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Learning Empirical Knowledge To Assist Preliminary Design
M L MAHER and H LI’

ABSTRACT »

The reuse of the experience of design and construction of a major project
is ad hoc and depends on the individuals involved in the project being present
on a similar project in the future. At the same time, the development of
knowledge-based systems to support the design process requires the encoding
of previous experience in a form that can be applied to future design projects.
Machine learning techniques can be applied to automate the reuse of design
experience and to facilitate the development of design knowledge bases. The
application of machine learning techniques in a design domain requires the
consideration of the representation of the learned design knowledge, that is,
a target representation, as well as the content and form of the training data,
or design examples. This paper proposes a target representation called a
design concept and presents a methodology for learning design concepts from
design examples. The method is illustrated by applying it to examples of
bridge designs.
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INTRODUCTION

Incorporating learning ability in knowledge based design systems can
make direct use of the design data available from design projects and can
relieve the burden of maintaining a knowledge base. The direct application
._of existing machine learning techniques assumes that the target representation,
he representation of the knowledge learned, is in an appropriate form for
pphcatlon to a new problem. We propose that the representation of design
owledge is fundamentally important in a knowledge based design system
nd the learning methodology should be developed based on the target

ntent

arepresentation rather than on a theoretical approach to machine learning. For
Sexample, a methodology reported by Arciszewski (1987) is to learn rules from
Odesign data, and a system developed by Reich (1991) is to learn hierarchic

gérepresentation of design examples. In this paper we consider a target

zrepresentation of design knowledge, called a design concept, and how such a

arepresentation can be learned automatically by adapting and combining
%xisting machine learning techniques and statistical analysis.
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The learning methodology presented has two major components: concept
aggregation and concept characterisation. Concept aggregation involves
decisions about what entities or attributes are to be selected and grouped into
a concept. This component is based on the techniques for learning from
examples, except in our case the attributes of the examples may vary from
example to example. Concept characterisation involves deriving inherent
associations among attributes in the proposed concept from the values of the
attributes in the design examples.

The methodology is defined following a specification of a representation
of design examples, the input to the learning system, and a specification of a
representation of design concepts, the output of the learning system. In the
next section we present the representation of design examples and design
concepts. The following section presents the methodology for learning design
concepts from design examples. Section 4 shows how a design concept can be
used in a new design problem. Finally, a summary of the methodology and
directions for further research are presented.

Representing Design Examples and Design Concepts

Design Fxamples Represented as Attribute-value Pairs

We propose a representation of design examples as a set of
attribute-value pairs. The use of attributes to describe a design example allows
a set of relevant attributes to be identified, the values of the attributes provide
quantitative and qualitative descriptions of the attributes. An example of a set
of attribute-value pairs describing a continuous bridge design example is
shown in Table 1.

This representation for examples is widely used in many machine learning
techniques and is suitable for our purposes because the attribute names
characterise the design example and distinguish it from other design examples.
It is possible for the set of attributes to vary from design example to design
example, thereby allowing a design to be charaterised by its attributes as well
as described. Also, the use of attribute-value pairs does not require an
understanding of the design process that was used to produce the design
example. Such process information is hard to articulate and may not be
relevant in a new design situation. Given that the purpose of the presented
machine learning technique is to aggregate and characterise design concepts,
a simple representation for design examples provides the flexibility needed to
generate general relationships among attributes, without the bias of the
relationships the designer may have used in a particular design project.
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BN  Bridge Name Mr-124, ...

LC Location Sutton-interchange...
TT Traffic Type vehicle,pedestrian...
CC Construction Year 1981,1984,...

CS Cost low, medium, high
CL Clearance 05-705 m

PH Pier Height 12-397 m

TL Traffic Lanes 2-9

CR Cross a River/Road river, road

RB River Bed condition good, medium, bad
PL suPerstructure design Load NAARSA-1976

BL suBstructure design Load NAARSA-1976
LN  bridge LeNgth 93.5-379.5 m
DW  Deck Width 75-275 m

DC section Depth at the Center 0.68 - 1.45 m

DS section Depth at the Support 0.89-278 m

SN Span Number 2,34.5..

