Construction Informatics Digital Library http://itc.scix.net/

paper w78-1992-189.content

Integration through Standard Project Models

Martin Fischer!, Thomas Froese2

Abstract

Integration of data and knowledge among project participants and their computer
applications holds the promise to improve the quality and efficiency of the project
delivery process in the AEC industry. We propose that integration can be achieved by
sharing a standard project model. In this paper, we describe such models. We summarize
two research projects that developed and used shared project models and we outline
essential characteristics of these models.

Introduction
Integration in the Construction Industry

The technical, social, and economic complexity of construction projects has increased
significantly over the past decades. This increase is likely to continue into the next
century [Froese 91]. The increased complexity of projects has also led to an increase in
specialization and thus fragmentation in the architecture, engineering, and construction
(AEC) industry. This fragmentation and the resulting inefficiencies in the AEC industry
have been well discussed and documented over the past years [Howard 89, Tatum 87a,
Tatum 89]. Strategies to overcome these inefficiencies have mainly focused on
organizational and contractual measures, such as early assignments of project managers
[Tatum 87b], partnering [Tarricone 92], design-build, construction management, etc.

Increased project complexity and participant specialization have also greatly increased
the need for information transfer. Traditionally, this has been achieved through the
exchange of drawings and reports. Today, much project information is stored and
processed on computers. Thus, integrating project participants’ computer systems would
greatly enhance the effectiveness of a project team by increasing data sharing, reducing
time requirements and errors for data input and output, accelerating communication
among participants, and improving the completeness of information received by each
team member. Several communication protocols have been proposed and are already in
use (e.g., DXF, IGES). Unfortunately, most of these communication standards are
largely based on computer paradigms of the past and focus on data communication only.
“Integration" through data communication—for example, exchange of drawings—has
been the modus operandi of the construction industry for hundreds of years and has often
proven insufficient to address the challenges of current projects mentioned above.

Today, effective integration requires the continuous and interdisciplinary sharing of
project goals, data, and knowledge among all project participants. Therefore, we
advocate that the AEC industry pursue integration through shared standard project
models. These models should be based on object-oriented paradigms to allow the capture
and exchange of data and knowledge.

1 Act. Asst. Prof., Dept. of Civ. Engrg., Stanford, CA 94305-4020

2 Grad. Res. Asst. and Ph.D. Cand., Dept. of Civ. Engrg., Stanford, CA 94305-4020

189

Computer-Supported Integration

This paper focuses on computer integration, which encompasses electronic information
sharing and inter-process communication among project participants’ computer systems.
Computer integration is necessary at many levels: to link the various applications used
on a single platform by one user, to unite all the project participants’ systems together,
and to provide industry-wide capabilities for the electronic communication of
information. Three basic mechanisms support computer integration (Figure 1):

* Direct translators: each program is treated as an independent agent, or self-
directed entity, and establishes direct links and translation with other programs.

* Global control and translation: a global controller and translator can be created
and linked to each application (Howard and Rehak 1989). This controller
manages all integration and performs all translation among different applications.

* Standard models: standard project models can be defined and adopted by all
applications. Project models are "conceptual structures specifying what kind of
information is used to describe buildings and how such information is structured
(Bjork and Penttild 1989)." Project models can be thought of as schemas,
ontologies, or vocabularies for representing AEC project information in
computers. Applications that adopt a standard project model need no translation

or central control to interact with each another.
@

@@®®@®

Direct Links between Global Translator Standard, Shared
Applications Project Model

Figure 1 Integration Mechanisms

Each of these approaches has advantages and disadvantages. Direct translators are
problematic for'systems with many applications since each program must contain a
translator for every other program that it communicates with. While a global controller
and translator solves this problem, it still requires translators from each program to some
universal neutral format that encompasses all the programs’ data representations. A
standard model approach also requires a universal project model that supports all AEC
software; however, no translation is required since each application uses the same model
for external, and possibly internal, information representation and communication.

Furthermore, programs that adopt a standard project model can store their information in

shared databases. Integration then comes for free since each application reads and writes
a single version of the data in a single location. Data consistency problems are solved

190

since each application no longer maintains redundant copies of the data, and control of
the integration requires only traditional database concurrence principles.

Therefore, we propose that AEC computer applications adopt standard project models.
These applications can then communicate and share information through these models. If
this is to support industry-wide integration, it requires the creation of industry-wide
project model standards. These standard models must be comprehensive, rich, and
flexible representations of AEC projects. The specification of these standards must
include the data model (a formalism for representing information in general) as well as
the project model (a schema or vocabulary for expressing AEC concepts in terms of the
data model). If shared databases are used their characteristics and functionality must also
be specified.

