relations that map onto relations in the
database or it may need to be incorporated within it. A formal way of defining
relationships for both input and output is provided by EDM .constructs.

Definition of the generic objects that accommodate both representations as
subclasses. This is defined in the generic entities section of the example.

Definition of maps as methods of converting between two representations. A map
is defined for each entity to be translated. It should be noted that more than one
map can be defined for the same entity to convert it in a number of ways. A
mapcall is defined to specify the actual arguments of the entity class to translate.
Definition of mapping paths between input and output format. A variety of maps
can be defined for the same type conversion requirement based on the type lattices.
One-to-one mapping produces equal types on both ends. Other types of mapping
result in different conditions in each direction. The latter may suffer some loss of
data in going from a complex type to a simpler one. The recovery requires defining
more conditions under which the simple type can convert to the more complex
one.

96

6. The structure that manages the mapping operation is accumulation. An
accumulation can have a set of precondition constraints that define the data state
requirements for the mapping to take place. If all the constraints in the
precondition set are satisfied, the map can execute and produce instances of the
output set type entities.

7. Application of mapping of a path of choice. Objects of the same type need not
translate through the same path. Each instance (or set of instances) of a type may
choose a different path according to the intended use in the target type (format).
The application of these choices can be made through the design process. The
mapcall specifies the entity paths and the map to be applied to them. The ‘EVAL’
command operates on a map call and is passed a set of DEs to be translated. It
checks the construct that holds the mapcall. If it is a DE, it executes directly. If it
is an accumulation, it checks the state of the precondition constraints and execute
the map only if they are satisfied.

THE EXAMPLE

Geometry is a basic element in engineering design. There are several formats for
geometry in different systems. We choose IGES and DXF among those formats for
our example to illustrate the process of translation since these are the two most
common formats in CAD applications. We apply the processes of translation as
described above to simple objects in both representations. More complex objects can
be translated in the same manner, but the map implementation will be more
sophisticated. Note that input set and output set are interchangeable and are
determined by the map construct. First, we define the classes of entities that exist in
IGES in EDM-2 model as shown in figure 3.

ENTITY Specialization e ENTITY Specialization e

Composiﬁon L] Composition ——
COMP.
CURVE POINT POLYLINE

POINT
- Z
CIRC. LINE CIRCLE ARC
LINE ARC VERTEX
Figure 3. Example IGES Entities Figure 4. Example DXF Entities

Then we define DXF entity classes as shown in figure 4.. Unlike IGES, there is no
general entity class. The common characteristics, such as layer, thickness, elevation,
etc are defined for each entity. Here we define a general entity class for DXF entities
to make all the attributes explicit. The EDM-2 language commands for all the steps
~ are shown in appendix A.

97

The next step is defining generic classes as generalizations of both IGES and DXF
classes for each entity (Figure 5). These generic classes can be expanded later to
accomodate more formats as the need arises. Instances of the defined entities are
created during design operations or by some applications.

Generic Point Generic Arc Generic Curve
IGES DXF IGES DXF IGES DXF
point point |. circ_arc arc curve polyline
Generic Line DXF /\
circle IGES IGES DXF
IGES DXF line circ_arc vertex
line line

Figure 5. Generalization of IGES and DXF Classes

At this point the newly created generic line instance has an iges line entity but has no
dxf line entity. The maps can now be defined to translate from IGES to DXF.

MAP: lines
Refrgnce: gen_line
I%: jiges_line

0 uf dx{_line

/] \
Geﬁ_liny X

IGES DXF
line line

Figure 6. Map Definition

Map calls operate on instances of DEs. There is an EDM-2 command to execute a
map call with reference to a specified set of DE instances of its reference object. For
example, to translate a set of iges_line instances to dxf_line instances within the same
gen_line instance we invoke the following command:

EVAL & lines ON DE (KEYNAME=(gll, gl2, gl3)) OF gen line;

where g1, gl2, gl3 are keynames of the chosen instances. To select all instances, we
can use the * character as a wild card. This command takes each instance of gen_line
in the specified set and applies the map call d_lines to it. The map implementation
handles the input checking and dereferencing through the ‘Constraint and Map
Programming Interface CMPI’ of EDM-2, which provides access to the internal

98

structure of the EDM-2 database and allows manipulation of its values and schema
within dynamically linked C functions. The result of this command is the creation of an
instance of dxf_line in each of the specified gen_line instances as translation of the
iges_line instance. If a dxf_line instance already exists in any of the specified gen_line
instances, the values of its attributes are modified to reflect the current translation.

