Construction Informatics Digital Library http://itc.scix.net/

paper w78-1995-371.content

MODELLING STATIC AND DYNAMIC KNOWLEDGE
DURING DESIGN |

t

Robin Drogemuller!

ABSTRACT

The ISO STEP standards for product data modelling and exchange are based on the use
of Express. Express has acknowledged limitations. Modifications have been suggested
to extend Express (Express-E) into a more object-oriented language and to add rules as
a means of encoding knowledge. The EDM group have presented solutions to many of
these limitations for the modelling of buildings. .

This paper discusses BDeCS (Building Design and Construction System), an
interactive system that supports building design and construction. BDeCS uses ideas
from Express, EDM and the various knowledge representation formalisms developed
in AI research. The initial development of BDeCS concentrated on the representation of
knowledge within the system. The user interface was then developed around methods
of interacting with the knowledge in as "natural"” a way as possible. Limitations of both
knowledge representation formalisms from the Al field and traditional software
development have been identified.

The needs for extensibility and sharing of information among all of the members of the
building design and construction team have lead to a software architecture that is
unique. Methods of organising teams of people to work concurrently on the one
project, while maintaining consistency of the data have also been developed.

Introduction

The use of computers to support design, rather than drafting, requires developments in
three main areas. The first is in the modelling of information in the design domain. The
second area is in modelling and supporting the expertise of the designer. The third area
is in providing interfaces to computer systems that allow the designer to interact in a
natural way with the computer system by hiding the detail of the information being
manipulated. ' ‘

The way that information is modelled during the design stage is critical to the ease with
which computer based tools can assist in the design process (Eastman, 1975) and

. provides the basis for the product models used during manufacture, maintenance and

disposal.of a product. ' -

- 1 Head, Division of Construction Management

James Cook University of North Queensland, Townsville Qld 4811, Australia
Robin.Drogemuller@jcu.edu.au _

371

Recent developments in product modelling are based on object oriented approaches.
Terminology varies widely, so the following definitions will be used: '

Class : a group of objects with common properties and behaviour.
Instance : a single object that is a member of a class.

Where the terminology used within a particular implementation varies from this, these
terms will be placed in braces after the alternative térm.

Modelling Static and Dynamic Information

The information modelled in a computer system to assist design has a number of basic
properties. Eastman (1994) lists them as:

Aggregation: of attributes and relations which describe one object;
Generalisation/Specialisation: into a classification hierarchy;

Composition: of component objects into a composite, object (a type of
aggregation); and ' _

Classification: of an instance as a type of an object.

Aggregation is the means by which individual classes are derived, while
Generalisation/Specialisation provides the basis for development of a hierarchy of
classes. One of the problems with using classification systems within the Construction
Industry (ie SfB) is that building information does not follow a simple hierarchical
structure. A single wall panel can be an internal or external wall, load bearing or non-
load bearing and may be one structural unit or part of a larger structural unit such as a
shear wall running through several stories. The use of multiple inheritance provides a
method for handling this complexity and also allows different disciplines within the
construction industry to use specialised classification systems.

When considering the dynamic aspects of modelling there is a distinct separation
between the modelling needs of domain knowledge - information about buildings for
example - and modelling a particular instance or class of instances. For example, the
general class ‘door’ has a definition that is stable. While defining the characteristics
common to all doors is difficult, it is simple to decide whether an instance is a door.
Once the class ‘door’ is defined it can stay within the schema for our model. There is
no time dependence on the class ‘door’. If an instance ‘door_1’ of ‘door’ is defined the
time at which the door was created and (possibly) deleted must be stored. This
information is required for two reasons - firstly, it is necessary to ask “What was the
state of the model at time T?” and secondly, the user must be able to step backwards
through the design space as part of the normal exploratory nature of design. Variation
also exists'in the constraints imposed on a building. The total cost, for example, may
be fixed but there may be considerable latitude in the costs of particular elements.

There are no instances in a building project which can be guaranteed to last for the full
life of the project. The design process may commence with a known site for which a
cost effective use must be found or it may start with a perceived need for a built facility
for which an appropriate site must be found. There is no guarantee that either the site or
the building type or both will not change during the design process. If we can not

372

guarantee the continued existence of the two highest level instances within a project,
then the component instances are no more stable. Even the client may change if a
development project is sold before completion. -

Problems with Current Technology

Computer Aided Drafting (CADr) systems are not readily able to support the life cycle
of buildings since a large proportion of the decisions are made before any graphical
design is started (Ferry & Brandon, 1991). Hence significant amounts of information
need to be stored before there are any graphical elements to which information can be
attached. .