The next section discusses two examples of AEC computer integration using standard
project models. In the section on the Characteristics of a Project Model, we then describe
the characteristics required of standard project models to support integration. We cannot,
at this point, provide the answers to all the questions related to the development and use
of shared product models. Instead, we would like to raise issues that became apparent in
our research and illustrate possible solutions to foster discussion of the content, use, and
benefits of shared, standardized project models.

Examples
Introduction to Examples

This section outlines two examples of integration of AEC computer applications using a
shared project model. It highlights particular integration issues and briefly describes the
specific solutions chosen to address these issues.

The purpose of the first system (COKE) is to automate constructibility feedback for the
preliminary design of a reinforced concrete structure. It links a constructibility expert
system with a project model and contributes to the sharing of knowledge among project
participants. OPIS, the second system, combines several traditional and knowledge-
based project planning applications around a shared object-oriented project database.

COKE

In a research project sponsored by Stanford's Center for Integrated Facility Engineering
(CIFE), one of the authors developed COKE (Construction Knowledge Expert) [Fischer
91a). COKE provides a designer of reinforced concrete building structures with
constructibility feedback related to the layout and dimensioning of structural elements. A
major goal for the development of COKE was to automate this feedback as much as
possible.. This was achieved by creating a link between a CAD system (representing the
project) and an expert system (containing the constructibility knowledge base). The
following paragraphs describe the architecture, implementation, and use of COKE.

System Architecture (Figure 2)

COKE was developed using CIFECAD as the CAD package [Ito 89] and KAPPA-PC as
the expert system shell. CIFECAD is a modified version of AutoCAD (Release 10).
Menus and functions programmed in AutoLISP make AutoCAD an object-based CAD
system that can capture the project data (outlined below) necessary for constructibility
reasoning. These menu-functions allow a designer to draw structural elements without
drawing the individual lines of each object. The user of CIFECAD also indicates

191

connection information with the mouse (e.g., by clicking on the columns that support a
slab). CAD data are then written to an ASCII file that can be interpreted by KAPPA-PC
to build a symbolic (geometrical and topological) model of the project's structure.
KAPPA-PC also contains the constructibility knowledge base and functions that compare
the constructibility knowledge to the project data to give a designer feedback about the
constructibility of his/her design.

CAD SYSTEM EXPERT SYSTEM
CIFECAD KAPPA-PC
(AutoCAD) Constructibility Knowledge
Base
Menus and Functions to Draw
and Model Structural Functions to Read
Elements as Objects ASCII File and to Create
Geometrical and Topological
Functions to Create Project Model
ASCII File for Transfer of
Project Data Reasoning Functions
ASCII File *

Figure 2. COKE's System Architecture
The reasons for this architecture are threefold:

(D It is impractical to use an expert system shell to visualize a structure, or a
CAD system to reason about constructibility. This requires two separate systems,
one to represent project data, and one to store constructibility knowledge and to
perform the reasoning function.

(2) It is tedious to input project data manually into COKE. Therefore, data
must be transferable from the CAD system to the expert system. Currently, these
data need to be transferred in form of a batch file because many CAD systems do
not run in a multi-tasking environment. Soon, dynamic data exchange will
become a standard feature of most CAD systems.

3) Usually, CAD systems do not know what the vectors (lines, surfaces,
solids) stored in the CAD file represent. This makes the extraction and transfer
of CAD data extremely difficult. AutoCAD provides a ‘block’ function by which
the user can group lines to represent objects and attach additional attributes to the
blocks. This simplifies the extraction of CAD data since block data are more
readily available than vector data in the original CAD database. Therefore, menu-
functions were programmed to insert structural elements into a CAD model.

CAD System and Data Transfer

An analysis of design-relevant constructibility knowledge showed that a geometrical and
topological model of the project is necessary to support constructibility reasoning. This
means that for each component the CAD system needs to store data about its type,
location, dimensions, connections to other elements, and additional attributes. Table 1

192

summarizes the structural elements that can be modeled with CIFECAD, and the data
stored with each object. These data items are written to an ASCII file for transfer to the
constructibility expert system.

