Construction Informatics Digital Library http://itc.scix.net/

paper w78-1992-502.content

What's in a part?

Robert Woodbury!
Abstract

Self-generating part-of hierarchies based on rules are proposed.

Introduction

Part-of relations are ubiquitous in design representations, where they are used chiefly to
represent hierarchical decompositions of designs. For example, we may say that a
structural system is part-of a building and a beam is part-of a structural system. In their
turn, design decompositions are classical human responses to complexity in a design
situation; if a system can be meaningfully described as a hierarchy of only slightly
interacting components, its design, realization and maintenance are thereby simplified. A
decomposition can effectively be thought of as establishing a type, or convention, of
design. For example, the essence of a rain screen wall is a configuration that separates the
roles of air-barrier, structural support, insulation and rain protection into distinct building
components. ,

Each node A in a part-of hierarchy can be considered to be a portion of a design, given at
some level of abstraction. The nodes A; immediately below a node (those nodes that are
part-of a node) collectively define the upper node, but at a lower level of abstraction. Itis
usual that the part-of relation is used informally, that is, it is not assumed to have
rigorously defined properties. Perhaps the most commonly assumed property is that, for
certain functions, the effect of an action applied to a part is, in some sense, equivalent to the
effect of the same action applied to its subparts. Thus the part-of relation can be informally
conceived of as expressing an additive equation.

flA) =f(A1) +f(A2) +..+f(An)

To gain a clear understanding of the part-of relation it is necessary to understand the
meaning of the addition and equality operators.

Part-of relations may be represented in a variety of ways; the frame and slot structure of the
now popular object-oriented systems being merely the most common present approach. In
such representations, an object is characterized as a set of parts, each of which may have
recursively their own subparts. Different parts of the same or different objects are
considered to be distinct. The modeling hierarchies of graphics are an example of such
structures. A simple, but concrete, example is given in Figure 1 below.

1 Associate Professor, Deparirnent of Architecture, Carnegie Mellon University, Pittsburgh, PA, 15213,
tel (412) 268 8853, fax (412) 268 7819, email: rw@edrc.cmu.edu

502

7N\

Figure 1 A part of hierarchy for the first floor of a rowhouse.

Part-of hierarchies of the above type define trees, i.e., there is no sharing of partsin a
structure. This is a problem from two perspectives: (1) very seldom do designed objects
display such independence of structure, and (2) different perspectives on designs are
expressed in different part-of hierarchies that must ultimately be defined on the same set of
variables. Even in the earliest CAD systems these problems were addressed, and their
solution has changed little from that time. For example, Sutherland's Sketchpad
[Sutherland 63] supported the merging of subparts. This made the merged subparts into
the same data objects, thus both their structure and the values they contained were made the
same. Boring adopted essentially the same strategy in Thinglab [Borning 81].

Eastman's present EDM system [Eastman 91] supports a very similar construct called
subsumption. A closely related approach was that of Sussman and Steele in their system
Constraints [Sussman 80]. In this approach the shared structures are identified, that is,
their structure and variables are marked as being equivalent to each other. Examples of
shared structure are found whenever parts interact and whenever there exist different views
on a design. An example of the former is shown in Figure 2 as a bay that comprises a
beam that is supported by two columns, each of which may support beams from other
bays. An example of the latter is shown in Figure 3 as a window that is both a daylight
source and an element in a building envelope.

s bl = o bl —

OO OWOWON

Figure 2: Sharing of structure in a part-of hierarchy induced by interaction of parts.

503

lightsources

wallseg door wallseg door wallseg [—

Figure 3 Sharing of structure in a part-of hierarchy induced by multiple views.

Part-of hierarchies are one of two elemental relational structures in most object-oriented
data structures - the other structure being inheritance. The semantics of the part-of relation
can be given great elegance when inheritance is used in its definition, as it is, for example,
in the ASCEND modeling system [Piela 89]. Under this regime, parts can only be merged
if their ancestries are conformal. Under single inheritance, an ancestry is the path from an
object's class through its superclasses to the root of the inheritance hierarchy. Two
ancestries are conformal if one is a subgraph of the other. Two non-identical, but
ancestrally conformal, parts can be merged to produce a new part whose class includes the
most specific structure from either part. Merging is recursive, that is, it operates on the
subparts of merged parts as well as on the parts themselves.