MS Main Span 50-203 m

ST Superstructure Type continuous-girder
GH Girder Height 068-135 m

GW  Girder Width 1.59 - 501 m

GM  Girder Material concrete, steel

GS Girder Shape trapezoid

NG Number of Girders in a section 2, 4,56...,18
NTC Number of Tendons at the Center 88, 124, 56,...
NTS  Number of Tendons at the Support 128, 164,...

FT Foundation Type excavative, pile
BT Bearing Type Pot-type,...

DJ Deck Joint Claw-and-Gland,...
DA Deck Area 789-4320 cm2

TA Tendon Area 12.4-268.7 cm?2

Table 1: Attributes and values for a continuous bridge design example

Design Concepts Represented as Empirical Networks

We present a representation called an empirical network to structure
empirical design concepts which captures both quantitative and qualitative
attributes as nodes which are linked either by empirical formulas (for
quantitative attributes) or design patterns (for qualitative attributes). The set
of design attributes in an empirical network can be viewed as the identity of
a design concept. Each attribute further defines a design concept by including
a default value and value range. An empirical network has two
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representational components: nodes and interrelationships, as shown in Figure
1

empirical formula
or design patterns
Node 1 / Interrelationship \ Node 2
attrl attr2
default value default value
value range value range

Figure 1. Components in an Empirical Network

A node is the representation of a design attribute, its default value and
value range. The nodes in an empirical network comprise both the
requirement and description attributes of a learned design concept, although
the identification of a single node as one or the other is not made. A node can
be cither a quantitative or qualitative type. The default value represents the
most frequently assigned value of the attribute in the given set of design
examples. The value range for the quantitative type is the gap between its
maximum and minimum values, and for the qualitative type is the
accumulation of all possible discrete values. A node is represented as a
corner-smoothed rectangle in Figure 1.

The interrelationships reflect empirical associations among design
attributes. Two kinds of interrelationships are represented: an empirical
formula captures associations among quantitative attributes, and design
patterns capture associations among qualitative attributes. Interrelationships
are shown in a rectangle in Figure 1.

An example of an empirical network for a design concept is illustrated in
Figure 2. The nodes are design attributes for a cable-stayed bridge.
Relationships among the attributes are empirical formulas or design patterns
relevant for the preliminary design of a cable-stayed bridge.

(a) Empirical formulas

It is largely accepted that designers are able to generalise numerical
relations through design experience. Implicitly we develop a proportional
profile for familiar objects. For example, we know the width of a door is
approximately half of its height. Proportions are important in preliminary
design, and empirical formulas are explicit forms of such proportional
relations. The complexity of the mathematical formula in a machine learning
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system can initially be limited to thosc that people already easily generate
without machine learning, for example linear equations. As the techniques for
automatically learning empirical formulas is more widely used and accepted,
the formulas may be more complex, for example exponential equations and
inequalities.

<"|7bli£lss_lsﬂl£'.ﬂl7'=liver_width+(5m7) J—-——>

traffic_lanes

def: 4 :
range 4-8 [ bridge_heigh =bridge_tengivi2s” |

——
normal_water_level
def: 12m

range: 3-40 m

pier_height = waterway_clearance +
normal water_level + 1.2

waterway_clearance

N~

def: 75m
range: 55 -135m | tower_height = bridge._length*0.27 ]\’
~
foundation_type
def: excavative
pattern 1 |
range: {excavative, pile)
riverbed bearing condition = good ~
type of foundation = excavative foundation \ riverbed_bearing_capacity
def: good

range: [good, medium, bad] J

Figure 2. An Empirical Network for Cable-stayed Bridge Design

Our use of the empirical formula is not to model causal relationships
among design attributes but rather to model an empirical relationship that can
generate a reasonable new design in the range of attributes considered. In
other words, the adequacy of the empirical formula is dependent on the
collective inference from all included attributes, thus a procedure for assigning
a value to the individual attribute is de-emphasized.