The data necessary to support constructibility reasoning show that a significant effort is
required to enable a CAD system to represent these data. When specifying the data
needed to model a structure topologically and geometrically, we tried to keep the user
input to a minimum. We feel that the work load for the user to input this information
during the design and drawing process is acceptable. Furthermore, within the limitations
of CIFECAD, the designer can place and size structural elements any way he/she wants,
thus giving him/her maximum design flexibility.

Data Type}| Columns Beams Walls Slabs Drop Caps
Location [[x,y, zcoord. [X,y,zcoord. |X,y,zcoord. |x, y, z coord. |x,y, z coord.
Dimen- [fside x top width thickness thickness side x
sions side y bottom width | height area side y

(diameter) depth length thickness

height length

clear span

Connec- [column below | column left | column left | boundary and | column
tions column above | column right | column right | supporting

drop cap slab left slab left columns

walls slab right slab right supporting

beams wall above beams and

slabs wall below walls

windows
doors

Addtl. name (id) name (id) name (id) name (id) name (id)
Attr. concr. concr. concr. concr. concr.

strength strength strength strength strength

rebar ratio rebar ratio rebar ratio rebar ratio level

level level level level orientation

orientation orientation type

round

Table 1. Data Stored with Structural Elements in CIFECAD

Representation of Project Data in KAPPA-PC

In the expert system shell KAPPA-PC, functions were implemented that read the ASCII
file described in the previous section. These functions create an object (instance) for each
structural element under the appropriate object class. Each class contains a slot for every
data item in the ASCII transfer file. After creating a new instance for a new structural
element, KAPPA-PC fills all the slots of this new instance with the corresponding values.
This process works well, but is highly application-dependent since the functions that read
the ASCII file need to be structured exactly according to the sequence of the data items in
the ASCII file. See Figure 3 for the structure of the project model and examples of slots.

193

STRUCTURAL

ELEMENTS
Classes o

BEAMS SLABS COLUMNS WALLS DROP CAPS Struct. Elem.
/ \ /]\ /]\ Struct. Elem.

BEAMS SLABS COLUMNS WALLS DROP CAPS on a Floor

ONLEVEL 2 ONLEVEL2 ON LEVEL 2 ON LEVEL 2 ON LEVEL 2 Level

/]\ /I\ / \ /l\ /]\ Particular

Struct. Elem.

BeamX Slaby ColumnZ WallX Drop CapY
Attribut
TopWidth=12"Thickness=20" __ SizeX=12" _ Thickness=8" __ Widihds" | gioites of
Depth=36" Concr.Str.=5000psi RebarRatio=2% WallAbove=Wall8 Orientation=45" (from CAD
................................... system)

Figure 3. Symbolic Representation of Project Data
Representation of Constructibility Knowledge in KAPPA-PC

I'investigated the use of rules and frames for knowledge representation, and rules,
message-passing, and functions for reasoning. I found that frames work well when
combined with functions. In the expert system, each construction method is a frame with
design-relevant constructibility items as slots (attributes) including the appropriate values
(Figure 4). For example, a construction method might have limitations regarding the
maximum slab thickness it can accommodate. Thus the knowledge base contains a frame
"Flying Forms" with a slot "Maximum Slab Thickness" that is filled with the value "12
inches."”

Reasoning Mechanisms in COKE

In COKE, functions perform the reasoning on the data contained in the project model.
For each knowledge item, a function tests whether the structure fulfills the necessary
requirements. To continue the previous example: if constructibility feedback for flying
forms is desired, a function compares all slab thicknesses with the value stored in the
"Maximum Slab Thickness" slot. These functions are grouped by construction methods
to check all the requirements for one method with one function call. We found that three
types of reasoning about CAD data are needed for constructibility feedback. The
reasoning complexity and the data requirements to support reasoning increase
significantly from type (1) to type (3). Figure 5 shows an example for each type.

a) Reasoning about attributes of objects: This is the simplest type of reasoning. It
involves comparing an attribute-value of a structural element with the appropriate
value from the knowledge base. For example, the size of a column (an item of
project data) is compared with available formwork sizes (a knowledge item) to
decide whether the column can be built using available formwork (Figure 5a).

b) Reasoning about relationships between attributes of objects: This is a slightly
more complicated form of reasoning. It involves taking the attribute of an object
and propagating its influence on attributes of a different object. For example,
when Cunningham steel forms are used to form beams, the columns should be
four inches wider than the beams (Figure 5b). This type of reasoning can become

194

difficult—i.e., it might require some spatial reasoning—if the relationships among
different attributes are complex.

