et/

Canstruction Informatics Digital Library http://itc.scix

paper w78-1994-5.content

CAESAR-ANARCHITECTURE FOR ENTERPRISE
MODELLING IN THEAEC INDUSTRY

Tore Christiansen, Principal Research Engineer,
Jan Thomsen, Senior Research Engineer,

Det Norske Veritas Research AS.

N-1322Hgvik, Norway.

Electronic mail: tchr@vr.dnv.no, jthom@vr.dnv.no.

Abstract

Thispaper reviews work inprogress concerning information modelling in support
of enterprise engineering, and discuses how important modelling challenges are
being addressed to support more cost effective development of offshore
installationsfor oil production in the Norwegian part d the North Sea. The paper
describes a framework and a methodology for information modelling of real
world project enterprises and presents initial application examples from the
offshore oil and gas industry.

CAESAR Offshore is a research program undertaken jointly by Norwegian oil
companies, engineering firms, research institutions and the Norwegian Research
Council, with the aim d utilising information-technology-based methods and tools
which lead to more cost effectivefield development and operation. As a part of
CAESAR Offshore we are developing an object oriented system architecture
consisting of aframework and methodologyfor information modelling, based on
our belief that complete and correct enterprise models of development projects
must include both the project requirements, deliverables, activities and
organisation. Thus information models of projects must represent both the
objective,product, process and organisation dimensions.

Based upon a model of engineering design, we explicate and relate the enterprise
dimensions, and outline a way of describing the difference between planned
action and actual behaviour. We implement our model architecture according to
an information meta-model, based on a set of common reference entities, and a
general offshore reference model. In our work we are using the offshore
reference model, as the basis for modelling offshore platforms, design of
hydraulic system for offshore production units, and project control systemsfor
engineering design projects.

CONTENTS

1. Introduction

1.1 The motivation for CAESAR Offshore
1.2 The objectives of our research

1.3 An overview of the paper

2. Enterprise modelling framework

2.1 Addressing the requirement to completeness

2.2 Addressing the requirement for correctness

2.3 Addressing the requirement for life-cycle support -

3. Information model implementation

3.1 The modelling principles and common reference entities
3.2 The information modelling methodology

3.3 The information meta-model

4. General offshore reference model

4.1 The reference entities for offshore projects

4.2 The basic type resources

4.3 A compound type description for concept design

5. Application to offshore development projects
5.1 A model of jacket platform design

5.2 A model of hydraulic systems design

5.3 A model of project control

6. Conclusions and further work
Acknowledgements

References

1. INTRODUCTION

This chapter describes the underlying motivation for the CAESAR Offshore
research program, as well as our objectives for developing the CAESAR
enterprise modelling architecture.

1.1 THE MOTIVATION FOR CAESAR OFFSHORE

The remaining oil reserves in the North Sea are mostly located in smaller fields
where exploration and development must be performed in a more cost efficient
manner in order to justify the probable life-cycle economy. This is expected to
lead to a series of changes in future development projects, including new
organisation of project teams, new contractual arrangements, different
responsibilities and roles between project partners, extended reuse of standard
solutions, reduction in the amount of technical and contractual documentation, and
introduction of digital documentation according to current and future international
standards. The challenge facing project managers is to reengineer their project
practises while understanding how these changes are likely to affect the duration,
cost and quality of field development projects. CAESAR Offshore is a research
program undertaken jointly by Norwegian oil companies, engineering firms,
research institutions and the Norwegian Research Council, with the aim of
utilising information-technology-based methods and tools which lead to more cost
effective field development and operation. To accomplish its aim CAESAR
Offshore consists of a series of research projects addressing product modelling,
use of standard parts libraries, technical information transfer from development to
operation, and reengineering of work processes and organisations.

Gradual change may be viewed as a set of "linear problems", where it is, for
example, possible to create slightly different products using the same process, or
meet gradual technological advances by training organisational members. This
world of "incremental improvement" has typically been the focus of many TQM
efforts. Business reengineering, however, involves fundamental changes and may
be thought of as a "non-linear problem", requiring simultaneous restructuring of
all dimensions of the business. It is not possible to completely change business
objectives or products while still using the same business processes, nor is it
possible to change the business process without retraining and motivating the
organisation. To handle such "radical change" requires an understanding of all
relevant aspects of the project. Such understanding is enhanced by information
models which describe the complete set of aspects and phases of the project.

Enterprise modelling aims to address issues in connection with the overall
business process of human organisations. Real world enterprises consist of human
actors, characterised by their ability to handle change by adaptation, and their
ability to learn from experience. Learning thus causes organisational members to
modify their objectives, which changes products and processes, and give
opportunities for new learning. Consequently, enterprises undergo a continual
process of change, and planned action is very seldom replicated exactly in actual
behaviour. This makes it extremely challenging to develop enterprise models

which exhibit "validity over time." Since development of information models is
costly and time consuming, we must be able to use the models for a prolonged
time to make model development economically viable. Extended use facilitated by
models exhibiting a mix of flexibility and stability. This ensures that model's
validity is maintained, while adapting the model to account for change and thus
continue to give a correct representation of reality.

1.2 THE OBJECTIVES OF OUR RESEARCH

As a part of CAESAR Offshore we are developing an object oriented system
architecture consisting of a framework and methodology for modelling of field
development projects in the offshore oil and gas industry. The objectives of our
work is to develop a model architecture which enhances a complete and correct
description of development projects, and may be used to enhance understanding of
probable effects of proposed or anticipated changes in project requirements and
execution. These objectives require that our model architecture supports building
of project model representations which are (1) complete in their description of all
aspects of projects, including the project objectives, product, process and
organisation, and (2) correct in their description of both planned action and actual
behaviour. These models may then be formalised and used to predict probable
effect of suggested changes. That is, complete, correct and operational models
which can be used by project managers as tools for decision support

The focus of CAESAR Offshore is field development. That is, AEC projects
consisting of conceptual design, engineering, procurement, construction,
installation, commissioning and hook-up. The information models should also be
useful for transfer of information to the operation and maintenance phases of the
life-cycle, and ideally serve as a basis for life-cycle support in operation.

1.3 AN OVERVIEW OF THE PAPER

In Chapter 2, we discuss some important requirements to enterprise- models of
development projects, and describe how these challenges have been addressed in
the CAESAR enterprise modelling framework.

