Construction Informatics Digital Library http://itc.scix.net/

paper w78-1993-10.content

An Bxtended Structured Query Language Incorporating Object Data Types for the Construction
Industry

KEVIN C. HOLLISTER

CHARLES J. KIBERT

M.E. Rinker, Sr. School of Building Construction
University of Florida <

Gainesville, Florida 32611 USA

ABSTRACT

The key to developing a system of information handling in construction that
will have a dramatic positive impact on productivity is the development of an
appropriate database language. This research involved the development of a
standard construction industry specific extension to the Standard Query Language
(SQL), the de facto international standard for relational database query languages.
Construction Industry-SQL (CI-SQL), is the first industrial extension to SQL and
serves as a prototype for a host of other extensions from other industries. CI-SQL
uses object data, object attributes, and user-defined extensions to allow rapid
access to industry databases. CI-SQL can play a significant role in the way
information is retrieved by construction industry, allowing the development of
robust databases that support SQL. Ultimately the implementation of CI-SQL will
force industry to reconsider the heavy duplication of information that negatively
affects productivity and will allow the introduction of keyless data entry and
retrieval systems that enhance the speed and accuracy of information handling.
Examples in construction material procurement will be used to illustrate the
potential for CI-SQL applications. The ultimate use of CI-SQL will be to allow
the use of keyless data entry systems, the foremost of which is bar coding, in
construction specifications.

Key Words .
SQL; object data; object attributes; keyless data entry; bar coding

Information Accessing Needs of Construction Industry

In few industries is accessing information more crucial than in the construction
industry. Issues such as retrieving detailed information on the availability and cost
of construction materials, as well as determining the interrelationships among
project activities, are critical components in providing the construction industry
with the information services it requires. Productivity increases can be realized
through improved methods of information retrieval. These improvements are
primarily derived from the addition of industry-specific vocabulary. With multiple
key players (e.g., the owner, the architect, and the contractor) timely and accurate

information sharing is a vital ingredient to a successful project. It is envisioned
that massive increases in productivity can be attained by using bar codes in product
specifications and product catalogs so that designers and constructors can query
manufacturers' product data bases on-line via a Wide Arca Network (WAN). The
move from verbal requests for product data, availability, pricing, and ordering to
keyless data entry and network information query is estimated to have a minimum
factor of 10 potential increase in productivity in information handling. The
development of a construction industry specific query language, as described in this
paper, is the first step and the key to attaining this dramatic leap in productivity.

Origin of Relational Databases

In 1970, while working at IBM's Research Laboratory in San Jose, California,
E.F. Codd published his definitive paper, "A Relational Model of Data for Large
Shared Data Banks" (Codd, 1970). The technology for the entire domain of
relational data bases emanated from this foundational work. In this paper, Codd
laid down a set of abstract principles for data base management: the so-called
relationai model" (Date, 1989). According to Pascal (1989), "His relational model,
based on the set mathematics of relations of first-order predicate logic, covers the
three aspects of data that any DBMS must address: structure, integrity, and
manipulation",

Codd’s Twelve Fidelity Rules

To counter misunderstandings and distortions, Codd later created his now
famous Twelve Fidelity Rules, a minimum of six of which must be met in order for
a data base managemeat system to be considered truly relational. Although this
set of rules is titled The Twelve Fidelity Rules, Codd intentionally began with Rule
0 which serves as a mandatory foundation for all relational DBMSs. These rules,
as outiined by Pascal in "A Brave New World" (Pascal, 1989) are as follows:

Rule 0: Foundation Rule
Any system that is advertised as, or claimed to be, a relational DBMS, must
manage the data base entirely through its relational capabilities.

Rule 1: Information Rule
All information in a relational data base must be represented explicitly at the
logical level in exactly one way by table values.

Rule 2: Guaranteed Access Rule
Each and every data value in a relational data base is guaranteed to be

logically accessible by resorting to a combination of table name, column name, and
primary key value.