CONSTRUCTION
METHODS (CM)
CM FOR CM FOR CM FOR CM FOR CM for Specific
BEAMS SLABS COLUMNS WALLS Struct. Elem.
/R /I\ /]\ /]\ Particular
Steel Flying Rect. Custom Slip Constr. Meth.
Forms Forms Forms Forms
Constructibility
MinWidth=12" MaxFloorHeight=20' MinSize=12" MinWallThickness=8" | Knowledge

AvailableDepth=36" MaxSlabLength=60" = MinReuse=4 ~MinRepetition=50 Represented as
............................ Attribute-Value
Pairs

Figure 4. Representation of Constructibility Knowledge

Flying FormTable

(2) (b)
Figure 5. Examples of the Three Types of Reasoning

(c) Spatial reasoning: This is the most challenging type of reasoning because the
amount of data and the number of objects involved are often very large. Humans
can easily reason spatially by looking at a plan and recognizing patterns and
relationships among objects. However, formal models that describe how to
implement spatial reasoning in a software system are not readily available. An
example of spatial reasoning is the task of figuring out whether a flying form table
will fit into a column layout (Figure 5c). In COKE, constructibility knowledge
that requires spatial reasoning is not represented as attribute-value pairs in the
construction method hierarchy (Figure 8). Each knowledge item is implemented
as a function that first derives the data necessary for spatial reasoning from the
geometrical and topological model and then deduces the constructibility of the
structure. The question remains whether this type of knowledge can be
represented at all as attribute-value pairs.

The type of reasoning required for a given application depends on the knowledge and on

195

the representation of project data (i.e., the data model of each object). On one hand, a
rich data model (one that associates much data with each object) simplifies reasoning
functions but might require a significant effort for data input. On the other hand, a plain
data model requires only minimal data input but might require complex reasoning
functions (or make reasoning about certain knowledge items impossible). Ultimately, the
inference engine compares a constraint value with a project value. This is why reasoning
types (b) and (c) are more difficult. Before the inference engine can conclude whether a
certain constraint is violated or not, it needs to derive the data required for reasoning from
the available project data. For example, the alignment of columns can be an important
fact for spatial reasoning, but is not stored explicitly with each column. Alignment
information is implicit in the CAD drawing. One could imagine objects with data models
that already contain all the data ever needed for reasoning. This would reduce even
spatial reasoning to a straightforward comparison of two values. However, the creation
of such extremely rich data models seems prohibitive given the sheer size of each class of
objects. Therefore, one faces the tradeoff between the amount of data and knowledge
contained in a data model and the complexity of the reasoning processes [Fischer 91b].

User Interface

When working with COKE, a designer must draw the structure in CIFECAD. Whenever

the designer wishes to check the constructibility of the structure, he/she gives a command
in CIFECAD that creates an ASCII file from the CAD database. As described above, this
file contains all the data necessary for constructibility reasoning. KAPPA-PC then builds
~ a symbolic model of the project from this ASCII file. This symbolic model represents the
structure of the project with all the data required to perform constructibility reasoning.

At the beginning of constructibility reasoning, the designer can specify the construction
methods for which he/she would like to receive feedback. If the designer does not
specify any construction methods, the system uses general project information and
application heuristics to rule out certain construction methods that are not applicable. For
example, if there are no walls in the CAD database, all construction methods for walls are
excluded, or if the building is only five stories high, feedback for flying and slip forming
is omitted. However, the designer has the option to get detailed constructibility feedback
even if the application heuristics for this method are not satisfied.

After this, the system compares the data in the symbolic model with the constructibility
knowledge for the applicable construction methods (layout and dimensioning knowledge)
and gives the designer feedback about the constructibility of the structure whenever it
spots a mismatch between constructibility requirements and the structure at hand. The
designer can then disregard the constructibility advice if other constraints (such as
usability constraints) make the consideration of the advice impossible, or he/she can
incorporate the necessary changes in the CAD model.

OPIS
Overview of the OPIS System

This section describes the Object-model-based Project Information System (OPIS). OPIS
has been developed as part of a research project conducted at Stanford University to
investigate integration in Computer-Aided Project Management (CAPM) through shared
object-oriented models [Froese 92a, Froese 92b]. The OPIS system provides a project
manager with a set of integrated planning tools, thereby improving the data flow between
applications, allowing interaction among applications, and adding CAD and knowledge-
based processing to traditional project management functions, such as estimating and

196

scheduling. This research investigated object-oriented data model standards (i.e., formal
languages for representing data in general), defined a standard general-purpose project
model or schema for project management and construction, and implemented the
prototype OPIS system. OPIS is implemented in Objective-C on a NeXT computer and
consists primarily of integrated application modules that operate on a shared object-
oriented database. Figure 6 shows the prototype’s overall architecture, which consists of
the following major components:

1. System-Level Components in the integrated system include a small number of
system-level control and shared utility objects. These include, for example, a user
interface panel that allows the user to switch between the integrated system’s
different applications.