In Chapter 3, we describe how the enterprise modelling framework has been
implemented as a methodology and meta-model for building information models.

In Chapter 4, we show how the model implementation has been used to develop a
reference model for offshore field development.

In Chapter 5, we describe a set of information model applications built on top of
the offshore reference model.

In Chapter 6, we summarise our work and list a series of topics that must be
addressed in order to extend the framework, validate the methodology, and
enhance further modelling.

2. ENTERPRISE MODELLING FRAMEWORK

In order to be useful for describing projects over any sustained period enterprise
models must satisfactorily address a set of problems regarding representation of
and reasoning about the complexity and uncertainty of the real world. These
problems include instability of requirements, inconsistency of interpretation,
inaccuracy of behaviour, and incongruence of action. Current information models
of projects generally do not address these problems, with the consequence that
models for planning and execution of project management can not readily meet
the real requirements of the working project team Thus time and money spent in
model development is often not very effective since the resulting project model
can not be used to inform and support project execution.

2.1 ADDRESSING THE REQUIREMENT FOR COMPLETENESS

A majority of current information models are pure product models, process
models or organisational models, and do not combine these dimensions of the
enterprise. Consequently, these models have limited applicability for real world
problems involving multidimensional issues. Traditionally, product models do
not reference to the processes which create and modify the product. Process
models on the other hand rarely describe products (i.e., the input to and output
from process activities) in any meaningful manner for configuration management
of the product over its life-cycle. Furthermore, product and process models
normally do not contain any information about the responsibility, competence of
the organisation. We must therefore strive for more general models, which have a
more complete descriptions of the enterprise dimensions.

Models are representations of systems, which in themselves are models of reality.
Therefore, model completeness is a circular and difficult concept, which requires a
careful definition of the model contents, relative to the purpose of the model. In
our work we define, a project as an enterprise describable in terms of an
organisation (the project team), carrying out a process (activities described the
project plan) to create one or more products (the project deliverables), satisfying
some (set of) predefined objectives (the project goals and requirements). In order
to represent these dimensions in a meaningful manner we must define they ways

in which they relate. This is done in the CAESAR model of engineering design,
shown figure 1.

The figure illustrates how the design objectives are represented by requirements,
and related to the design product in an extension of the well-known FUTS
notation (Willems 88) which also explicitly includes design requirements. We are
using a base-lining view design process, represented by activities, which can
contain sub-activities, and which are related in a precedence network. Activities
take (some version of) the design product as input and produces (a later version
of) the design product as output. Thus, the complete life-cycle may be broken
down into a set of life-cycle phases, related to the product life-cycle by base-
lining. Various organisational actors in the design team are responsible for

carrying out the various activities, and thus also for the product deliverables from
their various activities. The actors are related to one another by a set of formal and
informal coordination relations for control and communication.

Design objective Design process Design organization
s |
1 \As-requlred — [ConceptusiDesign
d Responsibiiity Teem \
Requirement Conceptua -~
engineering Supervision Communication
l As-specified EngineeringDesign
Input/ output Dotalind / Team
Design product relations
4

As-designed

Functional Unit
Conceptual

engineering [Requirement l As-acquired

Technical Detail
Solution engineering As-buiit

As-delivered

Figure 1: The CAESAR model of engineering design
The design objective is described by the set of requirements to the project.

The design product is described in terms of these requirements, as well as
the corresponding functional and technical solutions. The representation
used is a revised version of FUTS *hamburger diagrams” (Willems 88);
ReFUTS, where explicit representation of design requirements captures the
essence of the design (‘the meat of the hamburger”), thus capturing
accountability and design rationale.

The design process is described in terms of design activities, resulting in
relevant base-line versions of the design product. In each high-level activity

(phase) there are various lower level activties related by precedence
relations.

The design organization is described by the project team actors, their
responsibility for design activities, and the various formal and informal
coordination relations between aclors.

We may thus think of enterprise modelling in terms of a so-called OPPO notation
(objective, product, process, organisation). We symbolise this multi-dimensional
approach to building enterprise models in the general CAESAR enterprise
modelling framework shown in figure 2.

We may also view this in terms of an enterprise modelling methodology, in which
the project objective is systematically described in terms by functional
decomposition into a set of requirements and associated solutions. That is, each
requirement (at some level of detail) there is an appropriate solution (at the same
level of detail). The set of requirements, functional units and technical solutions
thus constitute models of the as-desired, as-specified and as-designed product,

respectively. The associated process description must include all relevant
activities and the relevant sets of functional, logical and temporal relations
between these activities. The description of the organisation must include all
resources for carrying out the process. Thus the organisation model should
represent the various actors, their responsibilities as well as the various formal and
informal coordination structures (e.g., supervision, communication networks).

o P>

Functional Functional
dependencies Decomposition @

Realized | & | Desired
Solution Solution

Info mod}
——
I Communication I -

— Procass
Responsibility Activity

dependencies

Qrganization

Actor

==

Figure 2: The CAESAR enterprise modeling framework

This figure illustrates how enterprise modeling includes both objective,
product, process and organization dimensions. That is, from some stated
(set of) objective(s), we may use functional decomposition to derive a
requirement break-down structure representing our desired solution. We
then translate this into a sequence of activities. Between these activities
there exist various dependences, necessitating control of execution (a form
of coordination). We assign responibility for the various activities to actors in
the project organization. Because of the different formal and informal
relations between actors, different needs for communication exist and must
be addressed. Project execution results in some realized solution, which
may or may not satisfy the project requirements (the desired model).

A complete enterprise model of engineering projects should thus include all
of these dimensions.

2.2 ADDRESSING THE REQUIREMENT FOR CORRECTNESS

To formally verify the correctness of a model we can give the model some set of
inputs, and observe how this input affects the internal state of the model as well as
the influence from the model to the external environment. Correctness means that
both the internal and the external states should be equal to the observed state of
the real world (according to chosen criteria). This requires recording of change,

and comparing the model representation and behaviour to see if changes in the
model reflect changes in reality.

Maintaining correctness of the model over time involves both the explanations we
use for the actual changes to the enterprise, and the flexibility of the model to
allow representation of those changes. To describe the behaviour of real world
enterprises, we may use different explanations to account for the relation between
cause and effect. Figure 3 illustrates how project history may be understood in
terms of either a rational logic of intention (March 88), an irrational logic of
implication (March 88), or a boundedly rational logic of interpretation. It is this
latter description which gives rise to causal omnidirectionality, obscuring the
relation between cause and effect such that causality becomes a matter of
interpretation according to chosen definitions.

