Construction Informatics Digital Library http://itc.scix.net/

paper w78-1992-447.content

RDBM versus OODBM in Support of Integrated Data Bases for
Computer Aided Building Design

Jin-Yeu Tsou, James A. Turner, Harold J. Borkinl

Introduction

Computer technology has changed the way architects and engineers design, analyze, plan,
estimate and document buildings. In the last few years powerful and affordable software
and supporting hardware have replaced traditional tools, making modeling, engineering
calculations and drawing quicker and easier. Software designers and researchers are
constantly forecasting an even brighter future, with cheaper and better computer
applications available to the practicing architect. This trend will continue; but the promises
made in the 60's and 70's, of a thinking, computer design assistant, or of a completely
integrated collection of architectural design, analysis and drawing tools, may take longer
than first forecast.

A critical issue which must be investigated for the "next generation" of computer aided
building design applications is integrated building data bases. These data bases must be
dynamic and extendable to support new types of information; must be shareable by
architectural designers and various types of engineers; must be able to support collaborated
design activities; must be able to effectively represent complex relationships among design
objects; and must provide enough power for rich data modeling. The benefits of an
integrated system have been recognized and reported as an important issue for many years
[Eastman 735, Borkin 78]. Conventional data base management systems (e.g., network,
hierarchical, or relational) may not be adequate to support these requirements, but
advancements in data base technology make it possible to now address the problem.

This paper will compare two data base management technologies — the relational data base
and the object-oriented data base — as candidates to support an integrated architectural CAD
environment. In order to investigate these two approaches, a simple architectural design
scenario and conceptual building model are presented. The relational and object-based
approach will be implemented from the scenario and model. The paper will compare the
inherent qualities of the two systems, and will comment on their possible adaptation to the
traditional and emerging, computer-assisted, practice of architecture.

Overview of RDBM and OODBM Systems

Conventional relational data base management (RDBM) systems have served the needs of a
variety types of business applications which have pre-defined and static data requirements,
such as accounting and inventory control. These systems have been suggested as a
possible solutions to future architectural CAD systems [Borkin 78, McIntosh 84].

In recent years, object-oriented data base management (OODBM) systems have been

~ developed to meet the goals of data modeling, schema evolution, performance, cooperative

design, and version management [Joseph 91]. OODBM systems, suggested by the
research of object-oriented information management [Ahad 92, Bertino 91, Cattell 91, Kim

1 Architectural Research Laboratory, College of Architecture and Urban Planning, The University of
Michigan
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91, Ketabchi 90, Kim 90], may provide a sound data base foundation for the next
generation of CAD applications.

Conventional RDBM System

Because of the acceptance and standardization of relational data base systems, many
computer-aided architectural applications use either an RDBM system for their information
storage, or provide an interface to a commercial RDBM system. An RDBM system is
based on the mathematical theory of relations; to the casual user, the information is
organized in tables. The columns of these tables represent the domains of possible values,
and the rows represent a record or a set of values for each column. Relational data base
systems offer data base definition languages and data base manipulation languages for table
manipulation. Most RDBM systems conform to Codd's [Codd 79] definition of a fully
relational system:

a. A E%mg consists of a set of tuples with each tuple having the same set of
attributes.

b. Each attribute is chosen from a domain of possible values. If the domains are

simple the relation can be represented as a table.

There are no duplication of rows.

Row and column (attribute) order are insignificant.

All table entries are atomic.

A set of gperators exist which operate on one or more relations and produce a

relation as result. Operators include union, intersection, difference, symmetric

difference, selection, restriction, projection and join.

g- To maintain consistency values must pass a domain candidacy test before being put
into or being taken from a relation. Domain candidacy tests are typically a simple
membership conditions which can prevent values which are out of range from being
added to a table such as a number which is too large or a misspelled color name.

o Ao

Concepts of the Object-Oriented Approach

The object-oriented approach is becoming increasingly popular in the design and
development of computer software applications. This is because the object metaphor
provides a natural way to map real world objects and their relationships directly to
computer representations. The fundamental concepts of the object-oriented approach are
objects, attributes, methods, classes, and inheritance. These concepts first appeared in
object-oriented programming languages, and many of the ideas date back to the
development of Simula-67 [Dahl 66].

a. QObjects are entities used to represent abstract or concrete real-world things in an
application domain.

b. The internal state of an object is a set of attribute values, and its behavior is a set of
methods (procedural knowledge) which operate on the state of the object.

c. Aclass is a template for creating objects which share a common set of attributes and
methods.

d. Classes exist in a hierarchy of classes and inherit properties from their parents.