2. An Object-Oriented Database is the core of the system and is shared by all the
integrated applications. The database stores project information using a standard
object-oriented project model. The applications use this database to store all
information that may be relevant to other applications; only data that are
completely application-specific are stored within the applications themselves.
The database uses SOL (Shared Object Libraries), an object-oriented database
management system written in:Objective-C as part of this research.

3. Application Modules that perform the data input, processing, and reporting reside
within the system and use the shared database for primary data storage. These
application modules consist of links into the shared database objects and of
application-specific objects, such as user interface or calculation objects relevant
to the particular application only. Applications can also make use of libraries or
tool kits of general-purpose objects, such as generic user-interface objects. The
specific application modules included in our prototype are a general database
browser (for inspecting and editing objects in the database), an expert system that
generates construction plans, an estimating system that assigns costs to
construction activities to produce project estimates, and a scheduling system that
calculates schedule dates for activities and provides a graphical network interface
for working with construction plans.

4. Stand-Alone Applications can be used by the integrated system by creating
interface modules. In OPIS, an example of this is an interface module to an
intelligent CAD system that creates project component objects in the database.
The section on Integration using OPIS gives an example of how all the
applications operate collaboratively on the shared database. '

This approach can be extended to integrate a large number of construction-related
applications, for example: construction planning, estimating and bid preparation, risk
analysis, time and cost control, document control, contract management, materials
management, project accounting and personnel, detailed activity planning, job-site CAD,
3-D construction simulation, legal analysis, construction method selection, and so on.
The approach can also be extended to include all phases of the project life cycle from
conception and feasibility analysis, through design and construction, and on to facility
management. While all of these phases would not necessarily share a single central
database, they could share a standard project model for constructed faciltties and share
much of the actual data for a project—thus the idea of integration through standard
project models would remain.

197

System- - Shared Stand-Alone

1 . Application Apolicati
Level . Central ‘ M° dules pplications

Objects - Database onnected through

interface module

General
Database

System-Level Browser

Interfaces, etc.

Plan
Generation
Expert System

Shared
Object

Database Construction

Estimating

Construction
Scheduling

CAD Interface CAD System
Module

Figure 6. Overview of the major components of OPIS
Integration using OPIS

Figure 7 is an example of how OPIS would assist project planning. Typical user
interfaces employed by the various applications also appear in the figure. Users work
with traditional project management software interfaces and need no direct interaction
with the shared database. The sequence of possible operations follows:

1. CIFECAD, the prototype intelligent CAD system described in the examples, is
used to create a 3-D CAD model of the project. The internal representation of the
CAD model identifies elements as specific project components rather than as
geometric shapes only. CIFECAD is not an integrated application module within
the OPIS system; but CADLink, an OPIS interface module, combines the
CIFECAD project model with general component category information from the
shared database to create a model of the facility within the shared database.

2. AutoPlan, an expert system plan-generation application within OPIS, creates a
construction plan within the database using knowledge that identifies the activity
types required to create each component type (stored in the component category
objects), and knowledge that describes what activities must precede or follow
each activity type (stored in the activity category objects).

198

3. InCost, an integrated estimating application module, assigns costs to the activities
to generate an estimate for the project (estimate line items appear as specific types
of activities; these may or may not be the same set of activities that represent the
construction schedule, for example). The user may add quantity take-off and
estimated cost values, or may allow the system to calculate costs automatically
from the database’s component quantity data and the activity category’s typical
resource productivity and unit-cost data.

4. Finally, a scheduling application module, InTime, calculates schedule dates for
activities. Again, data about specific project activities and general activity
categories aid in determining durations, precedence constraints, etc.