Rule 3: Missing Information Rule

Missing value indicators distinct from empty character strings, strings of blank
characters, zero, or any other numbers, must represent and support, in operations
at the logical level in a systematic way independent of data type, the fact that
values are missing for applicable and inapplicable information.

Rule 4: System Catalog Rule

The description of the data base is represented at the logical level dynamically
like ordinary data so that authorized users can apply the same (relational)
language to its interrogation.

Rule 5: Comprehensive Language Rule

No matter how many languages and terminal interactive modes are supported,
at least one language must be supported that is expressible as character strings per
some well-defined syntax that supports interactively by program:

1 - data definition ‘

2 - integrity constraints

3 - data manipulation

4 - views

5 - transaction boundaries

6 - authorization privileges

Rule 6: View Updatability Rule

The DBMS must have a way of determining at view definition time whether a
view can be used to insert rows, delete rows, or update which columns of its
underlying base tables and store the results in the system catalog,

Rule 7: Set Level Updates Rule
The capability of operating on whole tables applies not only to retrieval but
also to insertion, modification, and deletion of data.

Rule 8: Physical Data Independence Rule
Application programs and interactive operations should not have to be
modified whenever changes are made in internal storage or access methods.

Rule 9: Logical Data Independence Rule

Application programs and interactive operations should not have to be
modified whenever certain types of changes involving no loss of information are
made to the base tables.

Rule 10: Integrity Independence Rule

Application programs and interactive operations should not have to be
modified whenever changes are made in integrity constraints defined by the data
language and stored in the catalog.

Rule 11: Distribution Independence Rule
Application programs and interactive operations should not have to be
modified whenever data is distributed or redistributed on different computers.

Rule 12; Nonsubversion Rule

If a DBMS has a low-level (procedural) language, that language should not be
allowed to subvert or bypass integrity constraints or security constraints expressed
in the high level relational level. '

Principles of SQL

Codd ' s relational model sets forth both the precepts and the structure of
relational data bases. A relational data base is characterized by its simplicity of
data management, independence of logical user views from the physical data
storage structure, and the availability of simple but powerful relational operators
(Wipper, 1989). These characteristics translate into a collection of tables that are
composed of rows and columns. Rows, also called tuples, contain the data
associated with each of the tables' columns. Each column in a table is assigned a
unique name and contains a particular type of data (Trimble & Chappell, 1989),
such as an employee number for each employee in a personnel file. Acting
conceptually as a storage medium, the intersections of rows and columns,
sometimes called fields, provide the vehicle necessary for locating and accessing
relational data. The number of rows in a given table is referred to as the
cardinality of that table. The number of columns is called the degree (Date, 1989).
These rows and columns form two types of tables. The first type, a base table,
may be thought of as a table that actually exists; whereas a viewed table, or view, is
a virtual table that is extracted from a single base table or a combination of base
tables. Another relational data base component, the catalog, is a system data base
containing information about base tables, views, access rights, user-ids, etc. that can
be queried through the use of SQL SELECT statements (Hursch & Hursch, 1988).

Functions of SQL

The relational sublanguage, SQL, provides support for three general functions.
First, SQL acts as a Data Definition Language (DDL), which is used for defining
the structure of the data. Second, it serves as a Data Manipulation Language
(DML), which is used for modifying data within the data base. Finally, SQL is a
Data Control Language (DCL), which controls user access by specifying security

constraints. By providing these three general functions, SQL allows sophisticated
data management processes to be performed on data bases that are based upon
highly orthogonal yet simple principles. -

SQL Relational Operators

The tools used for performing these data management processes are termed
relational operators. The operators that are supported by the relational model are
UNION, INTERSECTION, DIFFERENCE, PRODUCT, PROJECTION, JOIN,
and SELECT. Of these operators, only PRODUCT, PROJECTION, JOIN, and
SELECT may be performed on tables with differing structures.

SQL Keys and Keywords

Two additional instruments provide for searching and query construction in the
SQL environment: keys and key words. Since the rows in a relational data base
are unordered, and efficient searches are of supreme importance, a device must
exist for rapidly locating desired data. This device, called a key, performs this
function. An individual column or columns may be designated as the key(s) for a
particular table which requires that each value in the key column be unique. This
ensures that searching the data base takes place in an expedient, rather than
random fashion.