The standard relational data modelling techniques do not work well in design/
manufacture disciplines. The problems with using relational databases lie in three areas
- the representational, the theoretical and the implementational.

" Representational problems occur when the data is incomplete (Reiter, 1982). When a
building project is first proposed, we know that it will have a roof and walls (in most
cases), However, we do not necessarily know what construction technologies and
materials will be used. For example, the value of the attribute material, for the roof
cladding may be unknown until well into the design process. While designing an
architect may want to use either terra cotta or concrete tiles for a roof, but not metal
deck. Relational databases have problems representing such a list of possible choices or
exclusions which are a subset of the allowed values.

Theoretical problems are caused by basic assumptions made in most relational systems
(Reiter, 1982). Domain closure assumes that the only individuals are those that exist in
the database. It is assumed that individuals with distinct names are distinct. The closed
world assumption implies that the only possible instances of a relation are those implicit
in the database. The RM/T relational model (Codd, 1979) provided a separate identifier
for each individual that allowed two individuals with the same name (ie John Smith) to
gis{) within the database. The scope of this identifier was- over all instances within the
tabase.

The complexity of data models for most design/manufacture domains imposes
implementation problems. The complexity of the information that must be modelled
means that capturing the full semantics of the data and relations is extremely difficult.
The lack of commonality between different projects increases the difficulty of
developing re-useable data models . Adding to the problems caused by complexity is
the dynamic nature of much of the information. This dynamism means that the
relational database model is unsuitable. for most design systems (Eastman, 1994). This
is due to the need to change the definitions of the relations from which the tables of data
. are structured and to then rebuild the tables. This is not an exercise to be performed
several times a day as alternatives are tested.

Object-oriented database systems (OODB) are under development to overcome some of
these problems. Since OODBs are not yet a mature technology individual systems must

373

be evaluated to ensure that they allow the schema to be modified at run-time to allow
for restructuring of information as decisions are made.

A major constraint with many types of information systems is the issue of
completeness/incompleteness. When is a model of a building complete? What
information is required to completely define a building element? A further constraint on
the development of industry knowledge bases is the need to localise knowledge.
Different materials, techniques and regulations apply in various localities. Single skin
masonry construction, for example, is acceptable in northern Australia, where cyclones
are common, but is not accepted in other non-cyclonic areas.

Object-based approaches

STEP (ISO, 1994a) is the major international product modelling effort. It is supported
. by ISO and involves many people from a multitude of countries. STEP started in 1984
as an initiative to allow vendor independent exchange of all types of design knowledge,
including graphics. The aim of STEP is to support the exchange of information
throughout the building lifecycle. STEP does not specify how information is stored
within a system. The only concern is the interfaces between systems.

The core of STEP is the Express product modelling language (ISO, 1994b). Schema
are defined in Express and then exchanged using text files based on the exchange file
syntax (ISO,1994c). The sharing of databases is also supported by a Standard Data
Access Interface (SDAI) (ISO, 1994d).

Express is built on object-based concepts. Possible worlds are defined in terms of
entities (classes). Each entity has attributes (properties) which can be explicit, optional,
derived from other attributes or inverse. The attributes are typed and cardinalities can be
set. Local and global constraints can be applied using rules. Functions and procedures
can also be defined. A product is defined by instances with values assigned to the
attributes. Within the parts of STEP, relations between instances are coded as attributes
rather than by modelling relationships explicitly. :

Explicit attributes are of little use when modelling the entire lifecycle of buildings. An
explicit attribute giving a unique key with global scope is required for identification. In
most circumstances all other attributes should be optional since it is difficult to specify
unique attributes that will be applicable throughout the life of an instance.

Constraints are either undefined or satisfied. Partial integrity can be modelled using
‘optional’ attributes in conjunction with the EXISTS and NVL (null value) functions.
Rule can be used to define the requirements for a particular stage of the design process

but this is rather inelegant.
The uhderlying philosophy is that the whole world of discourse can be modelled in a

universally applicable way. There are however calls within the SDAI that allow the
extension of a schema and instances in a dynamic manner.

374

Most of the proposals for improving Express will add more object-oriented capabilities
and will move it more towards being a programming language rather than a modelling
language. The CSTB have developed rule-based extensions to Express than allow for
more flexibility in knowledge representation.

