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A Hierarchical Model for Life Cycle Costs of Buildings

John R. Bedell! and Niklaus Kohler2

Introduction

The construction of a building as well as its use, maintenance, modification, and eventual
demolition comprises a gargantuan collection of complex and expensive processes, which
recent increased attention to the environment and to resource consumption have only
rendered more formidable. The ability to forecast the costs of these industrial procedures,
and so to make informed choices among alternative solutions, lies at the forefront of those
potential applications made feasible by progress in the development of representative
models for buildings.

The presence of those other possibilities, though, raises issues of compatibility, not just
because of their common building domain but because of their often interdependent nature.
Thus while directing our efforts toward a cost model, we must also follow a unified
approach such as that of [Bjork 92] accommodating the specialized viewpoints of
architects, electricians, plumbers, and others working on a building over the course of its
construction and lifetime. Is it possible to include all of these interests within a single
comprehensive model? Failing this, can we find a common conceptual foundation on
which a variety of data models can eventually develop and intercommunicate?

Because of the difficulty inherent in trying to anticipate every possible feature required of
one all-embracing model, the second approach is probably more realistic. At the same time
we must keep in mind the properties of the larger structures. The specialization that
increases on descent from categories of activity to individual applications, and thence to
finer levels of detail, combined with the composite nature of many of the applications
themselves, all agree with the common view of design as a hierarchical process and its
results as hierarchies. The medium of representation, then, should express building
products as pyramids of encapsulated modules, ideally having a flexibility of formation
permitting the user to pursue top-down or bottom-up approaches to design.

Hierarchical Cost Applications
Estimation of Life Cycle Costs

We begin from the perspective of our original application context, in which we seek to
estimate the economic and environmental costs of construction, maintenance, and other
operations on a building during its lifetime [Kohler 91]. The description of a building is
centered around a process entity that can model any procedure required during these
phases, whether the production or assembly of a component or ingredient, the extraction of
a resource, or the provision of a service. As part of the search for a balance of mass and
energy flows between the building activity and an external domain such as nature, a cost
evaluation can be made by successive examination of the inputs and outputs of each
process.
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Figure 1 Two-room house example

The parts of a building are broken down into the standard categories and subcategories
defined in [CRB 91], the further sub-elements of [IPBAU 91], then beyond this into the
components, ingredients, and resources used in the production of those parts. To model
the simplified example of the water-heated, two-room concrete house seen in Figure 1, we
require only a small subset of the available categories. In the resulting decomposition of
Figure 2, each item in the upper half of a node is the product of the aggregation or process
in the lower half acting on a set of inputs below it, which in turn are products of earlier
process formulae in lower nodes, and so on down to the elementary materials at the leaf
nodes. Here we require four of the CRB element groups A-Z: D, substructure; E,
superstructure; I, mechanical and electrical systems; M, finishing work. Group 7, for
* example, then contains /2, the heating element, which is implemented as a hot water system
and further categorized into the IP-BAU sub-elements I2.2, boiler; 12.3, pipe; I2.4,
radiator. The boiler is manufactured from steel, which is produced from iron, which is
smelted from naturally occurring ore. Subtrees are shared where appropriate, as in the use
of the same concrete slabs for floor, walls, and roof of the sub- and superstructure. The
near-universal needs of energy and transport are for clarity attached here only to the shaded
example of cement production. They, along with labor, actually contribute to nearly all
stages of construction. Other simplifications include the omission of components for
transport and dynamite, as well as the use of water only in the mixing of concrete and not,
say, in metal and wood production. In accomplishing its task, each node’s operation
entails certain costs: economic costs in paying for required inputs and environmental costs
in the consumption of natural resources and the generation of waste, pollution, and
" (sometimes valuable) byproducts.

To obtain cost figures embodied in the hierarchy, each node can be seen in functional
terms. For a given quantity of its product, using that product's chosen implementing
process, it calculates the resulting subcosts and required quantities of all components.