Finally, like most programming languages, SQL retains a list of several words
that may not be used in tables or column names. Figure 1 lists SQL's key words
(Trimble & Chappell, 1989).

Framework for SQL Extensions

The many powerful characteristics of SQL are the reason that it is an industry
standard and is the primary motivation for using this language as the basis for the
construction industry-specific extensions. In creating these extensions the purpose
of this research is not to develop a new relational query language, to develop a
new software package, or to completely revamp. the most widely accepted relational
data base query language. The intent is to develop a new conceptual model of
construction industry-specific extensions upon which subsequent research and
applications can be generated. This research focuses on industry-specific
extensions that have not yet been addressed. The primary benefit for the
construction industry will be improved productivity in the area of information
retrieval. The productivity gains will be realized through the creation of simple,
more effective methods of querying relational data bases. By adding construction-
specific vocabulary, construction industry could begin te tap into the power and
efficiency of the standard in relational query languages.

ALL

ASC
BETWEEN
CHECK
CONTINUE
CURSOR
DELETE
END
FETCH
FOUND
GRANT
INDICATOR
INTO

MAX

NULL
OPEN
PASCAL
PROCEDURE
SCHEMA
SMALLINT
SQLERROR
UNION

AND
AUTHORIZATION
BY
CLOSE
COUNT
DEC
DESC
ESCAPE
FLOAT
FROM
GROUP
INSERT
IS

MIN
NUMERIC
OPTION
PLI
PUBLIC
SECTION
SOME
SUM
UNIQUE

ANY

AVG
CHAR
COBOL
CREATE
DECIMAL
DISTINCT
EXEC
FOR

GO
HAVING
INT
LANGUAGE
MODULE
OF

OR
PRECISION
REAL
SELECT
SQL
TABLE
UPDATE

AS
BEGIN
CHARACTER

" COMMIT

CURRENT
DECLARE
DOUBLE
EXISTS
FORTRAN
GOTO

IN
INTEGER
LIKE

NOT

ON

ORDER
PRIVILEGES
ROLLBACK
SET
SQLCODE
TO

USER

Figure 1 SQL Keywords

Previous SQL Extensions

Several previous efforts have been directed at extending SQL, particularly in
the representation of spatial data. In 1985 Sikeler proposed that SQL be extended
to encompass the treatment of spatial relations and the use of a picture list to
manage graphical output. That same year Roussopoulos (Egenhofer, 1989)
developed PSQL (Pictorial SQL) in which two clauses were added to the
SELECT-FROM-WHERE construct. In his work, Egenhofer criticizes this
extension for making "the formulation of queries unnecessarily complicated”. In
1987 Ingram added syntax extensions to SQL to address the needs of geographic
information systems. The following year Herring (Egenhofer, 1989) pursued an
object-oriented approach to extending SQL but sacrificed some SQL principles in
the process. In 1989 Egenhofer attempted unsuccessfully to combine spatial
concepts with a graphical user interface. By his own admission his work
culminated in "a negative demonstration of the extension of an SQL-like language
for spatial data handling”. Although several attempts have been made at
extending SQL in application specific areas, no published undertakings exist in
handling construction information,

Nature of CI-SQL

Unlike some of the works cited in the previous section, CI-SQL will preserve
all of the functionality and regulations of the ANSI supported version. Complete
compatibility is maintained with existing implementations that use the ANSI
standard. This is essential to ensure that this work is a true extension which
augments rather than replaces an existing standard. The additions proposed here
will be in the form of semantic rather than syntactical changes. This constraint
means that instead of altering the structure of SQL commands and keywords,
construction-specific vocabulary will be used to create new commands that adhere
to the existing SQL pattern. Because this extension occurs in an area in which
SQL rarely has been applied, the existing field of compatible relational data bases
will be meager. For this reason a generic data base structure will be explained
using a construction material example for illustration.