Merging can freely produce cyclic structures. Cycles may be meaningful in design
contexts, for example, in boundary representation solids modeling an edge-half may be
considered to have other edge-halves as its parts. They do introduce considerable
complexity into the parsing of models; at least one system, the above-mentioned
ASCEND(Piela89), prohibits such recursive constructs.

The problems of views and emergence

Part-of, merging, and merging with inheritance are the extant elemental structures in
creating design decompositions; their use is widespread, their utility widely recognized.
But are they sufficient to effectively and efficiently describe design representations?

On two counts, I argue that the answer must be "no".

First, design views are not only ways of seeing data, but are also ways of defining and
manipulating data. One the main motivations for a view is to provide a limited model of the
data for a particular task. In design, doing a task in one discipline can have structural
consequences to the views from other disciplines. For example, placing a window in a
facade would affect the views seen by both daylighting analysis and construction

documentation. In both cases it would alter the part-of hierarchy of the view. That this is
an issue in describing representations is easy to argue - the part-of hierarchy of each view
needs to be consistently maintained as a design develops if the hierarchy is to be relied
upon to produce useful data for the view. Two approaches to this problem seem evident:
(1) build into each part a representation of all of the part-of hierarchies in which it
participates, so that the part embeds itself into a representation, and (2) recognize when a
part-of hierarchy is changed by the addition of a new part into a representation. Neither
approach is enabled by the present constructs.

Second, part-of hierarchies are defined explicitly over the variables that comprise a
representation, yet it is well-known that significant "parts" of designs emerge implicitly as a
design is developed. To give a simple architectural example, consider the relative
placement of two rectangular spaces that comprise a single building. They may be
adjacent, 12 which case a part-of hierarchy for the building would have only three parts as
in Figure 4.

building

room room

Figure 4: A part-of hierarchy defined by placing two rooms

Figure 5 shows that they may overlap, in which case the space implicitly formed between
them can itself be considered both a part of the building in its own right and a part of each
space (such sharing of spaces is a distinguishing feature of the architecture of the last 100
years).

building

roo&oom

Figure 5 A part-of hierarchy with an implicitly defined room.

In this case, two spaces (parts) are used to define a design, but three spaces and one
composition (parts) are in the result. In individual cases, it is possible to anticipate the
possible interactions between operations on parts, but in the general case it is hopeless.
There is, simply, no general way of anticipating how subpart emergence will occur - it
must be recognized when it happens. The emergence of subparts is also not necessarily
unique; there may be combinatorially many ways to reasonably construct an emergent part-
of hierarchy. :

505

Recognition

Both of the problems above, might have the same solution, namely, endow part-of
hierarchies with recognition mechanisms by which they can construct themselves in the
face of changing data. Such recognition mechanisms can be described as grammars, and,
in a grammatical description, rules would exist within a part. Consider a part-of hierarchy
that supports a view of precast construction of a building envelope. Presume (somewhat
artificially) that precast panels may be supported only at the intersections of horizontal and
vertical structure. In this example a design begins as a single part, the Jacade-part , here
treated as a polygon. The facade-part has associated with it rules that recognize the
placement of floors and divide the facade into panel-parts that span vertically between
floors.
Facade-part
part-of <set>
part-of-rules

Figure 6 Definition of facade-part.

Panel-parts are instantiated in turn with their own rule, that divides a panel into subpanel-
parts whenever a vertical structural element is placed over a panel.

Panel-part
part-of <set>

part-of-rules
gu uj

Figure 7 Definition of panel-part.

Subpanel-parts are instantiated in their turn with a rule that divides them into windows and
smaller sub-panels whenever a window is placed over them.