Thus the output of the node becomes the input of the function and vice-versa. The
components, of course, are themselves the products of earlier processes; by recursively
adding these subcosts and propagating downward from the latest (uppermost) node, the
total costs of the building can be determined. Penetration of the tree down to or down from
a fixed depth, or over a range of depths, yields figures for particular stages of construction.
Alternatively, by traversing only subtrees of the whole, as in the shaded example of
cement, one can concentrate on limited categories of components.

This tree structure allows modelling of a building not only in the usual architectural sense,
that is “‘as designed’’ or “‘as built™’, but also ‘‘as maintained’’, ‘‘as refurbished’’, ¢“as
used’’, and eventually ‘‘as demolished’’. To evaluate these often-neglected later phases of
a building’s life cycle, nodes can possess alternative cost subtrees as necessary. Thus the
operation of window replacement might combine a process for the cost of removing the old



windows with that for manufacturing the new ones. Such a time-based component might
be included intermittently within the building structure or estimated as a continuous
expense, as with energy consumption, and evaluated over the relevant time period.
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Figure 2 Modeling building costs using process entities




Access Model for Refurbishment

Since the component trees of these various phases are of arbitrary complexity, they may be
elaborated as necessary to interrelate with, or contain within themselves, what amount to
whole new subapplications. The refurbishment of a residence, for example, involves many
tasks whose costs are significantly influenced by the order in which they are executed and
by the disturbance they cause to the occupants. The tool described in [Glardon 91] seeks to
optimize the former and minimize the latter by generating a schedule tailored to the
residence's particular requirements. To accomplish this, its spaces, structural components,
and access portals are expressed as nodes in an adjacency graph. The previously
mentioned house of Figure 1 has two rooms connected by a door through the partition

wall. Room 1, on the west, has southern and western lights and a radiator on the north
wall; room 2 has an exterior door to the south and a boiler on the north wall connected by a
pipe to the radiator.

Adjacency graphs for this house can display different levels of detail. From the outside, in
Figure 3a, the structure appears as four walls (WN, WE, WS, WW) with door (dS) and
windows (wS, wW) along the perimeter (gray square) of an unknown interior (). The
arcs between these nodes define adjacency between this latter space and the exterior walls,
to which door and window nodes are connected to indicate their permeability to the exterior
spaces (N, E, S, W). In Figure 3b we expand the graph to reflect an inner layer of detail.
While the perimeter remains the same, the north and south walls can be seen as divisible
into boundaries (WIN, W2N, W1S, W2S) of the now discernable individual rooms (R!,
R2), between which appear the interior wall (W12) and door (d12). The two halves of the
south wall have inherited respective connections with the south window and door. This
and other data within the building model provide a database for generating the appropriate
refurbishment strategy. A finer level of detail might represent zones within large open
spaces such as semi-partitioned offices and factory floors, while at higher levels units
might be grouped into, say, floors of apartments accessible by stairs or elevators, buildings
with foyers and service entrances, streets of attached row houses joined with others at
intersections, and whole city blocks with main access routes and back alleyways.
Nonhuman access, such as that of water flowing through the pipe between the boiler and
the radiator, might be represented in a similar way.
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Figure 3: Adjacency graphs for a) exterior view, b) interior view of house



While this access/adjacency structure relates directly to issues of refurbishment and
maintenance costs, it also contains elements (e.g. rooms) and aspects (e.g. topology) that
fall outside the range covered by the original cost evaluator that connects to or even
contains it. Only some of the components in the latter (e.g. walls, floors) will interest the
refurbishment planner, which is concerned largely with divisions of space not defined in
the other model. An element common to both applications might use a different set of
attributes for each, and would be configured into two or more networks. Our fundamental
units, then, must be versatile enough for such specializations while providing also for any
necessary overall structure.