EDM (Engineering Data Model) (Eastman, 1992) was developed at UCLA to address
problems identified in architecture design. It has a long heritage, stretching back into
the 1970’s. EDM addresses the problems of storing and manipulating information
- within CAD systems and consequently has a wider scope than STEP.

The basic structure of information within EDM is very similar to STEP. Functional
Entities (FE) correspond to STEP Entities The major differences within EDM are:

There is no explicit difference between instances and Function Entities (classes);

The scope of constraints is restricted to the FE and its component FEs. ‘

The lack of distinction between instances and classes is an attempt to handle the
dynamics of change within the design process. This provides a great deal of flexibility
but leads to problems with separating instances from FEs (objects). Semantic nets (Mac
‘Randal, 1988) have similar problems. Alternative methods of handling instances and
classes are under consideration for the next version of EDM.

Restricting the scope of constraints within EDM is a significant difference from STEP.
EDM prevents a model specifying that two walls are parallel within the constraints
attached to the walls. The constraint that forces the walls to be parallel has to be part of
the FE that defines the room. This forces the constraint to be placed in a position that is
semantically more meaningful.

Approaches from Artificial Intelligence

The two most common representations for modelling information developed within Al
research are rules (Buchanan & Shortliffe, 1984) and frames (Minsky, 1975).

Rules are single statements which specify what should happen of certain conditions are

" met:

IF rain_noise is a concern THEN roof_cladding becomes tiles OR roof_cladding
becomes metal_deck_with_insulation. :

Rules are useful in clearly defined sub-problems but become clumsy and difficult to
. maintain when large numbers of factors are interrelated.

Frames are very similar to objects in that they aggregate the properties of an object.
Constraints and demons can be attached to attributes. However frames do not normally
allow these constraints and dzmons to be inherited in the way that methods are
inherited within object-oriented systems such as Smalltalk or C++ .

While neural nets (Coyne, 1990) can assist in design their 'black box' nature means

that they are not particularly interesting when the representation of design information
is the major interest.

375

User Interfaces

The developers of Computer Aided Drafting (CADr) systems are faced with a dilemma.
Do they provide a general system where operations by users add generic information
(points, lines, etc) or do they build in ‘intelligent’ support where the CADr system
automatically converts geometrical constructs into the relevant building elements? The
users of CADr systems appear to want both - systems which provide semantic support,
making them discipline specific, while also wanting to exchange information between
disciplines without loss of information.

BDeCS -

BDeCS (Building Design & Construction System) is 2 modular system to assist in the
design of buildings. BDeCS .is intended to support building designers without
replacing them. BDeCS concentrates on the representation and manipulation of
information and provides decision support, leaving the selection of alternatives to the
designer. Since flexibility in coding, extensive pattern matching and rapid Prototyping
are required BDECS is largely written in Prolog (Clockson & Mellish, 1987). The Flex
knowledge representation system (LPA, 1992) provides frames, rules, constraints and
a forward chaining inference engine. The provision of backward chaining inference in
Prolog and forward chaining in Flex covers the design and diagnostic aspects of
reasoning required in the Analysis/Synthesis/Appraisal loop of design. Flex has been
extended by adding the concepts of type and cardinality for attribute values to match the
capabilities of Express (ISO, 1994b). Adding these concepts has made the development
of the user interface easier since this meta-knowledge is used to allow the automatic
generation of dialog boxes.

.. A user interacts with BDeCS through a typical CAD interface. There are a series of
graphics screens to display different images of the current state of the building, a text
area to provide textual feedback to the user in an unobtrusive manner, on-screen icons
to allow common commands to be selected easily and pull-down menus for the less
common commands. Large amounts of text, such as cost breakdowns and reports on
thermal performance, can be displayed in separate text windows.