The role that CI-SQL plays in providing information retrieval facilities for the
construction industry is that of an intermediary. CI-SQL begins the process of
bridging the gap between construction data and the construction professional. In
order for a user to access a data base, a query language must be provided as the
tool for achieving this access. CI-SQL acts as the intermediary between the user
and the data, possibly through the use of a user interface. The user interface
would provide a more intuitive method of accessing the data without requiring the
user to become an expert at formulating SQL queries. This interface would also
address the issue of user-friendliness.

User-Defined Functions

In addition to providing embedded construction-specific functions, one of the
most desirable extensions to SQL is the capability of creating construction-specific,
user-defined data types, objects, and functions. Due to the specialized nature of
construction data bases and queries, the ability to construct and reuse functions
that are application specific is of enormous benefit to the end user. By providing
this facility the queries can be tailored to construction industry data bases as well
as the individual query needs of the user.

During the design phase of a construction project, project specifications are
created to detail the materials and methods to be nsed during construction to
provide the level of quality desired by the owner and his or her architect. In the
process of creating these specifications the designer may enumerate literally
thousands of products or materials and the particular characteristics that they
should possess. The nature of this process lends itself very well to the use of
object data typing since they have attributes just as the physical objects they
represent. Furnishing the data base user with object data typing facilities and user-
definable functions will allow for the construction of complex industry-specific
queries that are not currently provided for in SQL.

In creating a user-defined function the following steps are required:

(a) Define the object type
(b) Create an instance or instances of the object type.

The initial step in creating a user-defined function that maintains the
properties of the object oriented data base manageinent system is the object type
definition. This step creates the template or class from which other objects having
the same properties can be created. In this example several of the critical
attributes of wood doors are used to create the object type WoodDoor. It should
be noted that in these constructions, existing SQL vocabulary is shown in
uppercase letters, while additions to the syntax are shown in bold type. Object
types begin with a capital letter whereas their instances begin with a lowercase
letter. ‘After each attribute or field is defined, its data type is characierized. For
instance, in the following example the attribute Manufacturer is defined as a
character string of up to fifteen characters (CHAR(1S5)).

CREATE type WoodDoor
(Manufacturer CHAR(15),
Model# CHAR(10),
Face_material CHAR(20),
Core_material CHAR(20),
Edge _material CHAR(20));

Once the object type has been created the user is able to create actual objects,

or instances, of the object type. Here, an instance of WoodDoor is woodDoor and
is created as follows:

CREATE woodDoor
instance (*Pella’, *SCO-30°', ‘oak' *particle board', *multi-ply
lammatcd }

This process of creating an instance of WoodDoor, as with any object type, is
accomplished much like the insertion of a row info a conventional relational table.
However, instead of using the keyword INSERT, CREATE is used since the
concept of "creating™ an instance, or object, may be much more intuitive to the
user. For each of the attributes defined in the creation of the object type, or class,
the instance command inserts the subsequent values into the type definition
parameters.

The final step in providing a user-defined function is the procedure of creating
the function itself. The justification for such a development and addition to the
existing body of SQL functions is that the ability to create application specific
functions would greatly enhance the power and usability of SQL for industry
professionals. Since the purpose of SQL is information retrieval, the more a user
can customize the query language to meet his informational needs, the more
powerful that language becomes. Thus, "the goal is to make the modeling of
information as direct and natural as possible, and to overcome the impedance
mismatch with programming languages that already have many of these richer
facilities" (Beech, 1989). For this reason a suggested procedure for creating user-
defined functions is given below. Although the example presented here may be
limited in scope it demonstrates the potential application of user-defined functions
in directly meeting an industry-specific need for information retrieval. If, as is
common practice, an architect intended to specify the doors in a project based
upon the materials that composed the face, core, and edge, or stile, of the door,
the following function would allow him to search a construction data base and
retrieve all products that met his criteria.

CREATE function select_door (face, core, edge) as -
SELECT manufacturer, model#
FROM Division_8 Doors&Windows
WHERE face materxal face
AND core_material = core
AND edge_material = edge

By specifying the arguments face, core and edge, this function would return the
manufacturer and model number of all products in the

Division_8 Doors&Windows data basc that met the given criteria.