Causality according to a logic of intention [March 88]

Ohl —> Pmd — Pmc — Ofg

Causality according to a logic of implication [March 88]

Oy -— Prod - Proc - Ox

Causality according to an omnidirectional logic of interpretation

Ou | |* | Pa | | | Ppc | || O,

Figure 3: Different accounts of causality in project execution

In a rational world, a logic of intention prevails which explains projects as a
set of objectives, for which we define one or more product deliverables, for
which we define the required process, for which we employ suitable actors. In
an irrational world goverend by a logic of implication we take the opposite
view. Thus the set of available actors, with their preferences and historical
relations, uniquely define which processes can (and cannot) be executed.
This defines the resulting products, for which we then define some suitable
set of objectives to explain the project results. Reality normally behaves as
a combination of these two views, in which ratioal and irrational actions are
interconnected. We denote this as an omnidirectional logic of interpretation,
symbolized by two-way causal arrows. Note that the word OPPQ is a
palindrome. This symmetry symbolizes the way in which cause and effect is
indistinguishable from a distance, in space or in time. That is, in reality the
direction of causality is seldom clearly identifiable unless you know all
relevant information about both the cause and the system and environment.

The implication for enterprise modelling is a need to capture the differences
between a-priori specifications of intended information and a-posteriori
descriptions of resulting information. This includes the differences between
specifications (requirements) and resulting products (deliverables), the differences
between project plans (prediction) and project execution (history), and the
differences between planned action (policies) and actual behaviour (preferences).
To describe such differences we propose a set of process measures of the
difference between planned action and resulting behaviour. Figure 4 illustrates
these so-called NODE measurements, which involve comparing normative plans
and descriptive behaviour. An example of such a measure is the concept of
verification quality used in the VDT simulation model (Levitt 94), which
measures the degree to which policies for handling non-conformances by proper
corrective action corrective action are followed up by project team members
during simulation of the engineering design projects.”

Cuiture l Preferences
Behavior l

Mismatch between
planned action
and actual behavior

l Policy

Choice
(decision or action)

Policy

Behavior

Time

Figure 4: The NODE measures of coordination performance

In our attempt to develop models which exhibit validity over time in a world
where complex processes are carried out by imperfct actors in uncertain
environments, we have developed a set of measures for characterizing the
differences between planned action and actual behavior. The former, so-
called normative action, symbolizes decisions and action mandated by
project policies and other underlying institutional boundaries. The latter,
descriptive behavior, describes the actual decisions made and actions
carried out during project execution. Our NODE process-measures are
nominal measures of the difference between normative and desriptive
action, and may be seen as measures of process performance. Current
research (e.g., [Fergusson 94] has demonstrated the correlation betwen
similar measures of process performance and end-user satisfaction. We

may thus view the integral of the area between the curves as an aggregate
indication of project quality.

10

By using the word "node" we wish to highlight the similarity between physical
and organisational structures. In an abstract sense they both consist of elements,
connected by nodes and exposed to external loading. Both structures have a
capacity for withstanding load and a resulting response due to the load. In real
structures it is the properties of the connections between elements, i.e., the nodes,
which more than anything determine the response and performance of the
structure. In an organisation structure this behaviour at the nodes takes the form of
various means of coordination between actor elements.

2.3 ADDRESSING THE REQUIREMENT FOR LIFE-CYCLE SUPPORT

The products of modern engineering and construction are typically large and
complex artifacts, representing major investments; and thus requiring a long
period of useful operation in order to ensure proper amortisation and satisfactory
return on the initial investment. Because of job market mobility the average
period of employment is often longer than typical product life-cycles. Moreover,
for large projects, there is often significant replacement of personnel during the
project period. These are serious problems for traceability and capturing of design
rationale, and therefore represents real treats to experiential organisational
learning An approach to meet this challenge is development of models with the
aim that these models should remain valid during the complete life-cycle

The CAESAR framework and methodology is based on our belief that complete
and correct enterprise models of development projects must include both the
project requirements, the project deliverables, the project activities and the project
team organisation. That, in itself, should be a considerable help to enhance the
validity of models over time, since the models may now contain information about
reasons for change, results of change, contents of change, and the actual change
action itself.

In addition, building the model is in itself a costly and time-consuming activity,
and it is therefore it is not practical to constantly redevelop new models for all
kinds of new purposes. We would ideally like to have an all-purpose model,
which can be tailored to all kinds of modelling needs. This too is enhanced by a
complete and correct model of the complete project enterprise.

1

3. INFORMATION MODEL IMPLEMENTATION

Having outlined our framework for enterprise models, we turn now to a discussion
of how we are implementing the framework in a digital information model. This
chapter outlines our modelling principles, reference definitions, modelling
methodology and information meta-model. It should be pointed out however,
that the implementation effort is an ongoing process, and thus not all parts of the
implementation are complete or consistent.

3.1 THE MODELLING PRINCIPLES AND COMMON REFERENCE
ENTITIES

In our view any information modelling effort should rest on a set of modelling
principles, reflecting a consistent philosophy and approach to systematically
describing reality.

Our first principle is to always have a clear distinction between model description
and model instantiation. This principle, which may be summed up by the
statement that a description of a thing is not the same as the thing itself. We
implement the principle by the usual distinction between object classes,
representing the model description, and object instances, representing the model
instantiation. In particular, we explicate this distinction in our reference model by
defining a separate class to represent the collection of all item instances in
enterprise models.

Our second principle is to always keep in mind that the same information may be
interpreted in many different ways by different individuals in different situations.
This principle is summarised by the statement that any thing may represent
anything. Since meaning is contextual, and since the context varies with
participants and situation, the purpose of any model determines the model
structure and content. We implement this principle by use of multiple inheritance
to define different "aspects” to associate different sets of information with a given
entity. That is, different sets of attributes, giving different types of information
about an entity, may be inherited from different parent classes.

Our third principle is that enterprise models should be built from a set of basic
entities, replicated and combined in order to represent more complex entities.
This principle, which states that large and complex things can be described as a
collection of simple things, is of course a fundamentally reductionist view of
reality. We implement this by using part-of relations to systematically compose

compound object types by combining simpler (basic or compound) types. We can
extend the reductionist description by adding new aspects, represented by object

types which describe properties in the complex entity that are not represented in
any of the simpler entities.