CONCLUSION

We have presented the EDM database management system as a medium for
performing data translation operations in a design database. The structure of EDM and
its integrity management facilities provide a means for establishing relationships among
different representations and methods for mapping from one representation to the
other. The example shows simple maps for translating between simple entities in IGES
and DXF formats, which are two of the most common formats for exchanging graphic
information. The same approach can be used for complex objects found in high level
applications. We believe these capabilities can be scaled to a production level system.

Note

This work has been supported by the National Science Foundation, grant No. IRI
9319982.

REFERENCES

Abeitboul, Serge and Bonner, Anthony. Objects and Views. Proceedings of the ACM SIGMOD
International Conference on Management of Data. Denver, Colorado, May, 1991.

Adam, Nabil R. & Bhargava, Bharat K. Advanced Database Systems. Lecture Notes in Computer
Science Series, Springer Verlag, Berlin, 1993.

Eastman, Charles M., Bond, Alan H. and Chase, Scott C. A Formal Approach for Product Model
Information. Research in Engineering Design. 2:4, pp. 65-80. 1991.

Monk, S.R. View Definition in an Object-Oriented Database. Information and Software Technology,
Vol. 36, No. 9, pp. 549-554, September, 1994.

Stemple, David and Sheard, Tim. Construction and Calculus of Types for Database Systems. In
Bancilhon, F. and Buneman, P. (Ed.) Advances in Database Programming Languages. ACM
press, New York, 1990.

Stone, Harold. Discrete Mathematical Structures and Their Applications. Science Research
Associates, Inc. Palo Alto, California, 1973.

Stouffs, R; Krishnamurti, R., Eastman, C. & Assal, H. Non-Standard Representation of Solid Models.
1995 (To be presented at CADD Future 1995, Singapore.).

99

Tremblay, J.P. and Manohar, R. Discrete Mathematical Structures with Applications to Computer
Science. McGraw Hill Computer Science Series, McGraw Hill Inc., 1975.

Ullman, Jeffrey D. Principles of Database and Knowledge-Base Systems. Vol. 1. Computer Science

Press Inc. Rockville, Maryland, 1988.

APPENDIX A

EDM-2 LANGUAGE COMMANDS FOR THE EXAMPLE

Create IGES class entities

CREATE

CREATE

CREATE

CREATE

CREATE

DE iges_entity KEYNAME

ATTR (e_type:num, para:num,
struct:num, pattern:num,
e_level:num, e_view:num,
transform:name, label:name,
stat:num, seg:num,
welight:num, color:num,
para_count:num, form:num)

DESC "A generic class for all
entities in IGES";

DR iges_point KEYNAME

ATTR(e:iges_entity, x:coord,
y:coord, z:icoord)

DESC "A simple point®;

PE iges_line XEYNAME

ATTR (e:iges_entity,
start_p:iges_point,
end_p:iges_point)

DESC "A straight line segment"™;

DE iges_circ_arc KEYNAME
ATTR(e:iges_entity,
center_p:iges_point,
start_p:iges_point,
end_p:iges_point)
DESC "Circular arc-includes
circle®;

DE iges_comp_curve KEYNAME

ATTR(e:iges_entity,
n_segments:num) ;

DESC “Composite Curve, lines &
arcs”;

COMP to_curve
TARGET iges_comp_curve
PART (dges_line,iges_circ_arc);

Create DXF class entities

CREATE

DE dxf_entity KEYNAME

ATTR (e_type:num, layer:num,
elevation:coord,
thickness:coord,
linetype:num, color:name)

100

CREATE

CREATE

CREATE

CREATE

DESC "Generic class for all
entitles in DXF, carries
common properties to all
entities ";

DE dxf_ point KEYNAME

ATTR(e:dxf_entity, x:coord,
y:coord, z:coord)

DESC *A simple point*;