By developing a robust collection of such user-defined, industry-specific
functions, the procedure of retrieving data in a vertical market data base could be
thoroughly customized. This customization could thus enhance and simplify an
industry-specific query language to the point that knowledge of the industry's
vernacular could largely replace a detailed knowledge of SQL syntax. The net
result of this simplification would be that the information contained in the data
base would be brought much closer to the end user.

SQL3 Function Definition
In its current state of development, SQL3 function definitions are
accomplished as follows:

<SQL function> ::=
[<function type>] FUNCTION <SQL function name>
<parameter declaration list>
RETURNS <SQL function result>
<SQL statement>;
END FUNCTION

where
<function type> ::= CONSTRUCTOR | ACTOR | DESTRUCTOR
<parameter declaration list> ::= <parameter declaration>
| (<parameter declaration> [,...])
<parameter declaration> ;1= <parameter name> <data type>
i SQLCODE
i SQLSTATE

The following restrictions are placed upon these functions:

(a) all SQL functions with the same name must have the same corresponding
parameter modes

(b) all SQL functions must contain a RETURN statement

(¢) <function type> must be used in Abstract Data Type (ADT) definition and
nowhere else

{d) constructor functions must have appropriate <new statement>

(¢) destructor functions must have appropriate <destroy statement>

Syntax Conventions

Additionally, the following syntax conventions apply to all extensions contained
in the following sections:
(a) function names are italicized and not capitalized

(b) object types or classes, as well as data base names, are capitalized
(c) data base fields or object instances are not capitalized

Construction Specific SQL Extensions

The first major domain of construction-specific SQL extensions has been
developed to address the unique query needs of construction material and product
selection. Due to the complex nature of the data base itself, the need for
vernacular query capabilities is significant. Merely organizing the data does not
sufficiently meet the informational needs of the construction professional. The
ability to query the data base using vocabulary currently familiar to the typical user
is necessary in order to maximize the use of this powerful relational tool. Using
terminology very common to actual project specifications, these extensions were
developed to provide construction-specific functions for information retrieval.

CI-SQL Extensions

(a) complies_with_standard

The first SQL extension created for construction industry-specific queries is the
complies_with_standard function which would retrieve all standards to which a
particular product conforms. The practical application of this function is twofold.
During the design phase, the architect/engineer would be able to use this function
to determine which products in a manufacturer's data base meet a particular
design standard that he or she has specified. Additionally, during the bidding
phase of the project, the contractor could use the same query function on a
different data base containing pricing and availability information to determine the
cost and availability of a particular product that has been specified by the design
team. By providing the ability to return both the standards to which a particular
" material complies as well as the materials that meet a particular standard, the
search capabilities for this scenario would be thoroughly covered. The following
syntax extension shows how the first of two extensions are defined by using the
particular material in question as the parameter or argument for the function and
returning the standard or standards to which it conforms.

Syntax:
complies_with_standard ::=

ACTOR FUNCTION complies_with_standard (material REF (Materials))
RETURNS standard;

RETURN SELECT manufacturer, product, conformance

FROM Materials
WHERE product = material
END FUNCTION

Sample Query:
Given a data base Division_9_Finishes with an instance acousticalCeilingTile,
list the standard with which Armstrong's ceiling tile, model ACT-22M,
complies.

Query Form:

SELECT *
FROM Division_9_Finishes
WHERE complies_with_standard (ACT-22M)

Query Result:
Manufacturer Product Conformance

Armstrong ACT-22M ASTM E 1264

(b) material_complies_with

The second SQL extension, material_complies_with is actually a variation of the
complies_with_standard function. In this instance the function uses the specified
standard as the argument and returns a list of materials meeting that standard. In
the construction industry the application of this function would be in the retrieval
of all appropriate materials conforming to a standard specified in the project
specifications. For example, if a contractor bidding on a job desired to see a list of
all fan motors that conform to a particular UL standard, the following function
would provide the necessary capabilities for retrieving the acceptable options. The
contractor could then choose from those opticns while considering such issues as
cost and projected delivery time or add such restrictions as predicates in the
WHERE clause of the query.