Based on these principles we describe a set of common reference entities (CORE).
These reference entities include models, which are the purpose of structures,
which are the function of types, which are the description of items, which are the

12

contents of models. These reference entities, which are implemented as object
classes with inverse is-attribute-of/has-attribute relations, are shown in figure 5.

s X
purpose

of

Is
function
of

Is

tantiation
f description \
Béifmﬂ’ﬂ of y

(Is composed of >

Recomposition ..gq—p Recomposition

Description

Figure 5: The Common Reference Entities (CORE) and their
relations

Models describe the purpose of modelling, and have an associated
structure at the class level, which is the function of a top-level compound
type. The object types may be composed of any number of compound or
basic types. Types are descriptions of items, which are the actual
instance components of the model. Thus, models are composed of items,
which represent real world entities. Items are described by types in a type
hierarchy, using multiple inheritance to include aftribute sets for any
number of information aspects. At some level a type is assembled
representing the complete model. The model structure points to the top-

level type and the functional description of the model as represented by the
various relations between types.

The common reference entities are specialised as appropriate for the various
enterprise model dimensions (objectives, products, processes and organisations).
On top of these sets of dimensional definitions we describe the modelling
resources, as sets of basic types to describe the set of possible basic constituents in
a given domain. We combine the basic types into compound types, and instantiate
relevant types as items to represent specific real world objects (whether physical,
informational or fictional). Sets of items collectively make up model intantiations,
described by the set of object types and the structure of relations between them.

The creation of compound types takes place both through combination of basic
types by the mechanisms of aggregation and/or multiple inheritance. That is, we
may define a new compound types as a collection of simpler basic types. An
example of this is the way in which a process plant is defined by the collection of
process equipment and piping. Alternatively, we may specialise using multiple

13

inheritance to add new information aspects to basic types. Thus for example we
may create a compound activity type for information processing by defining it as a
subclass of flow objects with input output control and resource attributes, and
successors objects with attributes describing precedence relations.

In particular, we view the function of the model as something held by the structure
of relations between object classes. In our framework we have explicated this in
the structure object class, which carries an attribute called function and one or
more pointers to compound type (which in turn points to many other types). Reuse
of descriptions is a useful mechanism both for describing reality and for creating
information modelling. Using the common reference entities as basis for model
building, a given type can be used in many structures (that is, have many
functions) and a given structure can be reused for different purposes (i.e., be used
to describe different models). :

3.2 THE INFORMATION MODELLING METHODOLOGY

In order to define information models in a consistent and systematic manner we
need to describe a methodology for modelling, using the common reference
entities and relations described above. Thus, as indicated in figure 5, building
models can be viewed as associating the purpose, function and top-level type to
relate purpose, function and description, decomposing the type structure to
describe the model contents, instantiating the various types to create items and
recomposing the items to assemble the final model. An initial elaboration of this
modelling methodology is illustrated in figure 6.

The model purpose is associated with the appropriate function and contents to
define the associated structure and top-level compound type of the desired model.
The structure can be reused from previous models, in which case the modelling is
largely finished, or can be built up by decomposition until the type structure is
complete. This model description can now be analysed by instantiation of the
various object types (classes) as a corresponding set of items (instances). In this
analysis select the appropriate attribute values for each instance, and analyse the
items to ensure that their properties and behaviour is locally consistent. Then the

items can be recomposed into the realised model, which should can be checked
against the desired model.

On first sight figures 2 and 6 are similar in appearance. Note however that while
figure 2 shows a meta-model of reality, and thus the objective is typically that of
the project itself (e.g., "reducing field development cost" for the CAESAR
Offshore program), figure 6 shows a meta-model of our modelling approach, and

thus the objective here is to build an enterprise model which support (in some
specified way) the project objectives.

14

Objective

Aggregation y 4
Realized| A | Desired
(Instantiation and properties) | Model Model (Structure and type contents)
Recomposition Decomposition
V 4h N
Evaluate | Propose

. Type structures
o]

Classification

Description Analysis

Figure 6: The CAESAR information modeling methodology

This figure illustrates our methodology for creating information models.
Given some desired overall model purpose identify the appropriate function
and decompose the model iteratively into its component types. These
compoound and basic types describe the model in increasing detail and
thus the decomposition is in effect a form of classification. We next
analyse the various object types by instantiating the object types into a
corresponding set of object instances representing real world entities. That
is we describe (or analyze) the model constituents by assigning attribute
values to all relevant attributes and verifying consistent properties and
behavior of the items. Finally, we recompose the model components into
an aggregate model in order to sum relevant attribute values for the
component objects into global model values. Our information modeling
methodology may be seen in terms of a decomposition-analysis-
recomposition cycle, or a an evaluate-propose cycle.

3.3 THE INFORMATION META-MODEL

In order to use the framework and methodology to build real world applications
we need to structure the information model for consistent definition, storage,
maintenance and reuse. For this we have defined a layered information meta-
model to describe enterprise models. This meta-model consists of a set of layers
representing the complete model architecture.

The modelling principles and common reference entities discussed in chapter 2 are
defined by layers 1 and 2 respectively. Layer 3 defines the enterprise dimensions
(OPPO), while layer 4 holds the resources in the General Offshore Reference
Model (GORM) a set of basic types for each dimension. These layers collectively
make up the system level, that is, the parts of a model which should normally not
be altered during model building. The upper three layers are called the user level,
where the user may combine and extend the basic types into compound types at

15

level 5, in order to build a top-level type for which the function is defined by the
various type relations in a structure object at level 6. At the application level (level
7) the type structures are instantiated as a set of items, given properties locally,
and assembled to a model instance with aggregate behaviour. This information
meta-model is illustrated in figure 7 below

A
Item layer Instantiated model (e.g., the Visund hydraulic system)
User
level
Structure layer Functional structure (e.g., the structure of a hydraulic system)
Compund type layer Compound Offshore Types (GORM) v
" A
Basic type layer Basic Offshore Types (GORM)
Definition layer Objectives, Products, Processes, Organizations (OPPQ)
Reference layer Caesar Offshore Reference Entities (CORE) System
fevel
: information modeling principles
Philosophy layer v

Figure 7 The CAESAR information meta-model

The meta-model is organized in a series of layers in a manner similar to the OSI-
reference model for open systems interconnection. The system level contains
the foundation and basic architecture for defining various CAESAR information
models.