Augenbroe (1992) suggested an integration framework for building product models
Life cycle axis - stages in the life of a building
Actor/task axis - flow of information, jurisdiction amongst procurement team
Enterprise axis - relating company-wide administration & organisational tasks
IT axis - actual impleméntation in hardware and software ’
To which we add two extra axes:
Building usage axis - user oriented aspects
Construction technology axis - choice of available construction systems

376

CADr
Front End

- R
Local Building
Model
Infrence
Engine ~\ N\
r \(\(
KnowledgeBase THERMAL
for hisBuilding | ESTIMATING SCHEDUIING ANALYSES
Inkrence Infrence Infrence
Engine Engine . .Engine
EstimatingModel chedu lingMode & ThermaMod el&
&Knowled geBase Kno wledgeBase KnowledgeBase
BUILDING \. / 7/ \\
KNOWLEDGE ’
BASE IAC
In€rence
Engine
Knowled gdase ~ Steady State Dynamic
| forallBuildings) Thermal Analysis | | Thermal Analysis
' Stand Alone Stand Alone
Pascal Code Fortran Code

BDeCS Architecture : Single Work station
Figure 1

IT Axis

BDeCS consists of separate components that communicate using ‘messaging’. Each
message consists of a command that modifies the current building model. The expected
current state is part of the message to allow automatic detection when two people want
to modify the same element in different sessions. The user’s identification is stored for
audit purposes.

command (<Object>, <Current State>, <[Command, Parameters]>, UserID)

" The components at a single workstation consist of a CAD user interface, a Project
Database -and various support programs that maintain their own internal databases
(Figure 1). Each support program provides a single function or report required by the
user. This component architecture allows the gradual extension of BDeCS capabilities
in a modular manner. The messaging is currently implemented using AppleEvents
(Apple Computer, 1993) but is portable to other platforms. Many of the components of
BDeCS are currently written in Prolog due to the ease in prototyping and compactness
of code but could be written in any computer language.

377

- CBM Central Building Model Note : Discipline support programs not shown
DBM Discipline Building Model
LBM Local Building Model . Updatepath: e

Figure 2 :Workgroup Structure

Life Cycle

BDeCS currently supports the development of design briefs, sketch design and limited
aspects of detailed design. When developing the brief, the user is presented with a
series of dialogs which allow the requirements to be selected. Provision has been made
for all of the classes of buildings defined under the Building Code of Australia. The
information displayed in the dialogs consists of lists of predefined items from the range
of possible choices with default values already selected. The range of possible choices
can be extended by clicking on a button and defining the new choice. The new item
becomes a permanent part of the knowledge base. '

Actor/Task and Enterprise Axes

These sectors are supported by providing a distributed architecture (Figure 2). The
structure of BDeCS places the central building model (CBM) at the root of a tree with
LBMs in surrounding nodes. The CBM stores the current ‘approved’ state of the
design. The CBM maintains a complete model of the building project in a knowledge
base, the available computer resources (either knowledge based or procedural) and the
people who are playing particular roles in the development of the project.

- 'When a task is complete the user uploads the changes required to building model from
their workstation to the superior node where the changes can be checked for
consistency with other concurrent work. After checking, the changes can then be
passed up the tree for more checking and eventual merging with the CBM. The CBM
makes the changes to its internal model and then broadcasts a message to all of the
other LBMs.

Building Usage Axis ‘
The types of activities which occur within a building place significant constraints on the
choice of structural system, external and internal walling, servicing, etc. The
classifications of building types within the Building Code of Australia provided a
useful starting point. This information is encoding within BDeCS. Once the user
selects a particular class(es) of building, knowledge bases containing the relevant
knowledge are attached. '

378

Construction Technology Axis

The choice of the various construction technologies is dependant on the use, location,
etc of the building. No restrictions have been placed on the choice of technologies for
any building type or location. Assistance is provided by using defaults in selecting the
most commonly used options, but these can be easily overridden or new technologies
added. If there are reasons for not selecting a particular choice the reasons are displayed
but the final choice rests with the user.

‘Eastman (1993) lists capabilities required of systems where alternatives are being
assessed: -

Version control: guarantees data consistency. Allows alternatives to be developed
in parallel;

Integrity management: ensuring that all constraints are satisfied;
Concurrency: allows several operators to work on the model simultaneously;

. Extensibility: allows the building model to be changed as technologies and |
systems are selected in the design stages.

and breaks representations into:
State description: defines the geometry and material properties;

Behavioural description: describes the interaction with the surroundings.

BDeCS supports version control by maintaining one definitive copy of the building
model in the CBM. Alternatives can be developed as clones of the CBM at a particular
point and then refusing all updates until a particular alternative has been selected.

Integrity management is handled by the constraint system built in to flex . The
management of concurrency and extensibility have been described above.