(b) Design patterns

Qualitative attributes interact with each other as do quantitative attributes,

although the interaction cannot be expressed as mathematical formulas.
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Usually what value a qualitative attribute should take is dominated by how
that value will be compatible with other qualitative values. As a result,
qualitative attributes and their values in a design solution define a feasible
state, a style or a pattern, of how those attributes appear together. The
frequently occurring states are interesting because they reflect a combination
of values those attributes typically take. We refer to those feasible states as
design patterns.

The representation of a design pattern can be a logical expression, a rule,
or a collection of attribute-value pairs. We choose here to use a collection of
attribute-value pairs because of the non-directional nature of the
representation and the anticipated use of the pattern to derive a new design
solution. As design is an ill-structured problem, the attributes of a design
concept are not predefined as requircments or artifact description. An
attribute that serves as a requirement in one design example may be
considered part of the description of the design solution in another. Therefore,
it is advantageous to have a representation of design concepts in which the
design patterns are non-directional, and do not imply which attributes are
known first.

Automated Learning of Design Concepts from Design Examples

A methodology for learning design concepts is considered in two major
parts: concept aggregation and concept characterisation. In concept
aggregation, the design examples provide a basis for learning descriptive
attributes for a design concept. Each design concept is a set of attributes,
these attributes will become the nodes in the network introduced in Section
2. Which collection of attributes belong in a design concept and how those
attributes are described is the focus of concept aggregation. The result of
concept aggregation is collection of sets of attributes, where each set forms a
concept, and each attribute in a concept is further defined by its default value
and value range. During concept characterisation, the relationships among the
attributes in a concept are defined. These relationships are the links between
the nodes in the network introduced in Section 2. The design examples are
used to provide the data needed to derive the relationships.

Concept Aggregation

Many of the concept learning techniques have a goal of providing a
representation that can be used to classify or recognise a new example
(Winston, 1975; Fisher, 1987, Reich 1991). In design, the goal of using concept
learning techniques is to generate a representation that can be used to
generate new design examples, not to classify examples that have not been
seen before. Also, many techniques that learn from examples require that
each example is classified as positive or negative. In design it is unusual to
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categorise design examples in this way. A design example may have certain
positive characteristics and certain negative oncs, but it is unusual to classify
an example as entirely positive or negative. For our purposes, we assume that
all design examples are positive. Finally, limiting the description of design
examples to a predefined set of attributes implies that the learning method
can learn about one concept, not about many concepts. In design, different
concepts are characterised by the use of a different set of attributes to
describe the example. For these reasons, we have developed an approach to
learning multiple concepts that accepts varied attributes across the set of
design examples, and uses the values of the attributes to further characterise
a design concept.

Automatically generating design concepts involves assigning an example
to a specified concept. If the example does not fit into an existing concept, a
new concept is formed. This process is roughly similar to conceptual clustering
(Fisher, 1987), but the attributes across design examples can vary and the
result is a set of unconnected spaces rather than a hierarchy. A computer
program called CONCEPTOR is used to implement the process of separating
design examples into several spaces. In CONCEPTOR, descriptive attributes
of a design concept are stored in a specific space in which examples possessing
those attributes stay. Each space represents a particular design concept. After
the examples are grouped into spaces, the second learning stage of
CONCEPTOR is to derive default values and value ranges. Formation of
default values and value ranges involves processes of using probabilistic
generalisation through a survey of all examples in a concept space, whereby
all possible values for an attribute are extracted.

A concept space is initialised as the set of attributes that describe the first
example. When a new example is introduced, two steps involved are (1)
measuring the fit of a new example to existing concepts, and (2) if the best fit
is above a threshold, the example is assigned to the concept with the best fit,
otherwise a new concept is formed based on the new example. Currently, the
fit is calculated as the number of attributes that match. The mechanism used
to measure the similarity of attributes is based on syntactic match, as this
learning method presumes that design attributes are described using an
accepted design vocabulary in a specific domain. The result, therefore, is
dependent on how a design example is described symbolically.

Two processes are described to form defaults for numeric and nominal
values., The default values for numeric attributes are determined by the
weighted average shown in equation 1.