Computer Aided Building Design Scenario
A simple design session scenario is illustrated to highlight the needs and functions of

architectural information. Given at each stage is: a design action; the kind of information
inquired from the data base; the procedures to be performed to evaluate alternatives; and the
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types of semantic structures needed to represent the entities and relationships. The following is
a possible scenario of actions involving the design of two connecting rooms:

wm IB{(Z‘s)r: dfl‘eig added. Room [Room Aj [Room B ]
Data-Base Activity:  Two new room instances with default attributes are added.
Design Action 2 %ggzg is adjacent to [me A IRoom B j

Data-Base Activity:  An adjacency relationship is established between the two rooms.

Design Action3 Room A given activity. [Room AIHOO o Bj
A

Room B given activity ctivity A | Activity B

Data-Base Activity:  Activity property added to rooms A and B. At this point a
judgement is made as to the suitability of having activity A adjacent to
activity B. A Building Program data base (see Building Program
Data Base ) is consulted for possible violations (see Violation

Resolution).

Design Action4 Room A given
polygonal shape. Room A Room B
Room B given Activity A Activity B
polygonal shape.

Data-Base Activity: A geometry attribute (polygons) is added to both rooms A and B.
Wall instances coinciding with edges of the polygon and with default
values are added to rooms A and B. At this time any geometric
requirements from the Building Program for activities A and B can be
checked (such as minimum dimensions, minimum area, shape, etc.).

Design ActionS A i
bemeonsoom A | Room A Room B
and room B Activity A Activity B

L
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Data-Base Activity:  One new door instance with default attributes is added; A
rel:ﬁionship is established between the door instance and one of the
walls.

Design Action 6  Walls assigned

assembly type. RO?{“ A Room B
Activity A Activity B

Data-Base Activity: A material assembly attribute is added to each wall instance for
rooms A and B. At this time the activities can be re-evaluated; that is, it
may now be acceptable to have the two activities adjacent given the wall
type of the dividing wall. (Or, the necessary wall finish dictated by one
of the activities may be impossible to attach to the wall assembly.)

Design Action7 Rooms added to
Room A.

Data Base Activity: A relationship between room A and rooms A1 - A8 is made; that is,
rooms Al - A8 are "contained in" room A. The Building Program is
checked to determine if it is acceptable to add rooms to room A.

ign Action8 Added rooms
given shape
(walls and wall
assemblies) and
connections.

Data Base Activity: ~ Geometry attributes (room polygons) and wall instances are added
torooms Al - A8. One new door instance with default attributes is
added for each room; A relationship is established between each door
instance and one of the walls. An adjacency relationship is established
between rooms which share walls.

450



Design Action9 Furniture added to rooms

in room A.

Data Base Activity:  An instance is added for each piece of furniture. Only generic types
are added - not specific products. The furniture becomes members of
the room but have no specific locations or orientation. A check can be
made to determine the suitability of the furniture types and number to the
activity type of room A.

Design Action 10 Wall removed between
room A2 and room A3.
Combined room is named JESE
room C and assigned
activity C. Furniture
removed from room C
and new furniture added.
One door is removed.

Data Base Activity: = Room A3 is deleted; Room name A2 is changed to C; Activity in
room is changed to C; Furniture in rooms A2 and A3 is deleted; The
door in room A2 is deleted; The wall between room A2 and the corridor
(what's left of room A) is deleted; The remaining wall is lengthened;
New furniture is added to room C. These changes invoke many
Building Program checks.

Design Action 11 Doors given types

and locations.

Data Base Activity:  Each door instance is given location and opening type attribute
values. A check must be made to determine the compatibility of the
selected wall material assembly and the door attributes.
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instances given - ]
location and )y
orientation. o =
N
e s
W | @ k&

Data Base Activity: ~ Each furniture instance is given location and orientation. An
interference check is made between furniture instances and door
instances.