The CBM and LBMs contain the state descriptions of the building. The béhavioural
descriptions are embedded in the support nodes at each workstation (figure 1)

Geometry

The methods for handling geometry in commercially available CAD systems vary
widely. Some systems provide basic geometrical primitives, such as point, line, arc,
etc, while others provide parametric relationships and constraints. BDeCS only uses
the geometric primitives in the graphical interface. All parameters and constraints are
stored within the building model. This allows a uniform treatment of all constraints
without making an artificial distinction between geometric and non-geometric
constraints. It also allows constraints and parameters to be applied or overridden at
several levels of granularity. For example, the standard roof slope can be specified for
the whole roof and then overridden for a particular roof plane. '

When defining the geometry of many of the elements within a building the three
dimensional plane is the defining element on which the geometry is based. Most other
elements can be set out with respect to the relevant planes. This is partially implemented
within BDeCS and will be fully implemented within the near future.

379

Conclusion

The continued development of CAD systems is dependent on developments in product
modelling technology if the full life cycle of buildings is to be supported. There are
many issues which need to be solved before proposals such as STEP and EDM fulfil
these product modelling needs. Two key issues are the representation of knowledge
within a model and the standardisation of industry models. Other issues include the
modularisation of knowledge, sharing of knowledge and the coordination of concurrent
work by groups of people on the one model. '

Solutions and partial solutions to some of these problems have been implemented in
BDeCS. A merging of knowledge representation formalisms from both product
modelling and the Al field has proved useful. The ability to encapsulate discipline
specific information in one program which can then provide support to the designer
significantly reduces the size and complexity of code. The ability to extend building
product models while designing is necessary, but introduces some complex issues
regarding the exchange of information.

References

Apple Compﬁter, 1993, Inside Macintosh : Interapplication Communication, Addison-
Wesley

Augenbrée, G., 1992, Integrated Building Performance Evaluation in the Early Design
Stages, Building and Environment , 27 (2), pp 149 - 161

Buchanan, B.G. & Shortliffe, E.H., 1984, Rule-Based Expert Systems: The MYCIN
Experiments of the Stanford Heuristic Programming Project , ,Addison-Wesley '

Clockson, W.F. & Mellish, C.S., 1987, Programming in Prolog , 3rd Ed, Springer-
Verlag:

Codd, E.F., 1979, Extending the Database Relational Model to Capture More
Meaning, ACM Transactions on Database Systems, 4 (4), December 1979, pp 397-434

Coyne, R.D., 1990, Design Reasoning Without Explanations, A Magazine, Winter
1990, pp 72 - 80

Eastman, C.M., A Data Model Analysis of Modularity and Extensibility in Building
Databases, Building and Environment ,27 (2), pp 135 - 148 :

Eastman, C.M., 1994, A Data Model for Design Knowledge, in Carrara, G. & Kalay,
Y.E. (eds), Knowledge-Based 'Camputer-Aided Architectural Design, Elsevier

Ferry D.J. & Brandon, P.S., 1991, Cost Planning of Buildings , BSP Professional
Books

ISO, 1994a, ISO 10303-1 Industrial Automation Systems and Integration - Product
Data Representation and Exchange - Part 1: Overview and Fundamental Principles, ISO

380

ISO, 1994b, ISO 10303-11 Industrial Automation Systemé and Integration - Product
Data Representation and Exchange - Part 11: Description Methods: The EXPRESS
Language Reference Manual, ISO

ISO, 1994c, ISO 10303-21 Industrial Automation Systems and Integration - Product
Data Representation and Exchange - Part 21: Implementation Methods: Clear Text
Encoding of the Exchange Structure, ISO

IS0, 19944, ISO 10303-22 Industrial Automation Systems and Integration - Product
Data Representation and Exchange - Part 22 Implementation Methods: Standard Data
Access Interface Specification, ISO

LPA, flex Expert System Toolkit Version 1.2 (Updated), LPA

Mac Randal, D., 1988, Semantic Networké, in Ringland, G.A. & Duce, D.A. (eds)
Approaches to Knowledge Representation: An Introduction , John Wiley & Sons

Minsky, M., 1975, A Framework for Representing Knowledge, in Winston, P.H. (ed)
The Psychology of Human Vision , McGraw-Hill - : ‘

Reiter, R., 1984, Towards a Logical Reconstruction of Relational Database Theory, in
M. L. Brodie et al (eds), On Conceptual Modelling: Perspectives from. Artificial
Intelligence, Databases and Programming Languages , Springer-Verlag

381 .

