Construction Informatics Digital Library http://itc.scix.net/

paper w78-1992-471.content

iiga Turk”

Object Oriented Modelling Techniques
and Integrated CAD

Submitted to the CIB W78 & CBS meeting in Montreal, Quebec, Canada, May 12 - 16, 1992.

Abstract:

In integrated CAD different techniques are used to model various aspects of
the problem domain - information, activities, data and data flow. Finally all
models developed using different techniques must at least co-operate which
is not encouraged by different modelling techniques. We propose a
modelling approach borrowed from object oriented software design
introduced by Booch that offers methods and notations for both the static
and the dynamic aspects of state and behaviour of the models and offers
smoother implementations with object-oriented languages and databases.
The paper discusses the motives, the details of the proposed OO modelling
approach and an example from the domain of standards representation.

If we use different
modelling approaches,
how difficult will it be to
integrate the
implementations?

Are traditional model-
ling approaches best
suited for object oriented
implementations?

unified approach through
OO0 modelling methods

In efforts to develop integrated CAD solutions for AEC industries
researchers and developers come across a variety of modelling
techniques, notations and data model types. Different approaches
are suggested for the modelling of data (EXPRESS), information(E-R,
IDEF1X, NIAM, EXPRESS-G), data flow (DFD) and activities (SADT,
IDEF0) /FOWL9Y/. In the end, the solutions based on these distinct
models need to be integrated.

Over the past few years there have been clear indications that OO
technology (data bases, languages, development shells, operating
systems, user interfaces) will eventually be used for the
implementation of integrated CAD systems of this decade.

We agree with arguments /BJOR91/ that a unified approach is
needed. We will explore the possibility to implement an OO
software design method in information modelling as the basic factor
of unification. This should give us the advantage of object
orientation from the very start of the modelling process. The
approach is complete and includes methods and notations suitable

for both static and dynamic features of objects. This should help us

to answer the question:

*M.Sc., University of Ljubljana, Civ.Eng.Dept., Institute of Structural and Earthquake Engineering;
mail: FAGG, Jamova 2, 6100C Ljutljanz, Slovenia; fax: +38 61 268 572; e-mail: ziga.turk@uni-lj.ac.mail.yu

471

Is it possible to replace traditional modelling methods with OO design
methods?

and provide some data to answer the two questions in the sidebar
above.

Chapter 2 discusses the modelling process, the object model’,
modelling method and notation. Chapter 3 presents an example.

First, the model of a modelling process will be shown and the role of
the OO technique marked. Key elements of object models will be
discussed. Finally the method of OO modelling and the
corresponding technique will be presented.

We understand the modelling process as shown in Fig 1.

‘Fig.1: The modelli end user,
pgcess. Object i)rligted programmer progremmer end user
techniques and tools are i £ i 00 data
used t}llrougha;t. The iy onceptual ["—-"]00 data model
control comes from rea conceptual [mode! model instance

, " ———— P ect |————Jpp CAD |[———
developers and designers. o0 data’ | Modelling de:i?\jiﬁm
The tools provide the model type

mechanisms. ? T T

00 modelling OO browsers 00 GuUl
method and shells

The object oriented paradigm has become well known and
publicised over last few years. This chapter will only point out some
of the key ideas that distinguish object models from traditional
models that are derived from the entity-relationship data model
type. The key concepts of object models (abstraction, encapsulation,
modularity, hierarchy, concurrency and persistence) will not be
discussed at length.

Objects vs. Entities

entity < object In the context of traditional modelling methods, the terms object and
entity were used interchangeably to describe real world concepts we
wish to have information about. Entities would be associated with

1 As we do not use the adjective "oriented” in other models (relational, network) the term "object model” is
Ereferred to "object oriented model".

Key ideas of this chapter are based on OO design approach as proposed by Booch in /BOOCIY/ and
/BOOCS6/.

472

role of objects is that of
entities '

three kinds of properties
that objects have

things you do something
to

mechanism

Relationships

attributes and related to other entities with relations. The E-R,
IDEF1X and NIAM data types are all versions of this understanding
of an entity.