Design Action 13 Material assembly
of dividing
(between rooms
A and B) wall is
changed

Data-Base Activity: ~ The new wall material assembly needs to be re-evaluated based on
the Building Program and the activities of rooms A and B. The door
attributes must be checked against the new wall material assembly; that
is, it may not be possible to fit the door instance into the new material
assembly. '

Design Action 14 Dividing wall
repositioned

Base Activity: The wall location attribute is changed. Because the room polygon is
interference changed, any area or minimum dimension requirements for
activity A must be checked. An Data-check must be made between the
furniture instances and the repositioned wall.

Conceptual Building Model

Information analysis and classification play important roles in the design of data base
management systems. The AEC Building System Model [Turner, 90] is used to
conceptually represent the semantic structure of building domain information. Applying
such a formal analysis method to the problem domain is essential to the success of
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information system design; a step that is lacking in the development of most systems
[Abudayyeh, 91]. The design of information systems at the conceptual level can help
system designers concentrate on a domain's semantic structure, instead of considering data
structures or representation schemes which can be limited by the paradigm of an
implementation platform.

e
Building as Building
Program Project
&

Is located on

May be decomposed inko

Figure 4  General Building System Model

The AEC Building System Model is a byproduct of the PDES/STEP standardization effort,
and is the only national attempt to study an integrated information framework for
architecture, engineering, and construction (AEC) information [Peters 91]. The model
present a high-level conceptual schema of an AEC product model. The product in this case
is a building project which consists of a finished, occupied building and a site.

The AEC Building System Model is based on a general building systems model which
assumes that all building components are members of one or more building systems. The
model is graphically presented using the Nijessen Information Analysis Method (NIAM)
[van Griethuysen 92, Turner 90]). Each system follows a general framework and contains
components and properties. For example, one property of an enclosure system might be
the cost of the system. A system component may be an exterior enclosure assembly, which
in turn could contain other components such as windows and doors. The general building
system model is illustrated in Figure 4.

The design scenario manipulates only a few building components — spaces, walls,
furniture, and doors. Several conceptual data models, based on the AEC Building System
Model, are developed in this section to represent the semantic framework of these
components. The semantic framework of objects includes: properties, an identifier,
relationships and roles with other objects, hierarchical relationships, and role constraints
and cardinalities. This information represented by these conceptual models will be used in
both the design of the RDBM and OODBM systems.
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Enclosure System and Spatial System Model

Because of the close relationship between occupied spaces and their associated enclosure
systems in a building, the two building systems are modeled together. Figure 4.1
illustrates the two systems. For example, the following design information can be derived
from the model: there are three kinds of occupied interior spaces - service, assigned, and
circulation; an enclosure system component can either be a wall, floor, ceiling or roof.
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Figure 4.1 Model of Spatial and Enclosure Systems
Room Model

Figure 4.2 illustrates the properties of a room.

Figure 4.2 The Properties of a Room Instance
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Wall Model

Figure 4.3 illustrates the taxonomy of a wall and its properties.
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Figure 43.1  The Properties of an Enclosure Figure 43.2  The Properties of a Wall Instance
Component

Door Model

Figure 4.4 displays a possible taxonomy of an opening and the properties of a door.

Figure 44.1 The Properties of an Opening Figure 44.2  The Properties of a Door Instance
Instance ' _
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Furniture Model

Figure 4.5 shows the properties of furniture instances.

Figure 4.5  The Properties of a Fumiture Instance
Violation Resolution

Quite often additions, deletions and modifications to a data base result in violations caused
either by data inconsistencies or by incompatibilities with a building program data base. To
stop until each violation is resolved would hinder the flow of the design process. While in
the end each violation will have to have been addressed and resolved, during the process
the violations need only to be remembered.

As a possible solution to remembering violations the following extension to the model is
proposed:

Figure 4.6  Object Value Validity

Violation values can either be categorical (success, failure) or interval (continuous value).
The validity value is proposed to be a fraction between 0 and 1. A value of 1 being highest
confidence in the value (passes all checks) and a value of 0 being the lowest confidence
value (must be resolved). Values between 0 and 1 would represent a scale of validity. For
instance, if the building program data base allowed activity A to be adjacent to activity B, a
validity of 1 would be assigned. If the data base stated that under no circumstances should
activity A be adjacent to activity B, a validity of 0 would be assigned. The Building
Program3data base could also suggest a validity value for the adjacency of activities A and
B, say .3.
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A CAD program could evaluate the design solution periodically, either automatically or
under user control, by checking validity values for all object values. Of course, not all
object values need a validity value.