« the philosphy layer defines the principles on which information modeling in
CAESAR is based. This layer is not implementable, but is used to guide the
implementation at other layers.

» the reference layer contains the Common Reference Entities (CORE).

» the definition layer contains the basic model architectures for modeling

objectives, products, processes and organizations, using the basic classes in the
CORE.

« the basic type layer contains the building blocks resources for describing the
contents of a given domain. An example description at this layer is the General
Offshore Reference Model (GORM), which is a reference model of object types
used to build information models of offshore field development and operation.

The user level contains layers for describing, structuring and instantiating models

» the compound type layer contains combinations of basic types. These
composite types can, in turn be combined to define other compound types.

« the structure layer is built by linking composite types with suitable relations to
describe the various structures in a given domain.

« the item layer contains the instances of object types, and thus that represent the
actual real world entities being modeled.

Together, the contents in these layers define a complete CAESAR nformation
model.

16

4. GENERAL OFFSHORE REFERENCE MODEL

Having presented the general modelling framework and methodology in the
previous chapter we now apply it to offshore engineering projects. This chapter
describes an initial version of a general offshore reference model (GORM),
containing resources for modelling offshore development projects.

4.1 THE REFERENCE ENTITIES FOR OFFSHORE PROJECTS

In the GORM we define the building block components for enterprise modelling
of offshore development projects. These building blocks are part of the definition
layer of our meta-model, abilities (objective components), artifacts (product
components), activities (process components) and agents (organisational
components). The primary relations between the various building blocks are that
activities consume and produce artifacts, while abilities control activities and
agents support activities. This description is consistent with the general CAESAR
model of engineering design described in chapter 2. The GORM definition is
shown in figure 8, represented in the OMW object-oriented . r’ASE—tool (TM
Intellicorp, Mountain View, California).”

Iuqunm&nwu hﬁhﬂmmu%mwa ‘
00 Object Disgram: OPPOQd In Domain Cassar

. — o= — o

OrganisatiencO Ovtlype Ohjctlype Asecuten ShwpO(CopoameOf

|

~a B e~

«amemARBpen

| CmsemaiBy Artifact |

:
5
%

E
g
5
|

wAnmewwan
cww AG. —

) "“

Figure 8: Basic entities for the general offshore reference model

The figure shows how the information modeling framework has been used to
define the required elements of the reference model in tems of the various
items describing objectives - abilities, products - artifacts, processes -
activities, and organizations - agents. Abililties represents the desired
outcomes of the project. Artifacts are created to meet abilities. Activities
have precedence relations (predecessor-successor) to other activities.
Agents, support activities end up with responsibility for the artifacts resulting
from the activity.

17

4.2 THE BASIC TYPE RESOURCES

We use the general model of engineering design presented in figure 1 above to
guide our definition of products as a collection of artifacts with appropriate
versioning to account for life-cycle history. That is, a product in offshore
development is anything which requires configuration management, i.e., typically
anything which is tagged. Moreover, products (tagged items) may be composed of

other products (tagged items) and/or collections of lower level (untagged)
components.

Figure 9 shows a set of GORM basic types for describing artifacts. These basic
types, which may be thought of a set of classifiers, include product types (partly
shown on top), version types (as-required, as-designed and as-built), artifact
content types (physical and informational), artifact types (facilities, systems, etc.)
and function types (according to discipline). These basic types are not meant to
be a complete set, but are included as indications of the type of descriptors
needed. The figure is a picture from the Object Browser of Kappa (TM Intellicorp,
Mountain View, California), an object orientcu ucvelopment {Uo1 wWnicn nas peen
used for implementing all of the model architecture.

Aep €Mt View [omect £at view matrvement
nstrumant Oplions GORMProduct App
ArxUserfpps AsRogquirad DeckAncilleries
Paas4 VersienTypes <~o—n’u DeckStwructure
Canfiguredren LivingGuartarirea
Confirwire MainControtioom
ConfigureAre Topeide Uttty Area.
GORM Typos <T-.~u — Prysical
frttactimmtent anghies —informationat \ T
GORMObjectN Facties DrilingArea
Systens
m—
AwactTypes [-Aesembies
PPOMed Comparents
Meteriale
Modia
Proaxtiied Subaty
Precsesied Enersy
Organizations | Comrmunication
CoreMod Frecess
SwiLe , Structursl
et Groph AunctenTypes [Mechenical
FiSystemspps (.
{! Hecirical
Tolscomwunications
YAcCemedetion
r ping
Figure 9 : A product model reference for offshore field development
The figure shows a selection of basic types in the GORM resource set for
describing artifacts.

18

Similarly, we can think of the process as a collection of activities, each of which
can contain sub activities, and between which there exist a set of precedence
relations. For example, offshore engineering is divided into concept, basic and
detail engineering phases, where concept engineering is a predecessor of basic
engineering, which is a predecessor of detail engineering . Each of these phases
are divided into activities for each functional or geographical module, which are in
turn divided into sets of activities for the various disciplines. The various
discipline activities are typically subdivided in a hierarchy of sub-discipline
levels. Thus, for example, conceptual engineering is divided into activities for
processing facilities, deck-structure, subsea systems etc. Each of these sets of
activities are divided into disciplines like process, electro, automation, safety etc.

Figure 10 below shows a set of GORM basic types for describing activities. These
include life cycle phase types (in which the activity takes place), standard activity
types (from a typical standard activity break-down structure of oil companies),
flow object types, content types, precedence types. The various basic types have
attributes describing the function and behaviour of its members. For example, any
activity item which is of type flow object is described by its input, output, control
and resources. For activity instances these relational attributes are values pointers
to artifact or agent object instances.

App Edt View { Onject E View Instruament
[mo'm GORMProcess App
Explorationfhess
LifeCyclePhaseT: oo
ypes
OperstionFuses
Do CormminianingPhase

Howsrtagee tTypes

Freduction
ComtentTypes {— Administration
Coerdinntion

PriEnvirenApp
Pricueripps
a4
Configurais
OContogare]
Configurey
GORM
GORMOetn
GORMONSY
Prodecesvars
o
GORMOrgal Gonersi
PPOMed
[
Ojectvedd
Prosuciiiod
Frocessiad
Organiratios
Coredied
e

| Sub Contract Onabhary
L Canstructien
€§l~'

Offshere
precrmment
StanderdActivity Types
et Grogh DelaliEnginsering
s VEnginearing Fretaginsering

Figure 10 : A process model reference for offshore field development
The figure shows part of the GORM basic types for describing activities.