In the context of human cognition an object can be informally
defined as a tangible entity that exhibits some well-defined behaviour
/BOOCYY/. In the context of object oriented modelling an object is
(like entity) a basic building block of object models which has three
kinds of properties:

«~ State that includes static and dynamic properties of the object.
The static properties of objects roughly correspond to relations in
E-R models. The fact that a beam is supported by columns may
be considered such a static property. By which actual column the
beam is supported, how long, wide and deep it is, are dynamic
properties which correspond to attributes in E-R models.

. Behaviour includes information on how the object acts upon
other objects and how it reacts to messages from other objects.
The reactions may include state changes or actions (messages). In
a physical model of a structure, a reaction to the message
"compute” may result in state changes of internal forces inside
the beam. A reaction to the message "check" in a conformance
checking context would result in a message with "yes" or "no"
being returned to the sender. Messages can be divided into five
groups: modifiers (1) that change object’s state, selectors (2) that
query object’s state, iterators (3), constructors (4) and
destructors(5). The last three become important in the
implementation. -~

. Identity is a property that distinguishes the object from all other
objects /KHOS86/. Implementations of object data models could
add special ID’s to object’s state (common in object data bases) or
resolve identity from object’s address in memory.

Static state and behaviour of similar objects can be defined in their
class. Particularly the behaviour property of objects introduces the
difference between objects and entities. Objects also become things
you do something to and not only things you know something about.

A collection of objects that exchange messages exibit behaviour and
is called a mechanism. We could understand a mechanism as an
extension of the system/subsystem concept which is used in AEC
information models.

The relationships can be divided into the following categories:

. object to object;
+ object to class;

473

roles of two objects ina
“using” relation

synchronisation of
objects

to contain or to use - no
clear boundary between
objects and attributes

class to class relations

. class to class;

Models are built of objects that may be related to each other in two
ways: '

. an object uses another object;
. an object contains another object.

The using relation gives an object one of the following three roles.
An object may be an actor (1) which means that it uses the other
object but is never used. An object is a server (2) if it is only used by
the other object and is an agent (3) if it can act both as an actor or as
a server.

From the synchronisation’s point of view an object may be
sequential, blocking or concurrent.

The relation "contains" creates aggregate objects where an object
becomes a part of another object. As there is a dilemma in E-R type
modelling, whether something is an attribute or a related separated
entity, there is a dilemma between understanding some information
as a using or as a containing relation. The first results in more loosely,
the second in tightly coupled systems.

Class to class relations involves single or multiple inheritance (the
well-known a_kind_of relation), using (a class may use another class
in its interface or its implementation), instantiation (used in
container classes) and metaclass (used if a class itself is considered
an object). For information modelling only the first two relations
seem useful.

analysis = vocabulary

design = behaviour

Fig. 2: The software
development life cycle.

ANALYSIS
DESIGN
EVOLUTION

Object oriented design is a software development method that is
based on the waterfall software development life cycle extended
with backloops (Fig. 2). We are interested in the first two phases:

. object oriented analysis should identify the objects and classes
that form the vocabulary of the universe of discourse;

. object oriented design should invent abstractions and
mechanisms that provide the behaviour of the model.

MODIFICATION

The attributes of quality design should be followed and include
coupling, cohesion, sufficiency, completeness and primitiveness.
One of the key tools to achieve that is classification.

474

Classification

classification =
discovery + invention

how to find classes

making new classes from
existiong ones

OO Analysis

OO Design

the four steps of OO
design

Classification provides means to organise objects and classes. It can
be broken into two sub problems - the discovery of key abstractions
and mechanisms and the invention of generalised abstractions. It is
considered an incremental and iterative process where it is rarely
possible to find the "right" or the "best' solution. The suggested
methods for the classification of objects are:

. classical classification (use properties a a criteria for sameness
among objects);

. conceptual clustering (formulate conceptual descriptions of
classes then classify);

. prototype theory (defining concepts by examples),

. existing classification systems (like the NBC classification system
- /VANI9Y/) in areas where they exist.