Building Program Data Base

Most of the data base activities from the scenario involve comparing the results of a design
action with an rule or declaration in the "building program" data base. The following two
models represent part of a building program data base which is used for design actions 3
and 4:

Figure 47.1  Building Program Model Figure 4.7.2  Building Program Model
Activity/Adjacency Activity/Area

The Activity/Adjacency data base is a list of pairs of activities and a code signifying the
validity of the pair of activities being next to each other. The Activity/Area data base is a
list of activities and the low high values the area of the room polygon with the activity
should be between.

These two models are only a small part of what a complete building program data base
must be in an integrated computer aided building design system. These two models are
mapped into tables in the implementations, but many building program criteria would have
to be in other forms, such as single values and rules.

Data Base Activity Algorithms

The data base activity associated with design action 3 is the first to query the building
program data base. When an activity is assigned to a room, the activities of all adjacent
rooms are tested against the building program Activity/Adjacency table.

When a polygonal description is assigned to a room, as in design action 4, the room area is

computed and stored, the area is compared to the acceptable range of areas for the room
activity, and a wall is added for each polygon edge:

Relational Data Base Design

The RDBM approach begins by defining property tables and relational tables for each
domain entity. The NIAM conceptual model is directly mapped to relational entity property
and entity relational tables.
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With given space ID of
room and new activity

For each Room
Room-Adjacency pair

y e

(Is either space ID = given space IDbﬁb

{ves

(Does other space ID have activiy? )&

+ves

Are activities in adjacent rooms N
equal to any Activity/Adjacency pairs

in the building program?

y V&

Assign validity number
from Activity/Adjacency

to Room-Adjacency pair.

(=)

Figure 48.1 Data Base Activity 3

With givenreom ID and
room polygon

Compute area of

room polygon

Y

Assign room polygon
and area to room instance.

!
(Does room have acﬁvily?)L—
+ YES

Is room activity ND |
in Activity/Area table? " — ™

Is room area within N '_ -
area range specified l Assign validity = 0. ]-——
in Activity/Area table? -

YES

Assign validity number
from Activity/Area table.

Figure 4.82 Data Base Activity 4
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Entity Property Tables

The entity property tables can be indirectly derived from the conceptual model. For
example:

a. Create a single table for each one-to-one, "has/of" bridge (in NIAM, a role between
an object and a property with both a "total and "uniqueness" constraint):

Openingldentifier/DoorType, Openingldentifier/ProductID,
Openingldentifier/Location Openingldentifier/HingeLocation,
Openingldentifier/SwingDirection, Openingldentifier/HardwareType,
Openingldentifier/Finish, Openingldentifier/Size, Openingldentifier/JambType

b. “Join" the binary tables into a single "Door Property" table":

Opening | Door | Product| Location | Hinge| Swing {Hard. [Finish| Size | Jamb
Identifier | Type |ID Loc. |Dir. [Type | Type

Figure 5.1.1  Door Property Table

A new record (row) is added when a new building component is created, and default values
are replaced with actual values as the building design proceeds through its stages of
development.

In the design scenario example, there are four project dependent entity property tables
needed to manage the building design information. The project independent data base

(e.g., building assemblies data) will not be described in this section. Each entity table has a
unique primary key for the RDBM system to access the data record, and zero, one, or more
foreign keys might be included to establish relationships with other tables. The additional
entity property tables are:

Geometry  Env. Specs. Design Req.

Space | Name |Activity | Floor | Area |Room Tlum,
Identifier No. Poly.| - |Level| ..,

Figure 5.1.2  Room Property Table

Geometry Env. Specs.  Struct. Req.
Enclosure; Wall {Mat. | Finish Finish | Begin| End |Height | Acoustic ’
Identifier | Type | Assm. Point | Point Spec

Figure 5.1.3  Wall Property Table
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Furniture | Furn. | Loc. | Orient |ProdID
Identifier | Type

Figure 5.1.4  Fumiture Propeﬁy Table

Entity Relational Tables

Entity relational tables are directly derived from the conceptual model, and arrangedina
binary table. For example, a relational table can capture the "has-of" relationship between
"Space" and "Enclosure System Component" in Figure 4.3.1.