19

The organisational concept in the reference model includes all resources required
for carrying out offshore projects. That is, agents may be either (human) actors
capable of carrying responsibility (a special form of support), or one of the various
(computer and other) tools used by actors to carry out activities according to their
responsibilities. Between the various agents there may be supervisory and/or
communication relations. An illustration of this organisational model is shown in
figure 11. A similar set of GORM basic types exist to describe actors, including
actor type (a list of possible roles in offshore development), resource type (a list of

the different types of resources) and relation type (competition, control,
communication, verification, competition).

l
!
- §

Telr
E.

Agent

Toal

i

SystemOmcapts 00

)

Figure 11 : A organization model reference for offshore field development
The figure shows the GORM resources for defining compound agent types.

4.3 A COMPOUND TYPE DESCRIPTION FOR CONCEPT DESIGN

The various basic types in GORM may be used to define compound types, by
combination of basic types. In the current implementation this is done by creating
subclasses as children of several basic classes. Through multiple inheritance the
compound classes will inherit the various attribute sets (with any defined default

values). Thus the various basic classes (parent classes) may be thought of as
different aspects of the compound (child) class.

20

Figures 12 gives a simple example of this by showing how a set of compound
activity types for configuration design have been described by combining the flow
object type description (input, output, control and resource attributes) and the
successor precedence type (precedence attributes). Thus these engineering
activities have a flow (IDEF-0) aspect and a precedence (project plan) aspect.
These compound activity types may themselves be used to define new compound
types.

l‘ App Gt View Wetrwwant [Obact it View mstrument
Opliens ConfigureAresProcess App weth GORMProcess, PracetsMod
PYREnvirenfpp F Areal iy 7 ManbprHunting
AriUserrgpe Activities I ProectianUpdatng
MO4 Frecessiodels / 5 Laysutinlonnationbrodus ton
Configurefren Predecsssers, ",' b 1ocabionHeservatam
Oontl Aroaiiowi recedenceTypes <m """‘.t, i Blol kAR et Develnmnent
Suppiementary "“, ¢ SuppurtStrucinret v aluation
GORM Velus Types < b3 Voluime Cadr ubatum
GORMOsRtn
GORMONjecive
GORMPretect | oremanttyrypes
GORMOrganiration ,
PROMed TaskTypos (- SubTaskul)
[
Objectvedied
Produciied | ContentTypes (—Administration
on
Oryenizetiontied FRewosacttypes |
Curotied Sohstions
SetGraph Descriptions
ProductionActivity
Y wee () hane ReserveirOperstiensPhase
ActivityTypes N Mairtanence
| General
B WellAndOriing
-
Figure 12: Compound activity types for describing configuration design
The figure shows a set of compound types, created by combining GORM basic activily types .

21

Figure 13, likewise, shows how a set of compound artifact types have been created
to represent the product of the configuration design activities by combining the
informational artifact content type with the relevant version type. These artifact
types thus have both a content aspect and a versioning aspect both of which may
be used to support configuration management.

Agp £ View Mstrument [oslect £t View inatrument
Optiane ProductMod App with GORMProduct, ConfiqursArsaFiowitems
PriEnvirenigy \rea Ldackat

PrkUserfpps Specifisd DeckAncilleries
Pecss VersienTypes
Configureiron AsDesigned)

Configure/realrucess
GoMM

GORKOefIniisn

\N“V“
I -
L] . somevesees 1yp-<

. .

PPOMed
Definitioniied

Qhjeciiveiod

SubSysiems
Pyrectess YMing
Assemblies

r larttactTypes

ArSfactTypes

MDA SYSTenis b qapinent

t quiprnentl ocation

[310t Gt View wstrument Optbene
Cantart Type(mv) VersionType(m)
QemectisnPrinciple Suggestion
Module Stre Suggestion
Frams Space Requirement
ntogrodsdfrocessLayst

=y

Equipmantiecation

Figure 13 : Compound artifact types for describing configuration design
The figure shows a set of compound types, created by combining GORM basic attifact types.

22

5. APPLICATION TO OFFSHORE DEVELOPMENT PROJECTS

In this chapter we present a few preliminary examples of how we hope to use the
framework and methodology for modelling offshore development projects

5.1 AMODEL OF JACKET PLATFORM DESIGN

This model is an attempt to represent an overview of the necessary information for
planning of conceptual design and detail engineering of an offshore jacket
platform. It is an application of the general offshore reference model (GORM) to
develop a high level description of all main elements in field development. We
foresee that such a model may be used to support life-cycle support, configuration
management and experience feedback. So far we have developed simplified
representations of, the product structure, including specialisation and
decomposition, the process structure, including precedence between activities, and
the organisation structure, including supervision and communication. We have
not yet represented the requirements structure, including functional, economical,
temporal, environmental and safety requirements.

Figure 14 shows how the artifact items of the platform are instantiated from
compound artifact types, which themselves are specialisations of more general
basic artifact types. For example, the actual Jacket Support Structure is an instance
of Support Structures (compound type), which is a subclass of systems (basic
type) which is a subclass of Artifact Types.

Figure 15 shows the decomposition hierarchy of the same Jacket Support
Structure, defined by Part-of relations between the various instances. Thus for
example, we see that Canl112 is part of Jointl, which is part of Legl, and so on.
Normal over-riding is used to specialise attribute value descriptions of the various
classes, sub-classes and instances have. That is, for example, the Material of Leg 1
is HighGrade8081q1 steel, which is a specialisation of the default value "Tensile
Steel" value of the Material attribute of the Legs class. Note also, in this particular
case, that the value at the instance level is actually a pointer to another instance. In
our model representation we make full use of descriptive values, relational
pointers to other objects or attributes, and behavioural pointers to methods.