Syntax:
material_complies_with .:=

ACTOR FUNCTION material_complies_with (standard REF (Standards))
RETURNS material;

RETURN SELECT conformance, manufacturer, product
FROM Materials

WHERE conformance = standard
END FUNCTION

(c) tested_per_test

The third construction-specific SQL extension, tested_per_test, provides the
capability of determining whether a specified product has been subjected to a given
test. For example, when specifying fire resistant wire glass, the architect/engineer
might require that all wire glass products be tested against UL 9 in order to ensure
proper performance in the case of fire. Similarly, the project owner might have a
desire to incorporate a particular manufacturer's product with which he has had a
high degree of success on previous projects. This function would allow the project
owner to determine whether his chosen products met the requirements of the
product testing specified by the designer.

Syntax:
tested_per test ::=

ACTOR FUNCTION tested_per_test (manufacturer, material REF (Materials))
RETURNS testing_test;

RETURN SELECT manufacturer, product, test
FROM Materials
WHERE product = material

END FUNCTION

(d) material_tested_per

The fourth extension, material_tested_per, is a variation of the tested_per test
syntax. However, this implementation returns the material or materials that have
passed a particular test rather than returning the test against which the material
has been tested. The application here is clear in that during the bidding phase of a
construction project, a contractor could search a construction data base, retrieving
all materials of a given type that have passed the tests specified by the designer.
This process would allow the contractor to maximize his profit on the material
costs of a job by incorporating materials of equal quality but lower cost than those
specified by the architect/engineer.

Syntax:

material_tested_per ::=

ACTOR FUNCTION material_tested_per (test)
RETURNS material;

RETURN SELECT test, manufacturer, product
FROM Materials
WHERE test = test

END FUNCTION

(e) meets_or_exceeds

Another material constraint common to project specifications is that a certain
attribute of a product inust meet or exceed a given value. To address this need,
the CI-SQL function meets_or_exceeds has been developed. When passed the
parameters of product type, attribute, and value, this function returns all products
whose specified attribute is greater than or equal to the specified value. As an
example, the project architect commonly specifies that a building's heating and air
conditioning system must have an EER (energy efficiency ratio) that meets or
exceeds a given value.

Syntax:

meets_or_exceeds ::
ACTOR FUNCTION meets_or_exceeds (attribute, value)
RETURNS material;

RETURN SELECT manufacturer, product, attribute, value
FROM Materials
WHERE attribute > value

END FUNCTION

Sample Application

The purpose of this section is to demonstrate the use of several of these
extensions in a combined form. This demonstration will be designed to mimic an
actual quéry that might be required in industry practice. It should be noted that in
a total solution a user interface would hide much of the query construction from
the user. Again, the data base that would be used for this query is only
hypothetical and an actual industry data base might differ significantly depending
on the input obtained from product manufacturers and specifiers.

Sample Scenario: The chief estimator for XYZ Construction Company is
bidding on a school expansion. He has determined from the project drawings that
sixteen wood doors will have to be supplied in one wing of the school. These
doors must have the following characteristics:

1) Solid Core
2) 1-3/4" Thick
3) 30" Wide
4) AWI Grade Il
5) Cost less than $250.00 each
6) Primer finish
7) Comply with ASTM E 221
8) Tested per ASTM E 81-3
9) Fire rating that meets or exceeds 1-1/2 hours
10) Acceptable manufacturers are:
a. Allied Wood Products
b. TreeCo Corporation
¢. Wood Builders Products Corp.
d. Florida Door
Based on this information the estimator constructs a query to search the
WoodDoors data base for all doors matching the above specifications. The query
is structured as shown below.