There are three relational tables are necessary to represent the many-to-many relationship of
rooms, walls, doors and furniture:

Borders -

Space Enclosure Enclosure | Opening
Identifier | Identifier Identifier | Identifier
Fi 1 -Room- Relation Tabl i = -
An Enclosure System Component borders An Opening is part of one and only one
exactly two Spaces Enclosure System Component
i 1.2
= (=) &
N
Space Space
Space Furniture Identifier | Identifier

Identifier | Identifier

Fi 24— m Adjacency Relati
- - "Tabl
. . Table A Space may be adjacent to another space,
Furniture is part of one and only one Space but may not be adjacent to itself
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Identifier | Identifier Identifier | Identifier

Figure 525 Room-Contains Relation Table ~ Figure 526  Room-Connected Relation Table

A Space may contain another space, A Space may be connected (by an
but may not contain itself opening) to another space, but may
not be connected to itself

To support object validity values the following model and table can be used:

Space Furniture | Furniture
Identifier |Identifier | Validity

Figure 527  Room-Furniture-Validity Relation Table
A Furniture Instance is part of one and only one Space. Each Furniture Instance has one and
only one Furniture (object) and one and only one Furniture Validity (number).

Space Space | Validity
Identifier | Identifier

Figure 52.8  Room-Adjacency-Validity Relation Table
Object Oriented Data Base Design

In the OODBM approach, the information in the scenario is represented by two types of
objects: Building System objects, which play a management role; and Building Component
objects, which contain the internal states and behaviors of the rooms, walls, doors, and
furniture. The states of an object class and the relationships between objects are based on
the conceptual model, and the behaviors of the objects (to support the design actions) are
implemented in the classes as methods.

Detail descriptions of the methods and instance variables are included fro the Space
System, Space Objects and Room Object.
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Building System Objects

————» Hierarchical
relationship
% — -~ Composition
relationship

BuildingProject
AR e B ;
1 * gitel ist; |
|
v A v
BuildingSystem Site Program
- Building- _Si ine _
in; iteMembership; &ogram— -
* listOfSubsystem;
SpaceSystem EnclosureSystem ingSystem FumitureSystem
Figure 6.1.1  Building System Objects
SpaceSystem Type
Inherits from BuildingSystem
Instance variables
Methods addFumniture;_intoRoom:_;

addSpace:_intoSpace:_;
changeNameOf:_to:_;

checkCompatibilityBetweenFurniture:_ withDoor:_;

checkConnectionBetween:_and:_ ;
checkWallAdjacencyRequirement:_betweenRoom:_and:_;
combineRoom:_into:_ ;
create_new ;
create_room ; -
put:_nextTo:_;

removeFurnitureFrom:_ ;

removeSharedWallBetween:_ and:_ ;
resetShapeAndGeometryOf:_;
setRoom:_validityValue:_;

Building Component Objects
The general states and methods which will be shared by subclasses are defined at the
highest level class (e.g., Space), and more specific properties and methods are defined at

the lower level classes (e.g. assigned, occupied, interior space).
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BuildingObject
« identifier;

. amweerst:
*released;

* removeMember:;
« setEmpty;

Onenin=Obi

producﬂdumﬁer
opmmgSlzc;

* enclosureList -y __

*
-~ spaceList; g _
"I % openingList;

WallObject
~ WallMembership;

o finish;

+ beginPoint;

« endPoint;

* height;

« snswerWallPosition;
o changePosition;

o create_new;

« removeWallWithEmpty-
RoomList;

* sctAssemblyType;

Figure 6.1.2  Building Component Objects

SpaceObject Type

This class defines the most general states and behaviors which are shared by other spatial
subclasses. (Figure 4.1)

Inherits from

BuildingObject

Instance variables name; activity; activity Validity;

Methods

adjacencyList — a list structure for storing adjacent space;
connectionList — a list structure for storing connected space;
containList — a list structure for storing contained space;
enclosureList - a list structure for storing walls;
furnitureList - a list structure for storing furnitures,
assignActivity:_ ;

findSharedEnclosureComponentWith:_ ;