Equation 1 is a formula widely used in statistics. This equation has been
used in engineering to produce the most possible value for a large dataset, or
the default. The weight W; of value A; is the frequency in which value A,
occurs in all design instances. It represents the frequency of value A; occurring
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W; weight of A,, it is calculated as the frequency of A,
A; one value of a design variable

and its influence on the default value.

The default values for nominal attributes are determined using the
frequencies in which certain nominal values occur in the design examples, the
most frequent ones become the defaults. For example, assume in bridge
design, the shape of the cross section of a concrete beam has three values in
a group of design examples: rectangular, I and circular. The values and their
frequencies are shown below.

Shape of cross section = rectangular (0.83)
Shape of cross section = trapezoid (0.10)
Shape of cross section = circular (0.07)

The Shape of cross section = rectangular has the largest frequency (0.83),
which denotes rectangular is the most frequent value for the nominal
attribute Shape of cross section. Consequently, rectangular becomes the
default value.

As shown in equation (2), the frequency of a specific nominal
attribute-value pair, such as Shape of cross section = rectangular, is
determined as the number of examples possessing this attribute-value pair
divided by the number of examples possessing a specific attribute, which is
Shape of cross section in the above case.

F(attr,value) = N(attr,value)/N(attr,-) )

where, F(attrvalue) is the frequency for an attribute-value pair,
N(attr,value) is the number of examples possessing the attribute-value pair,
and N(attr,-) is the number of examples possessing the attribute.

The range of a numeric attribute comprises the subgaps within its
maximum and minimum values. Subgaps are determined by considering the
distribution of values of each numeric attribute and gaps with relative dense
population of examples are taken as value ranges, whereas the range for a
nominal attribute is the accumulation of all values that appear in the given
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examples. The value range of each numeric attribute is dissected into three
grades: low, medium, high (or small, medium, large).

As shown in Figure 3, examples are distributed according to their values
of numeric attribute i, distance-1 and distance-2 are the largest and second
largest distance between two adjacent examples. Therefore, the length
between Minimum and Maximum is cut along distance-1 and distance-2,
three subgaps are produced as gap1, gap2 and gap3 representing low, medium
and high (or small, medium, large) grades.

tarneric varisble i
L] - * ® % * % *« & * * &

e ] st ] amaz 1
eapl ep2 op3

Note: * represent an example which has numeric
variable i and its value indicating as the the
position on the axis.

Figure 3. Three Gaps for Numeric Value Ranges

Concept Characterisation

In concept characterisation, the design concepts formed above are further
defined by the empirical associations among the design attributes. The
examples in a design concept are used to derive two types of associations:
empirical formulas among numerically-valued attributes and design patterns
among nominally-valued attributes.

(a) Learning empirical formulas

The purpose of establishing relationships between quantitative attributes
is to provide a basis for assigning values to attributes, given an initial set of
values for a subset of the attributes in a design concept. Learning empirical
formulas includes two steps: 1) formulating potential equations; 2) computing
the coefficients of each equation. The methodology for learning empirical
formulas can be regarded as an adaptation of KEDS (Rao et al, 1991). This
methodology is implemented as a computer program called EFD, Empirical
Formula Derivation.

In EFD, a two-attribute linear template, ax + by + ¢ = 0, is used to
represent the proportional relationship between two continuous attributes. In
this template, x and y are two continuous attributes in a design concept, and
a, b, ¢ are constants. Although we did not pursue it in this implementation, an
extension to nonlinear models is possible when the linear models are
insufficient to characterise the numerical associations in the space.

To comply with the dimensional homogeneity, EFD classifies continuous
attributes by their units. Only attributes with the same unit are allowed to pair
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to form an equation. The x and y in the template are single attributes of the
same units. Although there may be certain combinations of attributes that can
be added or multiplied together to give the same dimension, we assume these
combinatorial attributes with second or higher order (the degree of order is
the maximum number of attributes in the combinatorial attribute) have
comparatively less influcnce on the accuracy of the equations, thus they are
excluded.