DE dxf_ line KEYNAMNE

ATTR(e:dxf_entity,
start_p:dxf_point,

: end_p:dxf_point)

DESC "A straight line segment®;

DE dxf arc KEYNAME

ATTR(e:dxf_entity,
center_p:dxf point,
raduis:cooxd, start_p:angle,
end_p:angle)

DESC "Circular arc - no
circle";

DE dxf_ circle KEYNAME

ATTR(e:dxf_entity,
center_p:dxf_point,
radius:coord)

DESC *Full circle®;

DE dxf_ vertex KEYNAME

ATTR(e:dxf_entity,
location:dxf_point,
start_width:coord,
end_width:coord,
bulge:angle, flag:num,
tangent_dir:coord)

DESC "A polyline vertex";

DE dxf_polyline KEYNAME
ATTR{e:dxf_entity,
selevation:daxf point,
flag:num, start_width:coord,
end_width:coord, m_vert:num,
n_vert:num,m dnst:num,
n_dnst:num, pl_type:num);

COMP to_polyline
TARGET dxf polyline
PART (dxf_vertex);

Create the generic class enftities to
generalize both IGES and DXF

CREATE DE gen_point KEYNAME
ATTR(1i_point:iges_point,
d_point:dxf_point)
DESC *Generic point*;

CREATE DE gen_line KEYNAME
ATTR(i_line:iges_line,
d_line:dxf_line)
DESC "Generic straight line
segment";

CREATE DE gen_arc KEYNAME
ATTR(i_arc:iges_circ_arc,
d_arc:dxf_arc,
d_circle:dxf_circle)
DESC "Generic arc segment.”;

CREATE DE gen_curve KEYNAME
ATTR(i_curve:iges_comp_curve,
d_curve:dxf polyline)
DESC "A generic composite
curve-polyline.”;

CREATE CONSTRAINT not_coincident
(point, point)
IMPL $COMNSTRAINTS/coincd.so
DESC "Checks that two points
are not coincident®;

CREATE CONSTRAINT coincident (point,
point)
IMPL $CONSTRAINTS/coincd.so
DESC "Checks that two points
are coincident™;

CREATE CCALIL open_arc
CONSTRAINT not_colncident
(start_p, end_p):V
DESC "Checks if the arc is
cpen”;
CREATE CCALL closed_arc
CONSTRAINT coincident (start p,
end_p):V
DESC *Checks if the arc is
closed”;

Example of create iges_line instance
and assign it to a gen_line instance

:v_11 = INSERT INTO DE iges_line
KEYNAME=11 (start_p.x=12.3,
start_p.y=14.5,
start_p.z=0.0, end_p.x=28.9,
end_p.y=37.6, end p.z=45.3);

101

INSERT INTO DE gen_lire KEYNAME=gll
(i_linem:v_11);

Create Maps to translate lines, arcs
and curves.

CREATE MAP lines
(iges_line)
RETURN (dxf_line)
IMPL $MAP_METHODS/lines.so
DESC "Make a dxf line out of an
iges line. (trivial)®;

MAPCALL & lines

MAP lines

(i_line)

RETURN (d_line)

REF gen_line

DESC "Requires the actual
objects as parametexs.";

CREATE

CREATE MAP arcs
(iges_circ_arc)
RETURK (dxf_arc, dxf_circle)
IMPL $NAP_METHODS/arcs.sSo
DESC "Make dxf arc or circle
out of iges cizuclar arc.”;

CREATE MAPCALL circ_arcs
MAP axcs
(1_axc)
RETURN (&_arc, d_circle)
REF gen_arc
DESC "Requires the actual
objects as parameters.”;

CREATE MAPCALL arc_circs

(i_arc)

RETURN (d_arc, d_circle)

DESC "Requires the actual
objects as parameters.”;

CREATE MAP curves
(iges_comp_curve)
RETURN (dxf_polyline)
IMPL $MAP_METHODS/cCurves.so
DESC "Make dxf polyline out of
iges composite curve.";

MAPCALL curve_to_polyline

MAP curves

(i_curve)

RETURN (d4_curve)

REF gen_curve

DESC "Requires the actual
objects as parameters.”;

CREATE