RoomObject Type

The class defines room objects. (Figure 4.2)

Inherits from

Space




Cll)gss variable RoomMembership - a list structures for storing the membership of room
objects.
Instance variables floorNo;
geometricProperties — geometry attributes;
environmentSpecifications — environmental specifications;
designRequirements — design requirements;
Methods answerArea ;
answerDimension ;
answerPloygonShape ;
answerRoomMembers ;
create_new ;

Relational Data Base Implementation

Because of the complex interrelationship of components in a building data base, it is not
sufficient just to store and retrieve values. For example, in the scenario, the determination
of room adjacency validity and wall assemblies will not be based on the properties of a
single space or wall, but will be based on the relationship and activities of Rooms A and B,
a variety of building program requirements, and possibly other types of general design
guidelines. Any data base system for architectural design has to provide mechanisms to
support these kinds of design considerations which are based on a network of
dependencies.

Because data base tables defined in a traditional RDBM system are typically used in a
passive manner, the analysis rules or procedures necessary to support building design
activities need to be represented by external programming language or system-provided
query and macro languages. As a result, any additions or modifications to the typical
RDBM system command language needed to support rule and constraint checking must be
in the form of customized operations imbedded in the data base system. Most commercial
data base systems provide some programming ability such as, 4GL of INGRES™, PRO*C
of ORACLE™, and the dBASE™ programming language.

There are two disadvantages of using a programming approach. First, the data base
records and management (relational) operators must be interweaved with pro i
procedures which can cause the final system to be difficult to understand. Second, the
system can be difficult to maintain by users without a programming background. And
third, transferring building design analysis procedures into a programming language can be
difficult. '

Extended RDBM systems can ensure incoming and outgoing information is valid for the
data base by applying domain candidacy procedures to the attributes of entity tables. (See
[Cattell 91] for a discussion of extended RDBM systems.). Candidacy procedures [Borkin
88] can be any function which checks the validity of a value against a set of acceptance
rules. The rules can be as simple as "any integer value", or "any integer number between a
minimum and maximum value”, or can be a function which compares the value using a
complex algorithm. The candidacy procedures are sufficient for simple data checking
(e.g., the maximum course number, valid birthday), or they can provide data checking and
data computation based on complex domain relationships which are often necessary in
architectural design.

The extended RDBM system used in this experiment was ArchModel [McIntosh, 84], a C
and Unix-based system developed at the University of Michigan, College of Architecture.



It was used because of the ease of adding the necessary domain candidacy procedures (the
latest version of the software was written in our lab by Turner, Borkin, et.al.).

The scenario was written in ArchModel's macro language. A portion of the macro file with
brief explanations of the format is provided:

The format of the command for creating domains is "define domain-name data-type
dimension domain-candidacy-procedure":
#Create domains.

define SpaceID CHARACTER*S 1 none

define RoomName CHARACTER*8 1 none

define Activity CHARACTER*S 1 none

define FloorNumber INTEGER*4 1 none

define RoomPG2 GEOMETRY 1 DMAddRoomPG2

define Arca REAL*4 1 none

define SpaceIDPair CHARACTER*8 2 none

define Validity REAL*4 1 none

define ActivityPair CHARACTER*8 2 none

define AreaPair REAL*4 2 none

The format of the command for creating tables is "create table-name tuple-candidacy-
procedure domainl domain2 ...":

# Create relations

create RoomInstance none SpacelD RoomName Activity Area RoomPG2
create RoomAdjacency none SpacelDPair Validity

# '"Create Building Program Relations
create ActivityAdjacency none ActivityPair Validity
create ActivityArea none Activity AreaPair

Values are added to the table using the ArchModel editor:

Design ActionQ  Create building program data.base

edit ActivityAdjacency
add-tuple office  office 1.
add-tuple office  storage 1.
add-tuple office  copy 2
add-tuple smalloffice smalloffice 1.
add-tuple office ~ smalloffice 1.

stop

edit ActivityArea
add-tuple smalloffice 80 120
add-tuple office 700 1000
add-tuple copy 300 500

stop
Design Action1 Room A is added. Room B is added.
edit RoomInstance
add-tuple 100 A none 1 none 0.
add-tuple 101 B none 1 none 0.
stop
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Design Action2 Room A is adjacent to Room B.