As the name implies, the result of classification are classes. These can
be used to create new classes by derivation (derive new specialised
classes from existing ones) with its inverse abstraction (group classes
with a commonalty into super classes) and factorisation (split a class
into several classes) with its inverse composition (join several classes
into one class).

Analysis can either be performed on the problem in question or on
the whole domain of problems (domain analysis). Product modelling
approach corresponds the second. Some authors /SHLA8S/ suggest
things that are candidate classes. Other possible analysis methods
include the Informal English Description and the Structured
Analysis methods /YOUR8Y/, which are well supported by existing
CASE tools.

OO Design process is a fuzzy, iterative process (contrary to top-
down or bottom up classical designs) which develops solutions
through refinement. The process can be broken into the following

steps (applied at different levels of abstraction):

. On the basis of the discovered classes and objects (from the
analysis phase) we identify classes and objects on a certain level
of abstraction. We discover key abstractions and mechanisms.

. Identification of the semantics (meaning) of classes and objects.
The particular interest should be in the interface of the
object/class that define the properties that are seen and can be
used by other objects/classes.

. Identification of the relationships among classes and objects
that can be of static and of dynamic nature.

475

. Implementation is concentrating on the representation of classes
and objects, grouping them into modules and processes.

one diagram typeisnot The table below shows the six diagrams needed to capture OO
enough design.

Fig 3: The six types of static features dynamic features
diagrams used in OO
design. In modelling logical class diagrams show relations | state transition diagrams show
applications we will not between classes the state-space of an object,
:;;;ti;rest}e'd;;;:ze fwo object diagrams show objects | events that cause the transitions
allocat ignp 4 and mechanisms they and actions that result from a state
) participate in change
physical module diagrams show the | timing diagrams show dynamic
allocation of class and object | interactions among various
definitions in modules objects in object diagrams
process diagrams show the
allocation of processes to
processors
Class diagrams

The graphic vocabulary of the class diagrams consists of classes and
various kinds of relationships:

Fig. 4: Right: icons used

in class diagrams (from oX1a0eL_X yuses (for interface) 0 zer0
/BOOC91/). Below - or-e X uses (for implementation) 1 one
daSSlC‘m,, ... Jabel___ ingiantiates (compatibie type) « 2er0 or more
.__,;" 1--1308L___ instantiates (new type) + ONe or more
... class namey —_label __ innenits (compatitie type) 7 zer0 orone
.' .__'_‘_b"_.. nherits (new type) nn
oo d208L . undefined

The shape of class should indicate that it is of irregular form, but has
clear boundaries. The boundary however, is dashed, because most
operations are performed on the instances of the class. Large
projects would require many class diagrams. Booch introduces a
concept of class categories to group and relate similar classes. In-
depth explanation of classes in the diagrams is provided in class
templates - forms with several fields describing several aspects of the
class (example in Fig.5).

476

Fig. 5: Apage from a
Class Book (Developed
with Toolbook hypertext
system) showing the
fields that describe a
class.

Darker fields are not im-
portant for the modelling
stage.

The braces in the "field"
and "uses" lists are an
extension and show the
relations betweenan
object of this class and
other classes and are also
hyper-linked to those
classes. The distinction
between "field" and
"uses" becomes important
during the implementa-
tion.

the CODE OF TECHNICAL REGULATIONS FOR
HE DESIGN AND CONSTRUCTION OF

BUILDING IN SEISMIC REGIONS

Official Gazette of S.F.R. Yugostavia, No. 31/81)

.‘

R
8
03

El

State Transition Diagrams

N/

Object Diagrams

object name

Timing Diagrams

Since state transitions of objects are caused by actions (messages),
the finite state machine of Mealy type is used to capture state
transitions. Icons include circles to represent states (double line for
start state and thick line for end state), and arrows to represent
actions. The details of actions could be explained in PDL (program
design language) or in object diagrams.