Approach
STEP/GARM Constructors

Previous work on supporting different viewpoints on a common, or at least connected,
database is not unknown [van Nederveen 91, Willems 91] but it is difficult to find
something general enough to adapt to our purposes while specific enough to be useful.
[Amor 91], embodying objects in the form of frames, allows slots to maintain multiple
values to describe alternative versions or worlds within a single system. Such a concept is
adaptable to our multiple applications, but must we implement our different viewpoints
(aspects) at such a low level of granularity? We probably do not need alternative versions
of the individual attributes, but instead a way to permit different sets of attributes while also
assembling the applications’ separate data structures according to some common format or
constraints. Perhaps these attribute sets, or aspects, could be arranged in some way that
would mirror the relationships between the different applications to which they belong.

Since both our desired overall model and its applications involve multilayered and
multiconnected entities, we can begin by turning to a familiar concept [e.g. Batori 85] that
uses encapsulated subcomponent assemblies as implementations of well-defined interfaces,
thus allowing both top-down and bottom-up hierarchical design, problem subdivision, and
alternative versions of a solution. This device is described as an entity of the GARM
standard in [Willems 88]; it embodies a single product or subproduct from both functional
and technical views. Thus in Figure 4 analogous procedural and physical structures are
modeled as an assembly of elementary or atomic Functional Units (aFU1, aFU2, aFU3),
each with a set of connections called Ends. Components aFU2 and aFU3 together form a
subassembly or Technical Solution (TS) which, while indifferent to their internal
connection, derives their unconnected Ends as Ports. This TS joins to a complex or non-
atomic FU (cFU) with corresponding Ends which then forms a connection (or interface in
GARM terminology) with an End of aFU!1 at the higher level. Local revisions or
alternatives are introduced by implementing cFU with different TSs. There is no
fundamental difference in nature between atomic and complex FUs, simply one of state.
The design of aFU1, say, has not yet advanced to a stage requiring the use of a TS, and
may or may not in the future. More specialized FU subtypes, however, may prefer to
maintain an inherent distinction in this regard.

Since the Ports of a TS always derive those Ends of its subFUs that remain unconnected at
the lower level, a set of components can be encapsulated so that only those external (higher
level) connections need be known to the outside world. Splitting the FU and TS into
separate entities not only encourages this encapsulation but allows the aforementioned
substitution of alternative solutions without affecting the rest of the structure. Conversely,
a given TS subtree can be reused any numbér of times within the same or different
structures by attaching it to several different FUs. Such a connection is uncomplicated
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because the only other vertical links to account for are those between the Ends and Ports of
the same FU/TS pair, and the only external lateral links are between FUs’ Ends at the same
level (subsequent diagrams visually suggest lateral correspondences below this level, but
these are not direct connections). Any actual interaction involving, say, the End to the left
of aFU2 in the diagram must ascend through the deriving Port, up to the left End of cFU,
across to the right End of aFU1, and, were aFUI complex, down from there. In this case
no further descent occurs. Because FUs must maintain distinct connections through their
Ends they cannot be reused as TSs can; similar entities are treated instead as different
instances of a single FU subclass.
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Figure 4 Subcomponent assemblies modeled according to GARM
Topological Issues

[Willems 88] sets out in detail a ‘‘meta-topology’’ of bounded domains that provides a
foundation for GARM but no explicit vocabulary of basic configurations. The FU/TS
structure exemplified above accounts only for structures whose subcomponents at any
given level are connected in series; each juncture involves ultimately just two elementary
units. Topologically this corresponds, as shown, to a case of two domains or objects (
and 2-3) whose potential internal decomposition, having no effect on the joint connecting
them, is of concern only within, not between, those objects.