edit RoomAdjacency
add-tuple 100 101 1.
stop ‘

Design Action3 Room A given activity. Room B given activity.

edit RoomInstance
find RoomName A
add-value Activity office
find RoomName B
add-value Activity storage
stop

Design Action4 Room A given polygonal shape. Room B given polygonal shape.

edit RoomInstance
find RoomName A
add-value RoomPG2 RoomA
find RoomName B
add-value RoomPG2 RoomB
stop

Object Oriented Data Base Implementation

Smalltalk-80 Release 4.0 on the Macintosh computer was used as the implementation
environment for investigating the OODBM approach because of its easy prototyping ability.
Smalltalk originated many of the definitions of today's object-oriented software
development environments. We intend to implement a more complete example in Objective
C using the environment of the NeXT computer.

Implementing the proposed conceptual model in object-oriented form is an iterative and
incremental process. Several revisions were made during the testing because of the
difficulties of finding proper classifications. Two sets of class hierarchies are established
for implementing the system: the building system class hierarchy for managing building
component objects; and the building component hierarchy for storing building component
data. The main data types from the model are defined as class templates, and new objects
are created by sending "create” message (e.g., create_room, create_wall) to their classes.
The examples of the class definitions are listed in below.

The managerial classes — building system classes — provide essential functions to manage
building components. For example, the enclosureSystem object maintains all instances of
wallObject, roofObject, and floorObject. The managerial classes also contain methods for
the purpose of candidacy checking. For example, spaceSystem contains the method used
to check the adjacency of two rooms. Object relationships are defined as various lists. For
example, roomObject contains a list of it associated enclosure objects.

System Initiation

spaceSystem := SpaceSystem new.
enclosureSystem := EnclosureSystem new.

buildingProgram := BuildingProgram new.
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Design Actionl Room A is added. Room B is added.

roomA := Room create_room,
roomB := Room create_room.
spaceSystem addSubsystem: roomA.
spaceSystem addSubsystem: roomB.

Two new Room object share created, and their identifiers are added to the subsystem list of
spaceSystem for management purpose.

Design Action2  Room A is adjacent to Room B.
spaceSystem put: roomA nextTo: roomB,

The spaceSystem method — put:nextTo: — is a procedures which updates the adjacencyList
of room A and room B.

Design Action3 Room A given activity. Room B given activity.

spaceSystem assignActivity: newActivity toRoom: roomA checkedBy: buildingProgram.

« room(a collection) := self findAdjacentRoomOf: roomA.

* adjacentActivities(a collection) := room(a collection) answerActivity.

» newValue(a list) := buildingProgram checkAdjacencyBetween: newActivity and: adjacentActivities(a
collection).

* roomA setValidityValue: newValue.

spaceSystem assignActivity: newActivity toRoom: roomB checkedBy: buildingProgram.

The rooms adjacent to room A are found from the spaceSystem's listOfSubsystem. The
activity of each adjacent room is retrieved. The room adjacency validity is checked based
on the Activity/Adjacency pairs in the building program. A new validity value is assigned
to room A.

Design Action4 Room A given polygonal shape. Room B given polygonal shape.

roomA givenPolygonShape: roomPolygon.

lowHighArea(a pair) := buildingProgram answerRequiredLowHighAreaOf: roomA.
spaceSystem checkArea: roomA using: lowHighArea(a pair).

walls(for roomA) := Wall create_wall,

walls(for roomB) := Wall create_wall.

enclosureSystem addSubsystem: walls(for roomA).
enclosureSystem addSubsystem: walls(for roomB).
enclosureSystem addWall: walls(for roomA) toBorderSpace: roomA.
enclosureSystem addWall: walls(for roomB) toBorderSpace: roomB.

Comparison of RDBM and OODBM System Design

This paper poses two major aspects for the software designer to consider. First, the
building systems as proposed in the NJAM model, need expression, and second, the
design scenario actions need support. A traditional procedural designer, planning a C
language implementation, might approach these aspects by translating the NIAM diagram
into a collection of data type definitions, and the scenario into a collection of functions that
implement the actions. The resulting program would support the actions, but would not
provide a data base which could be shared by other processes. Also, it would be subject to
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all of thg maintenance and documentation difficulties that exist for custom-coded
applications.