Object diagrams should capture the model of the mechanisms. Its
primary goal is to capture the message passing between the objects.
The shape of the object icon is the same as of the class icon, except
that the line is not dashed. Notation is provided for different kinds
of message synchronisation (simple, synchronous, balking, time-out,
asynchronous) and object visibility. The letter is of interest in
detailed design.

Both object and state transition diagrams do not capture the
dynamic nature of collaborating objects. The firsts are static, the
second capture only state transitions within a single object. We
could add dynamics to object diagrams by adding ordinal numbers
to messages. These would then show the sequence in which
messages are sent. The second suggested approach is using a PDL
for each object diagram and the third the timing diagrams borrowed
from hardware design and similar to electronics timing charts. The

477

method also captures multi-threaded events that will become
common programming practice on operating systems like OS/2.

The OO design method has been used for a more detailed design of
the layered standards representation /TURK91/.

bridging the gap between
the standard and the
product

Fig. 6: The layers of the
layered representation of
standards.

The idea of the layered representation is based on the assumption,
that computerised standards® representation is limited with two
boundary conditions: the paper version of the standard on one end,
and with a product to which provisions in the standard apply, on
the other. In normal practice, the intellectual distance between the
two is bridged by a knowledgeable engineer. Computer
representation of standards should give him considerable help,
providing that both the standards and the product are available in
computerised form. As the name implies, the layered representation
bridges the distance by introducing several layers between a
computerised "on the paper representation” and the product data

(Fig. 6).
PRODUCT GRAPH LAYER

" /STANDARD GRAPH LAYER

KNOWLEDGE LAYER

TAGGED TEXT LAYER

TEXT LAYER

The form and function of the layers are briefly presented in Fig. 7.

3 The term "standard" is used to denote various kinds of regulations and provisions on different legislative

or professional levels.

478

Fig.7: Thelayersof the | NAME |DESCRIPTION FUNCTION; TOOL USED FOR
layered representation. USAGE REPRESENTATION
The top to botiom
ordering of the layers is | product | objects, classes and provides data to be OO database
the same as in Fig. 5. graph | relations between checked;
them as designed (not ‘
part of the standard) | CAD, conformance
checking
stan- objects, classes and uses knowledgeand | OO database or KBS
dard relations between tagged text layer in shell
graph | them as defined in the | methods
‘ standard
know- | declarative and uses layers below to | hybrid expert
ledge procedural knowledge | collect data, provides | system tool,
embedded in the further layers with programming
standard low level methods; language
primitive interactive
conformance checking
tagged | Tags selected parts of | enables the above same as text layer,
text the standard. Tags layers to access data in | hypertext or
have name, typeand | the standard; hypermedia with
contents. Types are typed links
machine usable guided electronic
expressions, quoted | browsing
text, go-to links,
anchors, keywords,
titles ...
text machine readable form | passive, at best stores | SGML, TeX, some
of the standard as we | constant data - the word-processor text
areusedtoseeiton | contents of tags of the | file
paper, includes ayer above
pictures and tables
electronic browsing

To make an object model of the layered representation, information
in all levels should be modelled as classes and objects. They are
shown in Fig. 8. Detailed classes for the representation of products
are being defined as a result of the reference model development.
The classes for standards representation have been proposed by
Garret /GARR9(Y/ and modified in /TURK914/ to fit into the layered
representation scheme. The knowledge layer treats procedural and
declarative knowledge in a similar way. The knowledge island
technique /TURK91b/ is suggested for the representation. Finally,
the tag layer provides an intelligent interface to various information
found in the standard text.

479

Fig 8: Class relations for
the layered representa-
tion. There is deliberate
symmetry between the
classes in the product
and the standard layer.
Each layer has its own
class hierarchy. The ex-
ception is the knowledge
layer that is being used
as a member (method,
attribute) of the standard
layer.