23

[Are E8t View matrument Options [Oniect Bt View instrumant
Praductiod App with GORMPrIdUC! JackatStructures VisundProduct

AactianTypes

il

Flobidinatalotions "-\

Lat bt St tores

I

GORMPYudue
GONRMPYRcess

i

[} LTI ITC R |
Frecessided

Ovgenizationided
Carebded
iU

o Stub111
Tetareph ‘.(Slui‘“!
‘\

PricByviesa/ppe () g HighGradeo0aaq1

Figure 14 : A product model of offshore field development

The figure shows the specialization hierarchy for part of a product model of a jacket
plattform. The product information is a technical solution version (i.e., this model represents
information at some stage of engineering design).

The model is built using the CAESAR modeling architecture , and thus -
- basic types lie to the left (e.g., “artifact types”)

- compound types lie in the middle (e.g., joints and braces), and are defined by multiple

inheritance from several basic types (specialization by combination), in which different
attribute sets are inherited.

- artifact items (e.g., leg 1) are defined as instatiations of the relevant object types. These
items are also instances of the ‘physical” artifact content type (outside of the figure).

| Object Edit View Instrument
SlotGraph App
Uving QuarteriModute ; Logs
Visund ackat legd | Joint12 |, Canl12
Can111
Leg2 Joint11
JackatSupportStructurs L. Legt Stub111
Stub112
Bracell
MainDeck

Figure 15 : A product model of offshore field development

The figure shows part the decomposition hierarchy of the a Jjacket plattform, model in figure
14, with a set of part-of relations connecting the various object instances.

24

In figure 16 we see a set of engineering activities to design a template support
structure as part of the subsea production system. The network shown is that
defined by a-priori project planning, and illustrates the high degree of concurrency
required by the client's temporal requirement to shorten the total development
time drastically. Thus a lot of analysis activities traditionally carried out in
sequence must now be carried out simultaneously. This, of course, makes it
necessary for the various design team members to coordinate closely during
project execution, and leads to intense "coordination load" (Christiansen 94).
Note that this is the same representation as used in the VDT (Levitt 94).

Revie thority Recquir ts 1 — DatabookDesign_27

ReviewContract 2
Templale Sysu.-mEn(*needng 3

Y gheering_4
LoadCaseDefinition_:
LoadOutAnalysis_§
Transportationfnalysis_7 T SedfastpningAnalysis_8
UftandLaveiingAnalysis 9
_§ UftngFrameAnalysis_10
nMaceAnalysis_11 \
EarihquackeAnalysis_1
SnagAnatysis_13
Oropped Objectanal
hnfect QualityAssurance
Wiles to-f PrnlectScrvices
Hojecm:nagemml
FoundauonAn:lysis 15

' dinPi
P D
N
RoutingOTManifoldPiping_19
PipeStressaAnalysis_20
Manifold Support Structure Andysis, 21

HﬁngSpecmcalh;ns_ZZ
PipingCorrosionErosionAnaly sis™
c:ummgmucuoumuysl%_za

A\
DraftingGashCheck_26 Joeslgnpanom SRl

Fipingdralting_29 ol
StructuraiDrafting_30 > ProjectMilestone Spoolfiece_$1 finlsh
MisceNaneousDrafling 31— Frojec

Figure 16 A process model from offshore field development

The figure shows an example of engineering activities for a subsea oil
production module. The various activities are connected by predecessor-
succesor relations. A can be seen, the present design process involves a
great deal of concurrency, as typical for engineering projects in offshore field
development.

25

In figure 17 below we see the formal supervision hierarchy for the part of the
project team responsible for carrying out the subsea template engineering
activities (in figure 16). Thus, the client, supervises the project manager
supervises the various subteam leaders, and so on. This also is the same
representation as used in the VDT (Levitt 94). The various team members are
represented as instances of the actor class (basic type), with attributes to describe
their capability and capacity, and their various policies and references for action.
Some of the relevant attribute values are default for all members of the project
organisation (e.g., the project organisation to which they belong), inherited by the
instances from class level definitions, while other values differ from actor to actor
and are defined at the instance level (e.g., craft specialisation and level of skill)

HeadProjectServices -— ProjectServicesSubTeam

DraflingSupervisor — DraftingSubTeam

‘Gient — ProjectManager
LeadStructural — StructuralSubTeam

LeadManifoldPiping - ManifoldPipingSubTeam

Figure 17: Organization model for offshore field development

This figure shows the formal hierachy for part of the engineering design team of the deisgn
process of figure 16. The various actors represent either individuals or subteams, and are

connected by formal supervision relations (shown) and informal communication relations (not
shown).

5.2 AMODEL OF HYDRAULIC SYSTEM DESIGN

This model is a representation of the design process for hydraulic systems on
offshore production platforms. The model includes representation of the various
design requirements, which is a top level hydraulic energy requirement,
decomposed into requirements to produce, store and distribute energy. Next is a
representation of the functional units and technical solutions, The functional units
describe the production of hydraulic energy by volume and pressure changes,
while the technical solution is described as a topological breakdown structure.
This completes our ReFUTS description (see chapter 2) of the hydraulic system.

As illustrations of this model, figure 18 shows a library of standard pumps which
may be used in pump dimensioning, while figure 19 shows the design process
activities. Note that the various pump candidates are instances of a compound

artifact type in GORM, while the design activities are instances of compound
activity types.

26

L= =1
Care00 Object Disgram: PumpTypes00 in Domain Hy
J
Enorgy np =
NydrmsicDesignOrpentzel
Nydraulic Bosignfvecesedl
PunctienalUnk TednicatSakuion
Hydradchapiromentod .
HydrauicBelvion0D
eCyche0s
Opped
[)
Preducin0® Lol unsiondingOt
PrajectCancapte0D PampCancept . Pucp
PreeciOmtreifracese 0
ﬁ
ReteCancepta 00
o 4 + T
BigCompressien; SnaliComgressien)
Py Pung Bighetating] | SmallNetating
Puzp Pumg

Figure 18: Product model versions for the hydraulic system

This figure shows the different life-cycle versions of part of the hydraulic system. The
functional unit “pump conept’ is in response to the requirement “produce energy”. The
pump concept is solved by the technical solution “‘pump”. The figure also shows how the
pump may be one of several types of pumps., The specialisation hierarchy may be viewed
a§ a library of reusable stadard parts which may be tried out in the design process. .