One situation that occurs frequently in practice is that of subcomponents joined in parallel,
that is with each maintaining a direct connection to the same external entity (as with
subobjects 2 and 3 to object / in the upper part of Figure 5). Such a multiple juncture of
Ends can be represented without difficulty, since in GARM each Port can derive more than
one End in much the same manner that a TS can decompose into more than one
subcomponent. Thus the Ends of the parallel aFU2 and aFU3 find a common external
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connection in their derivation by TS's lefthand Port. We add a vertical line joining these
two Ends to convey this status visually.

or

Figure 5 Modeling an assembly with parallel subcomponents

o o]

There also exist structures that cannot be gracefully configured as combinations of serial
and parallel subassemblies; these would require the addition of extra joints and
decomposition levels leaving little conceptual resemblance to the original subjects. In
Figure 6, for example, the high-level connection between subassemblies /-2 and 34
conceals, among their components, a set of underlying links between subFUs I and 3, 2
and 3, 2 and 4. Such an interface between FUs is not equivalent to a common joint at
which all subunits meet. To represent this situation in the GARM structure we can again
use multiply-deriving Ports but must preserve the separate connections between pairs of
Ends at the lower level. We introduce this alternative form of derivation, embodied in a
new type MultiPort, for all such cases which, unlike parallelism, are describable only in
terms of subconnections between and thus external to separate TS assemblies.

A Formal Protocol for Constraining Object Relationships

FU and TS relationships are described in [Willems 88] using the IDEF-1x model, which
easily converts to the popular NIAM notation [Nijssen 89] to clarify formally the
relationships among the representation's object types and the constraints that control their
assembly. According to Figure 7, each TS can implement several FUs while comprising
several subFUs; similarly a Port can implement several Ends while deriving several
subEnds. A TS may have several Ports, while each FU may have several Ends. Finally,
each End may be mated with at most one other End. Note that this will be an internal
connection and prevent either End from being derived by a Port of the TS containing it,
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since as described in the section on STEP/GARM Constructors only unmated Ends ascend
to the higher level.
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Figure 7 FU/TS relationships represented in NIAM
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Representing Hierarchical Applications in GARM
Cost Model

Adapting the GARM format to the previously described applications is straightforward. To
represent building costs, simple items such as sand and labor, shown in Figure 2 as basic
resources, become atomic FUs, while each category such as superstructure or product such
as concrete becomes an FU/TS pair. Within the latter, a complex FU represents the
specification in the upper half of each divided box and a TS its categorization or
implementation process in the lower half. Figure 5 shows the structure for Figure 2’s
cement production subtree. The TS for cement has seven FU subcomponents, four of
which, an explosive, electricity, and human and freight transport, are considered
manufactured products heading their own subtrees. On each side of the seven ingredients,
their Ends are derived by a common Port of the cement TS, thus linking them together as
parallel siblings and controlling cost evaluation.
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Figure 8 GARM representation for cement production

The construction costs of each component in money, waste, emissions, and byproducts are
requested through its lefthand End and returned through the right. When a TS subtree
(Portland cement, or the building itself in the complete structure) receives a request for
evaluation from one of the FUs it implements (cement), it propagates the request through
its lefthand Port down to its subFUs. Each of these receives the request from its lefthand
End, calculates its cost on its own (if atomic) or by evaluating its own TS (if complex), and
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sends the result out through its righthand End. These subtotals are added by the righthand
sigma-Port of the first TS, which returns the final result to the requesting FU. This
evaluation process descends recursively as deeply as required to traverse the subtree. Any
TS reused by different FUs will be queried and summed more than once; for these
subsequent occasions, however, it simply returns the preserved result of the first evaluation
without retraversing its subtree.