A-Go:i;ne\d‘,
~ and ~, part
demgned 4 haspart p; /des|gne\d\ 4’/‘—* i\.p/‘,-—\/'h PRODUCT
\produc‘t object ! oSN as)} LAYER
e - designed
1 n \t‘\ﬁnbute A
(g
? ,v-/r:q?ullre;) .
e A ~ part |
 standard 11122 P required o~y STANDARD
4 ! : i LAYER
"\/f‘/’ requwed P
timribute
(P annd
VY /'!’““x Ve
(_askable { Q:heck \ given ’
L~
1 -t
]
KNOWLEDG
LAYER
TAG
LAYER

using relation between
objects of different layers
Jor loose coupling

The relations between objects originating in different-layers are
using rather than containing because we want or keep the layers only
loosely coupled. The objects on the layers above use the objects on
layers below. Objects on layers below serve objects on layers above.
The relation of objects in standard graph layer to those in the
product graph layer is generally that of an agent (they are both used
by and use objects in the product layer).

480

The mechanism for checking the design is shown in Fig. 9. We have
decided to choose the product objects as active. Their messages
initiate the checking process. Static and dynamic matching between
objects in the designed product and those in the standard determine
standard applicability. The "check" message asserts the object into
the standard. The standard object itself acts as a big blackboard. The
actual check is later performed by declarative (aKTI) or procedural
(aProgram) objects, which may use information from the standard,
designed product, the user or standard text.

= check
gelValue 4

Fig. 9: Object graph that
illustrates the messages
of design verification.
Lines represent message
paths between objects
and arrows above them
the direction of messages
from the sender to the
receiver. Timing is
defined by numbers that
accompany messages.

F=3
aTagged J——— >
rossio.{ 6 evaluate explain gaAuote

The state machine of a designed object shows the transition from the
unchecked to checked state. Timing during checking is not critical. If
the checking process does not alter other states of the object, then
the checking processes may run in parallel.

Fig. 10: State machine
Jor the designed object.
There are three possible
results.

checked

481

exchange of objects

OO design forces us to think about active and passive elements of

~ both the standards and the product models in terms of mechanisms

that combine the objects. Some of the key classes and key
mechanisms of standards representation/usage have been identified.
It has been shown that OO design methods can be applied to
standards modelling. Further research is needed to quantify its
advantages and disadvantages over other information modelling
methods and the possible implementation of objects with behaviour
to the plug compatibility of standards.

True OO environment should not only support data and
information, but object exchange as well. The exchange of objects
with well-defined status and behaviour could be the solution for
many problems of the integrated CAD domain.

BJOR91

BOOC86
BOOC91

CBR91

FOWL91

KOSHS6
SHLASS

TURK91a

TURK91b

VANI91a

YOURS88

Bjork, B-C., "A Unified Approach for Modelling Construction Information®,
accepted paper in Building and Environment, special issue on databases for
project integration, 1991.

Booch, G., "Object Oriented Development”, IEEE Trans. Soft. Eng., February 1986.
Booch, G., "Object Oriented Design with Applications”, The Benjamin/Cummings
Publishing Company, Inc., 1991 ‘
Kahkonen K., Bjork, B-C, (editors), "Computers and Building Regulations”, VTT -
Technical Research Centre of Finland, Espoo, 1991.

Fowler,]., "STEP Modelling Methods®, CAD-CAM Data Exchange Technical
Centre, University of Leeds, UK, 1991.

Koshafian,S., Copéland, G., "Object Identity", SIGPLAN Notices vol. 21 (11).
Shlaer, S., Mellor, 5., "Object-Oriented Systems Analysis: Modelling the World in
Data", Yourdon Press, Englewood Cliffs, NJ, 1988.

Turk, Z., "Building Model Standard as a Foundation for Computer Integrated
Design", in /CBR91/.

Turk, Z., Duhovnik, J., "Using Knowledge Islands in an Object Oriented
Framework for Integrated Structural Design®, in Artificial Intelligence and
Structural Engineering, Civil-Comp Press, Edinburgh, 1991.

Vanier, D.J., "A Parsimonious Classification System to Extract Project Specific
Building Codes", in /CBR9Y.

Yourdon, E., "Modern Structured Analysis",Yourdon Press, Englewood Cliffs, NJ,
1988.

482