SELECT manufacturer, model, cost
FROM WoodDoor
WHERE core = ‘Solid* AND
thickness = *1-3/4"' AND
width = *3'-0"' AND
awi_grade = ‘III' AND
cost < 250 AND
finish = ‘primer’ AND
complies_with_standard (ASTM E 221) AND
material_tested_per (ASTM E 81-S) AND
meets_or_exceeds (fire_rating, 1.5) AND
manufacturer = *Allied Wood Products® OR
*TreeCo Corporation' OR
*Wood Builders Products' OR
*Florida Door' AND
quantity_on_hand > 16
ORDER BY manufacturer, model;

The result of this query might be as follows:
Manufacturer Model Cost
Allied Wood Products JL 2112 228.50
Allied Wood Products JL 212-5 244.65
Allied Wood Products JL 297-5 249.85

TreeCo Corporation TCWD 1156 219.38
Wood Builders Products W-8972Z 249.99
Wood Builders Products W-8978Z 235.75

The primary benefit to such query capabilities would be that if a “live” data
base were maintained by local or even national suppliers, the architects and
contractors would have computerized access to detailed product information.
Other beneficial options could be added to the system such as the ability to
provide cut sheets, installation information, and pricing structures that depend
upon passwords.

CONCLUSIONS

The primary results of this research are twofold, First, several specific SQL
extensions were created which afford the potential for the development of many
other related functions. This expansion clearly could be cultivated into a robust
collection of construction applications. Second, the development process itself
entailed difficulties that yielded unanticipated results.

This research should be viewed as the first of multiple passes necessary o
create a complete and full-featured construction-specific superset of SQL. One of
the additional passes necessary to providing a complete version of CI-SQL wouid
be the expansion of construction-specific vocabulary. The development of many
other pertinent construction vocabulary words could be achieved through the
creation of a consortium of design professionals, construction management
personnel, and construction materials experts. The goals of such a consertium
should be aimed at developing all vocabulary that would increase productivity by
eliminating much of the duplicate effort mentioned earlier. By continuing the
process initiated by this research, the tools available for meeting the informational
needs of construction professionals can be greatly enhanced. Given the fact that
other industries have proprietary vocabularies, the procedure used in this research
could be replicated in almost any other industry.

Clearly, future construction use will depend on the future research and release
of SQL products. For example, once date/time functions are supported by SQL,
construction applications such as calculating expected material delivery dates will
be feasible. Also, many scheduling operations such as calculating activity float
times, and projected project completion dates will be possible. Other construction
activities such as cost estimating and bid analysis should be examined for
applicable uses and extensions of SQL.

In addition to building CI-SQL based on future research, extensive data base
development would be required in order to provide the construction industry with
critical data such as pricing and availability of products. The development of such
data bases would depend largely upon the participation of manufacturing groups to

furnish detailed product information. This information would have to include
attribute templates, or models of all the data that uniquely identify individual
products or groups of products. For example, the attribute template for doors
might include such fields as size, swing, thickness, material, lites, style, and fire
rating. Characteristics such as these would allow an architect or contractor to
specify the values for each of these attributes that uniquely identify doors. Thus,
participation on the part of manufacturers would be crucial to the success of
building large construction materials data bases that could be used by the
construction industry to increase productivity.

References

Beech, D(1989, February 15). The future of SQL. Datamation, pp 45-48.

Codd, EF(1970). A relational model of data for large shared data banks.
Communications of the ACM, 13(6), pp 377-387.

Date, CJ(1989). A guide to the SQL standard (2nd ed.). Reading, MA:
Addison-Wesley Publishing Company, pp 1.

Egenhofer, MJ(1989). Spatial query languages. Dissertation Abstracts
International, 51, 5104A. (University Microfilms No. 9023850), pp 79-80.

Hursch, CJ & Hursch, JL(1988). SQL: The structured query language. Blue
Ridge Summit, PA: Tab Books Inc., pp 9-10.

Pascal, F(1989, September). A brave new world? Byte, pp 247-256.

Trimble, JH & Chappell, D(1989). 4 visual introduction to SQL. New York:
John Wiley & Sons, pp 3-12.

Wipper, F(1989). Guide to DB2 and SQL/DS. New York: McGraw-Hill
Publishing Company, pp 27.5