Representation of costs for phases in a building’s life cycle other than construction differs
little from the above approach. Where appropriate, the FU at a particular node possesses
alternative TSs, each at the top of a subtree representing costs for the corresponding phase.
This branching occurs chiefly at the fourth (IP-BAU component) level of Figure 2’s
building tree, since the nodes above this define categories independent of phase, and those
below ingredients and resources that would usually be new whether used for construction
or maintenance. A cracked concrete wall, for example, would be patched with new
concrete. A subtree for demolition costs contains “‘ingredients’’ such as labor and
transport required to dismantle and/or remove a component, along with such destructive
materials as paint remover or dynamite. Certain phases of a node may use more than one
of these alternative TS subtrees; thus replacing windows during refurbishment requires the
demolition (removal) of the old windows followed by the installation of new ones. A
component node contains evaluation methods for each phase; these know which TS or
combination of TSs to invoke.

Access Model

The previously described access structure for building refurbishment also adapts readily to
the GARM format. The shaded part of Figure 3b's house network diagram produces the
two-layer FU/TS structure of Figure 9. When the exterior view is decomposed into the
rooms and room-oriented walls of the interior view, subconnections arise to complicate the
topology. The high-level interface between the south wall WS and the interior / is seen to
contain, at the lower level, adjacency links between room R1 and southwest wall W18,
room R2 and southeast wall W2S, partition wall W12 and W1S, W12 and W2S. This is in
addition to the internal connections within the composite walls and interior, and the
respective allotment of the south window wS and door dS to the south wall’s individual
components W12 and W2S. .

By incorporating new branches for surrounding elements, a larger tree could show the

" components of the external spaces—yards, sidewalks, and streets, perhaps, or corridors
and other units in the case of apartments—and their relationships with those of the house.
Access to the latter from a given external subspace would be through those adjacent exterior
walls containing doors and windows. Higher levels in the structure could represent the
further agglomeration of housing units described in the section on Access Model for
Refurbishment.

Class Extension

The GARM structures discussed here are built from entities defined as object classes and
their instances. These classes suffice for the formation of these structures, but to embody
their functionality within applications they must be extensible to specialized subclasses.
Figure 10 shows the GARM class hierarchy from its root down to the cost model.
Beginning on top with an Objectt base class, we first define classes for construction of an
application-independent GARM framework: Nodes to form components and Connectors to
join them. At the next level these become the familiar FUs and TSs, Ends and Ports.

These GARM classes contain the attributes and functionality to represent component
hierarchies and the binary relationships of Figure 7°s NIAM graph; they also enforce



restrictions ensuring necessary arities and class compatibilities and preventing improper
constructions. Thus Ports and Ends are created only through existing TSs and FUs, never
as independent entities, and two Ends are connected only through the TS of which they are
both immediate components.
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Figure 9 GARM representation of room access structure
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Figure 10 Hierarchy of general and specialized classes for building cost model

Descending to the level of classes peculiar to the cost application, every purchasable item,
substance, or service, whether basic or manufactured, is in the Product subclass of FU
which provides attributes relevant to cost but independent of a particular solution. These
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include a name and description, a unit of measurement, and the quantity, particular to each
instance, used as an ingredient by the parent TS to produce one unit of the latter’s product.
If atomic the Product will also contain an aggregate unit cost, which for a composite
Product is calculated as already described from its TSs. This latter summation process,
which totals the costs of subcomponents and adds a (usually environmental) cost inherent
to'the solution, is defined in the subclasses Formula., ProductEnd, and FormulaPort.
Finally, the Evaluator provides features general to the application. This class hierarchy is
directly transportable to an object-oriented language such as C++, in which a first version
of the cost evaluator has been implemented.

Unifying Applications
A Collective Data Model

We have now devised different structures using GARM’s FU/TS units. Can we connect
these applications into a single coherent model? Each viewpoint requires different
information, and hence different attributes, from its subcomponents, but we would like to
avoid both the disorder of piling information for all applications into one heaping object and
the redundancy that might result if complete and separate aspects were simply lined up side
by side at a single level. If we organize applications hierarchically according to their
interests, as in Figure 11, we reduce this possibility. Thus separate subapplications for
construction and maintenance estimates might share data on building product costs, while
subapplications for traffic analysis and subsequent refurbishment scheduling would both
refer to accessibility data. In the resulting GARM structure (Figure 12), linked Ends might
express scheduling relationships such as precedence (as here) or concurrence, or any
connections between applications at a single level. Thus construction must precede
maintenance, traffic analysis precedes job scheduling, and, at the more general level, cost
estimation comes before access analysis.