Each candidate equation is considered separately, its response and
predictor attributes depicts a two-dimensional space and the corresponding
values in the dataset provide the points in the two-dimensional space. The
coefficients of the equation determine the best estimate of the relationship
between the attributes. EFD uses regression analysis to determine the
coefficients in the two-attribute lincar model. The standard procedure to
estimate the best-fit regression line is called the method of least squares.

Not all formulas are valid approximations to the relationship among the
attributes. EFD uses two criteria to determine the validity of a formula; MR
and e. The majority ratio, MR, denotes the minimum fraction of instances in
the dataset that must be covered by an equation within a 1 * e band; where
¢ is the error bound. In the current implementation, MR = 0.75 and ¢ = 0.5.
All equations that cover at lcast MR percent of the design examples are valid
empirical formulas. Other equations found using the regression analysis are
assumed not to be representative enough to generalise and characterise the
design space. However, those attributes that do not participate in empirical
formulas using the linear model may be better characterized in formulas using
other models, such as a polynomial model, logarithmic model, ete.

(b) Learning design patterns

In contrast to having continuous distributions and unit-related values of
quantitative attributes, qualitative attributes appear to be discrete and
incommensurable. The discrete nature of the values indicates that a qualitative
attribute has a finite number of allowable options. For example, a qualitative
attribute " the shape of cross section” in beam design normally has to be one
of the following: rectangular, circular, I-shape, trapezoidal. A qualitative
decision can therefore be formally identified as the selection of a plausible
option for the qualitative attribute from its range. Usually a design problem
involves several qualitative attributes, such as "the kind of material”, "the
type of foundation®, etc. In the representation of a design solution, all
qualitative attributes take one value, and we define a combination of
qualitative attributes and their values as a feasible state indicating their
compatibility of concurrence in design. Particularly, those frequently used
feasible states are interesting, because they demonstrate a strong association,
or trend, among the qualitative values in those feasible states. We name the
strong associations in the feasible states design patterns, to emphasize that they
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represent a kind of prevalent expertise on relevant qualitative
decisions-making processes.

We propose a probabilistic representation for design patterns as shown
in Figure 4, which is diagrammatically similar to other dependency graphs,
such as semantic networks (Woods, 1975), and constraint networks
(Montanari, 1974). The nodes arc qualitative attributes. Each node has a
number of possible values as its value range. A link between values of two
attributes denotes the compatibility of concurrence in design, and the attached
frequency indicates the degree to which the linked qualitative attribute-value
pairs occur together in individual designs. Associations between two attributes
are built up through the links of their values. The thickness of the line in the
figure indicates the magnitude of concurrence frequency. Values without links
indicate the inhibitory effect, which can be interpreted as the infeasibility of
concurrence.

z a qualitative sttribute
& its allowable options
y * a value for the qualitstive atiribute

X

Figure 4. A Three Dimensional Ilustration of a Pattern Structure

DPF, the Design Pattern Formulator, is an implementation of a
methodology for generating design patterns using the qualitative attributes and
their values from the examples in a given design concept. The learning task
separates into two subtasks: learning the qualitative attribute for structuring
a pattern topology, and identifying the topology itself - specifically the missing
links. Although the two subtasks are not independent, it is convenient for us
to present the learning process in two separate phases: structure learning to
set up the basis for representing design patterns, and link generation in order
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to finally assemble design patterns.

A group of qualitative attributes is a by-product of learning descriptive
attributes from design concepts. In a design concept, we are able to distinguish
qualitative attributes because they do not have units. We postulate m out of
n attributes are qualitative. Then, examples are used again to gain the
distribution of the discrete values of m attributes. In every example, the
collection of qualitative attributes, along with their discrete values, provide a
feasible state within which each value pair has a link with one unit weight.

Thereafter, DPF allocates each feasible state over the nodes of the
proposed design patterns. If a value of a qualitative attribute exists in its
allocated node, its surrounding links are used to augment the weight
distribution by adding one unit to the existing links; otherwise, DPF treats the
value as new and inserts it to the value range of this node. The links around
the new value are established in same ways as they are in the feasible state.
As such, all feasible states are processed to determine the weight distribution
of links, and the weight distribution is converted into frequency distribution
by averaging weights with the total number of feasible states.