Sub-panel-part
part-of <set>
part-of-rules

P [-
ajag:s

Figure 8 Definition of subpanel-part.

506

With these three elements of a part-hierarchy, the following actions on the overall building
representation would automatically generate a construction oriented part-of hierarchy (the
actions are expressed in a simple and hopefully obvious imperative style). The result is

given in Figure 9.
make-facade lower-left 0 0 upper-right 60 40
make-floor range 060 height 10 % range specifies the x-coordinates
make-floor range 020 height 20 % between which a floor spans
make-floor range 40 60 height 20
make-floor - range 020 height 30
make-floor range 40 60 height 30
make-floor range 060 height 40
make-column location 00 height 50
make-column location 200 height 50
make-column location 300 height 50
make-column location 400 height 50

make-window lower-left 22 10 upper-right 38 40
make-window lower-left 2 10 upper-right 10 40
.make-window lower-left 50 10 upper-right 58 40

facade

!

panel, panel, panel, panel, panel, panel, panel, panel, panel

1

sub-panel, sub-panel, sub-panel

J

sub-panel, sub-panel, sub-panel

A

sub-panel, sub-panel, sub-panel, sub-panel, sub-panel, sub-panel, sub-panel,

window window window

sub-panel, window window window
window

Figure 9 A building facade and its generated part-of hierarchy. To simplify the diagram, one arrow
links each part to its set of subparts.

507

Research program

It is clear that subpart recognition would be a difficult problem, in a general case. 1
conjecture that many subpart recognition problems could be cast as subgraph isomorphism,
which is known to be NP-complete. It is also clear that this may not be fatal. There is a
very large literature, spanning many fields, on pattern recognition. From design research
itself, there have been reported algorithms and their implementations as systems for the
recognition of design parts as part of a process of rule interpretation. Some of these give
polynomial time algorithms for useful classes of shape recognition.

The currently popular object-oriented systems upon which design representations are built
often have a daemon mechanism (a way of making the application of operations dependent
on changes in the data represented in a structure of objects). Such mechanisms provide a
substrate upon which to build part-of recognition mechanisms, but are themselves not a
solution to the problem. They provide only an activation mechanism, and are silent on the
tough issues of formal characterization of parts and efficient algorithms for their
recognition.

If self-generating part-of hierarchies were to be further developed, several questions would
need to be addressed: _

Are there precedents, especially in integrated CAD system research, for the automatic
construction, via recognition, of design decompositions?

Can a convincing example of an application be constructed? Such an example would
give invaluable insight on the inherent worth of the idea.

What is a clear means of expressing both traditional parz-of relations and recognition
mechanisms in one formalism?

Are there algorithms that scale to realistic cases?

These questions constitute a research program for which I conjecture that early results
could be achieved with a modest effort. I hypothesise that self-generating and therefore
automatically constructed part-of hierarchies could make the construction of design
representations much more simple and error free.

References

[Borning 81] Alan Borning, "The Programming Language Aspects of ThingLab, a
Constraint-Oriented Simulation Laboratory" , ACM Transactions on
Programming Languages and Systems, V3, N4, Oct. 1981, pp 353-
387.

[Eastman 91] C.M. Eastman, A H. Bond, S.C. Chase, A Data Model for
Engineering Design Databases, Tech. Report No. 10, Graduate School
of Architecture and Urban Planning, UCLA, Jan. 1991,

[Piela 89] .Peter Piela, ASCEND, An Object-Oriented Computer Environment for

Modeling and Analysis, Department of Chemical Engineering,
Carnegie-Mellon University, April , 1989.

508

[Sussman 80] G. Sussman and G. Steele, "CONSTRAINTS - a language for
expressing almost hierarchical descriptions" , Artificial Intelligence ,
V14, N1, Aug. 1980, pp 1-40.

[Sutherland 63] LE. Sutherland, Sketchpad: A Man-Machine Graphical Communication
System , Tech. Report N0.296, MIT Lincoln Lab., 1963.

509