RDBM Observations

The relational approach that we used was the direct translation of the NIAM model into a
number of relations, one for each major part of the diagram. The data integrity aspects of
the scenario were expressed as domain candidacy procedures and the scenario actions as
resulted in transactions on the relations in the data base. Implementing the proposed
conceptual model in relational form was a simple task. The data from the model fit neatly
into a set of tables and the design activities were easy to program with the macro language
available in ArchModel.

Despite the ease of translation, the data base activities for the design actions were difficult
to implement in a relational data base environment. There were two reasons for this. First,
although ArchModel supports simple domain candidacy checking through the use of the C
programming language and a collection of data base function calls (OpenRelation,
OpenDomain, GetValue, PutValue, etc.), this capability was insufficient to support the
complex dependencies inherent in building data; that is, adding or changing a single value
inbzi table more often than not affects other values either in the same table or in different
tables.

As a result, it was necessary to add the following domain candidacy capabilities to support
the scenario:

a. Domain and single tuple only — The value can be compared to other values from the
same tuple.

b. Domain and multiple tuples — A complex condition which might trigger the testing
of attribute values from tuples from other relations.

c. Domain updating — A procedure which automatically updates a domain value from
other values, either in the same tuple or in other tuples. An example is the
computation of room area from a room polygon. Procedures of this type could be
used to automatically update large portions of a data base.

Second, even with these data base candidacy extensions, providing the C functions to
handle a data base activity was a complex programming task. This was mainly due to the
tediousness and programming complexity of having to simultaneously deal with multiple
relational tables through formal ArchModel function calls. It takes three or four function
calls just to get a value from a table and three or four calls to put a value in a table. This is
compared to a conventional C program where a single assignment statement is all that is
necessary to get and put an array or structure value. The task was difficult even though the
original ArchModel programmers (the authors of the paper) were available for the
extensions. This approach would be even more difficult in most commercial RDBM
systems since most of the necessary extensions are not supported.

OODBM Observations

The object oriented approach considers both the procedural aspects and the data aspects in a
unified way. One design that we investigated and rejected paralleled the relational
approach. In it we viewed a relation (a table) as a class or template for creating instances
(the tuples of the relation). The class had methods (procedures for data integrity and
transactions) that were inherited by the instances (the data for a table row). We found that
we needed several additional class methods to manage the instances. On close examination
of what was required we chose a design that separated the objects that managed from the
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objects that represented the building system parts. This design allowed the separation of
what was managed from how the managed objects responded to directions from the
manager. The manager is viewed as an intelligent container of objects that respond to
directions,. The building objects are viewed as objects that can implement management
directions and other actions.

We observed two advantages in developing the OODBM approach. First, once a data base
design is defined, the resulting conceptual diagram provides an easy and direct method for
implementation and modification. These diagrams also become a valuable part of the
documentation. They clearly show the instance variables, methods and inheritances that the
implementation is based on.

Second, in contrast to the relational implementation, dependency networks were extremely
easy to define and maintain, since changes of data went through object methods These
methods, which set instance variables, in turn, send messages to dependent objects to
upgrade their values. This, combined with two-way linking of objects, make data integrity
and maintenance an inherent part of the objects.

Despite these clear advantages over the RDBM approach, object data base software is not
widely available; therefore, a Smalltalk implementation is quite different than a C++
implementation and a commercial-based systems such as GemStone, ObjectStore and
ORION.

Conclusion

Clearly, integrated data bases are needed for CAD system development. Can the built in
operations and data structures of generic RDBM and OODBM systems support the dynamic
activity of building design? Can they reflect the current status of a design as it moves
through its stages from building programming to conceptual design to detailed design to
construction planning and documentation? Can a data base maintain its correctness as a
building design evolves? Does a data base system have built in mechanisms which allow it
to respond to design changes? Building design is a dynamic process characterized by large
amounts of interrelated data with degrees of exactness, constraints and goals which change
over time. '

Based on our work to date, we still believe that both the relational and object-oriented and
the conventional procedural programming approaches offer much promise in the
development of integrated CAD data bases. We plan to continue our efforts in these
directions, and encourage others to share their experiences. It is only through joint efforts
that this critical component of future CAD systems will come into being.
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