building model
applications

( life cycle cost model ) access model )
construction maintenance traffic job
estimate estimate analysis scheduling
oarlisr g time - [ater

Figure 11 Organizing aspects and applications within a building model

The resulting tree structure is applicable in two ways: as a framework for aspects and asa
blueprint for organizing applications at different levels of specialization. Each application
could operate directly on the relevant collection of attributes, while that aspect takes the
place of the object itself within the application’s hierarchy. This helps untangle the
situation of, say, a wall entity embedded simultaneously in the cost, access, and other
structures, which as a conceptual arrangement is feasible but rather dense. With this
approach the participation of the object is hidden until the aspect for the application is
retrieved. For example, two subapplications of a building topology structure might operate
on the same room, one interested in its traffic flow, the other in the access it provides to the
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electrical system. To implement this, the base room class could define as a member a
structure of aspects, each a group of attributes and methods relevant to a particular
application, the whole grouped into a specialization tree. A new application might then
define not a new instance of a room but a new aspect of an existing room. This unique
aspect would actually occupy the appropriate position in the application’s data structure in
place of the commonly used object itself. Some contexts such as cost estimation, interested
in quantities rather than individual components, might never need more than one instance of
each class. An additional advantage of grouping attributes into aspect objects is that a
collection of applications can be built in increments. This approach might begin by
defining a single aspect in each object class, or a collection of members to be tucked into a
separate aspect as later domains are developed.
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Figure 12 GARM representation for different aspects and applications
Maintaining Integrity

Once different applications establish common interests and begin to share data they will in
most cases require a mechanism to preserve the integrity of their unified structure. When in
a CAD tool, for example, the user changes the layout of a room, this will alter the sizes of
its floor and walls, which will in turn alter the amount of materials required for that part of
the building. This, of course, affects any subsequent evaluation of construction and
maintenance costs. Interrelated data, then, must be connected by a set of constraints as
discussed briefly by Bjork as a factor in unification and at more length by such as
[MacKellar 91]. In the latter the entire design process is treated as a continuing attempt to
satisfy sets of constraints. Each stage of the design is associated with such a set and cannot
be completed without satisfying its conditions. One stage may include as a prerequisite the
successful completion of a previous stage, which may itself depend on a still earlier stage,
thus enforcing a linear order in the design tasks. Alternatively, a stage may depend on
several otherwise independent stages which can be developed simultaneously or in any




order desired. It is easy to see how this structure of constraints can be adapted to the
GARM format, with each design stage as an FU implemented by one or more TSs, each
decomposing into a set of previous stages connected in series or parallel. Method calls and
ﬁ_ther ix;ldependently confirmable predicates can appear as atomic FUs in the same

ierarchy.

Conclusions

The framework described here promises to assist in orderly and consistent development of
a number of related applications in building design. This development has proceeded as far
as a working model of building cost evaluation, produced by extending the GARM classes
that themselves remain generic enough to use in additional domains as well. The next step
towards implementation of the ideas discussed here will be the construction of a database of
process objects to represent the costs of transforming basic materials and resources into
ingredients for the manufacture of components. This will contain data, gathered from
industry, reflecting the building cost hierarchy of Figure 2 from its lowest levels up to but
not including the IP-BAU level. However, while several hierarchical configurations and
situations presented here have been worked out in some detail, other areas remain vague
and must soon be elaborated upon. Aspect and constraint organization must be dealt with
in more depth to effect firmer and more useful relationships. Object definitions must
become more precise. For now, the GARM model as applied here appears to be a
comprehensive and flexible foundation on which to base future development.
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