We compute the frequency distribution P(i= 1, n), where n is the number
of feasible states. The distribution is nonncgative and attains the valuc 0 if
there is no link at all among the qualitative attributes being considered. A
design pattern is determined in the following manner. The links with
frequencies exceeding a predetermined threshold are considered as strong
links. Values of qualitative attributes associated with strong links are extracted
as design patterns,

Overall Learning Model

The overall model for learning design concepts is illustrated in Figure 5.
In this model, design examples are first separated into concept spaces which
are described by a set of attributes, their default values, and their value
ranges. This is followed by the application of two methods for learning
associations among the attributes in each space: one method for learning
numerical associations and a second for learning associations among nominal
values of attributes.

The model was tested using 72 bridge designs collected from a database
at the Roads and Traffic Authority (RTA) in Sydney. The 72 bridge design
examples generate 4 spaces as shown in Figure 6. Each space stands for a
specific design concept, where the design concept is, at this point in the
process, described by a set of attributes as well as their default values and
value ranges. The examples that fit in each space are recorded as part of the
space for the application of the methods that learn associations among the
attributes. Although the learning program does not assign indicative names to
the spaces, it is not difficult to recognise the types of bridge designs the
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concepts represent. For example, designs in space 1 are all simply supported
girder bridges, and the attributes, their defaults and value ranges for space 1
are drawn from these bridge examples. Similarly, it is recognised that concept
2 represents plank bridge design; concept 3 for continuous bridge design and
concept 4 cable-stayed bridge design.

INPUT: | o a T :
Designs of different types oo, .
——— =
o Of : A ! :
A ¢ . A ' —
A O —> | CONCEPTOR s —|> A | .
oA A L : :
Lo QO ! :
OO0 o :
OUTPUT:
Design concepts
design concept for [ r irical formulas
design concept for A L
design concept for O design patterns

Figure 5. An Overall Model of the Learning System
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- Sckuic: S4m
J L J n; \_ -
concept 1 concept 2 comoept 3 comoept 4

Figure 6. 4 Concepts from CONCEPTOR

The examples in each concept space provide the data to determine the
relationships between the attributes. Figure 7 shows the empirical network
produced from the examples in concept 3.

Using Design Concepts in a New Design Project

The empirical networks produced by the lcarning system represent a
generalisation of the examples from previous design projects. The gencralised
knowledge providés assistance in preliminary design by associating a set of
attributes with a concept and by providing initial values for the attributes once
a concept has been chosen. In the preliminary stages of design, concept
selection is assisted by making a set of concepts explicit and assigning initial
values for attributes is assisted by the representation of default values and
empirical relationships among the attributes and their values.

For illustration, assume the following design attributes are given with
values as part of the design requirements.

Design requirements:

width of girder (GW) 30m
waterway clearance (CL) 7.8 m
condition of riverbed good
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def: prestremsed, concoete
range: (prostreased_concrote)
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traffic_jmncs
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Figure 7. A Design Concept for Continuous Bridge Design
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Given these attributes, the empirical network for continuous bridges is
selected. By using the empirical network illustrated in Figure 7, following
design decisions may be made.

height of girder (GH) —--> (GW - 0.45)/1.47 = 1.94 m
main span (MS) ----> 475*GH-134 = 972 m
deck_width (DW) > 102*GW -0.12 = 21 m
height of pier (PH) ----> 1.25*CL + 167 = 114 m
type of foundation ----> no-pile foundation

Those attributes whose values cannot be directly derived from using
empirical formulas or design patterns may be given default values. As such,
a conceptual design can be produced.

CONCLUSION

The presented model for automatically learning design concepts from
project data is an aggregation of machine learning and numerical analysis
techniques. Each of the lcarning methods are, in isolation, simple approaches
to generalising data. The major contribution of the modeli lies in the combined
use of the methods where the input as design examples and the representation
of the learned design concepts establish the relevance of the learning
approach. The focus in developing this learning model is to use project data
to learn design concepts to be part of a knowledge base for preliminary
design.
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