The design process is represented, in our current OMW (TM) implementation,
bothzas a set of activity instances and as a set of process operations. Thus the
design process can be simulated to check various aspects of process logic. The
simulated scenario includes capacity calculation, pump dimensioning and design
approval, carried out by the client's conceptual design team, hydraulic supplier
and certification body, respectively. Thus a scenario simulation may be set up
where the hydraulic supplier specifies a pump which is too small for the specified
power requirement, causing the certification body to refuse design approval, and
forcing the hydraulic supplier to repeat the pump dimensioning for a larger pump.

27

[OnpectDmgram £t View [Edt istrumest Workapece
Object Diagram: Hy or 0 in Dosain Hy

CenceptualDesign

Acty —g

Figure 19: Hydraulic system design process for offshore structure

This figure shows a model of a set of activities in the conceptual and detailed engineering
design of a hydraulic system for processing oil and gas onboard an offshore plattform. The
picture shows three design activities (capacty calculation, dimensioning and design approval),
which are part-of conceptual and detailed design, and instances of the activitiy item class.

5.3 A MODEL OF PROJECT CONTROL

This model is currently being developed in order to illustrate the process of-
project control in engineering design projects. The current model describes the '
flow of information between planning, monitoring, forecasting and management,
and is intended to be used as a tool to study how different means for project
control affects and is affected by the progress of various project activities.

Figure 20 shows the an outline of the process model to be simulated logically in
OMW (TM), with relevant input and output to control and project activities. These
inputs and outputs may in fact be thought of as instances of informational artifact
types, constituting a "product model of project control" as illustrated in figure 21.

4 ~

Company policies Contract policies
Contract Project policies o

\

__><1. Project planning D) , r-
Required 4 Realized
performance
-sow - Thne
- Schedule - Cost
- Budget - Gualty
Systems Systems
Contract info. Experience
Experience Experience Experk
Project plan
* Managemsnt
decisions
Work | P .
Duration
Cost ..
\ T projoct team J

Figure 20: The project control proces

This figure shows a picture the process model we are developing lo simulate
project control, consisting of planning, monitoring, forecasting and manage-
ment, with precedence and indications of input, output to activities as well as
relevant control and resource elements. The model shows various causal
dependencies and includes a representation of project activities. It is our
intention to integrate the project control model with other models of project
content, such as for example the hydraulic design model described above.

wﬂm.d
lormance
AR

h—purto(

e

CEE-) EEEEE) G

Figure 21: A product model representation of project control

This figure shows the “product model” for project control, in terms of the various

versions of the top-level “product”, project performance. The as-required, as-

estimated and as-realized versions of performance has been decomposed into

their various components.

28

29

6. CONCLUSIONS AND FURTHER WORK

In this paper we have defined the framework and methodology for our model. We
explicated our definition and represented it in a suitable object oriented model
building environment 'OMW, TM and Kappa, TM). We then presented a few
initial example models. In ti¢ continuation of our work we must now apply the
framework and methodology to model real world project applications in offshore
engineering. It is our hope that these models may then be used for a variety of
different purposes including -

e as reference models (e.g., the GORM) for discussion, understanding and
agreement between project participants in different roles and disciplines, and
between different project partners.

e as descriptions of particular project instances (e.g., the engineering design of
hydraulic a system for a given field installation) for planning, optimisation and
documentation.

e as executable models for studying logic and rationality of complex systems
(e.g., project execution and control system), and thus guide in project execution.

e as executable models for predicting probable effects of proposed changes (e.g.,
the VDT simulation system (Christiansen 93) (Levitt 94)) before committing
resources to carry out the change.

Much work remains before the framework and methodology presented here can be
applied to practical problems of reasonable size and complexity. First and
foremost we must extend the model representation to include all relevant
information for one (or a few) chosen application examples. Also, we must
extensively test the suitability and usability of both the framework and
methodology by subjecting using them to build models in different types of
domains. This includes, importantly but painfully, letting other engineers take part
in model building, with and without (!) guidance. In this connection there remains
considerable work to be done in terms of documentation.

We plan to integrate the representation used in the general offshore reference
model (GORM) with the representation in VDT (Levitt 94). It should be possible
to simulate the various engineering design process models to see how given
changes may affect duration, cost and quality of design projects.

In the CAESAR Offshore program we intend also to extend the CAESAR model
of engineering design to encompass the complete product development, including
procurement, construction, hook-up and commissioning. Future work may also be

carried out to include operational phases (including maintenance, updating, de-
commissioning and scrapping).

We feel, however, that even the major challenges are yet to be tackled, we have
made some progress towards defining and implementing a usable framework and
methodology for modelling reality in offshore field development.

30

ACKNOWLEDGEMENTS

We would like to thank several of our colleagues and contacts for contributing
their insight, support and many helpful discussions. They include -

- Bjgrn Egil Hansen and Janne Krogh in CAESAR Offshore Support Project 1.

- Tor Sverre Brynildsen, Tor Johan Kristiansen and Lars Christensen in CAESAR
Offshore Core Project 4.

- Nils Sandsmark, the CAESAR Offshore Program Coordinator

- Ray Levitt, Yan Jin and John Kunz from the Center for Integrated facility
Engineering (CIFE) at Stanford University.

31

REFERENCES

(Christiansen 93)

Christiansen, T.R.

"Modeling effieciency and effectiveness of coordination engineering design teams
PhD Thesis, Civil Engineering Department, Stanford University, Oct. 1993
Published as DNV Research report no. 93-2063

(Christiansen 94)

Christiansen, T.R.

"Modeling coordination load distribution in the VDT"
DNV Research report no. 94-2000

(Fergusson 94)
Fergusson, K. J. & Teicholz, P.

"Facility Quality Measurement as the Engine of Continuous Product and Process
Improvement in the AEC/EPC Industry"
First Int. Architectural/Engineering & Construction Division Conference

(Levitt 94)

Levitt, R.E., Christiansen, T.R., Cohen, G.P., Jin, Y., Kunz, J. & Nass, C.I.
"The Virtual Design Team:

A computational simulation model of project organizations"

To appear in Management Science

(March 88)

March, J.G.

"Decisions and organizations"
Oxford, UK, Basil Blackwell, 1988

(Simon 58)

Simon, H.A.
"Administrative behavior"
New York, Macmillan

(Thompson 67)
Thompson, J.

"Organizations in Action: Social Science Bases in Administrative Theory"
New York, McGraw-Hill, 1967

(Willems 88)
Willems, P.

"A functional network for product modeling"
PLI-88-16, IBBC-TNO, July 1988

L