Note that the system does not require that applications execute in this sequence. For
example, the estimating system could be used first. The process of describing estimate
line items and linking them to unit-cost data from the activity category objects would lead
to the creation of project-specific product, process, and resource objects in the database.
Alternatively, the scheduling system could initially help in defining the project objects in
the database. Because of the shared database, any operations performed by an application
immediately and automatically becomes available to all other applications.

cag] : CIFECAT

- columns . 1 57 2 I

- ACTIVTY
. GATEGQRIES;

-+ -form-conc: *

Figure 7. An example of operations on the shared object-oriented database

199

Summary of Examples

At this point we would like to summarize how these examples illustrate the theme of the
paper. Both examples show how standard project models support very different forms of
AEC computer integration.

COKE relies only on data available from a CAD system. Reasoning about
constructibility requires the availability of specific project data at the appropriate level of
detail. Therefore, a project model schema was developed as the integrating mechanism.
This schema allows the user to enter project information in the CAD system and to
transfer this model to the constructibility expert system. This illustrates:

* integration by transferring a model between applications using a standard schema
integration in early phases of design of a building project
integration between CAD and knowledge-based systems
integration of high-level knowledge and low-level design data
integration of construction knowledge into preliminary structural design.

® ¢ © @

OPIS imports the same CAD project model, though the project model can also be created
through other mechanisms (during the estimating process, for example). New or updated
project data are added to the project model as they are generated by individual
applications or entered by the user. Thus, various construction planning applications
share this project model that resides in a common database. In addition to demonstrating
some of the same concepts as COKE, the OPIS system illustrates:

* integration by sharing a single database among different applications
integration at the construction planning phase of the project
integration among several applications using a shared model
integration at evolving levels of detail.
integration in a general-purpose system (rather than a system designed to address
a specific problem).

These examples demonstrate that a shared project model can provide the common
“language” required to achieve computer-supported integration. Such models must be
general to allow several applications to communicate with each other and to share the
same data. In the next section, we derive specific characteristics that contribute to the
generality of such project models.

Characteristics of a Project Model to Support Integration

Project models are intended to provide a high level of integration across AEC computer
applications: a role that begs a solution that is “all things to all people.” This requires
intelligent project models that are able to interpret themselves actively. As the examples
above illustrate, this places the following general requirements on project models:

Explicit, Rich, and Accessible

An example of the integration capabilities of current commercial AEC software is the
Timberline Software package that can be linked to a graphical model in AutoCAD to
identify project components and quantities. It performs estimating in its own precision
estimating package, and can export data to Microsoft project or Primavera scheduling
systems [Timberline 90]. A very complete model of the project exists between these
applications. However the model is not directly accessible as a whole. Graphical data is
stored in one application, work package and cost data in a second, temporal and
precedence data in a third, and quantity data is stored in two or more different

200

applications. It would be very difficult to add an additional application such as an expert
system that required access to all of these data.

In contrast, both systems described in the examples store their complete project models in
one location and make their data generally available. We suggest that a project model for
supporting integration must be explicit and easily accessible by all applications. That is,
the model and all of its elements must be available as separate entities in a system, and it
must be clear where each piece of data resides in the system and what form it takes. The
models in both example systems are knowledge-rich representations of a project, i.e.,
project data is captured at the project component level (and not at the raw data level
only). The model associates meaning with each data item and contains associations
between data items. Clearly, the integrating project model must include the underlying
project data at levels of detail that are appropriate for the level and breadth of integration
required.

Flexible and Comprehensive

The model will be used by various applications for the communication of a wide range of
information. Most of its specific uses have yet to be determined. Thus the model must
have great flexibility. That is, it must support integrated systems that have few or many
applications, that are used in a single organizational unit or in many different industry
segments, and that require and produce vague conceptual information or detailed as-built
information. The model must also be able to represent voluminous data, high-level
heuristic knowledge, and complex graphical models. The project model must be
comprehensive, i.e., it must cover a broad range of data. For example, the model used in
the COKE system “knows” only about geometrical and topological project data, whereas
the model in the OPIS system includes resource and organizational data.

Application-Independent and Inter-Disciplinary

The project model should cover a broad range of information about the project and
should support the many different disciplines that collaborate on AEC projects. For
example, it must represent the elements of the facility to be constructed, but it must also
represent the construction process used to create the facility, the project’s organizational
make-up, etc. The OPIS system arranges the project model into several major categories
(see Figure 8): '

1. The Product Model consists of those objects that represent the actual product, i.e.,
the constructed facility and its physical components. This portion of the project
model is shared throughout the project life cycle. For example, 3-D CAD models
or models used by architectural and structural design programs focus on the
product alone [Lavakare 89], [Phan 90].

2. The Process Model consists of objects representing the construction process used
to create the facility described by the product model. Unlike the product model,
the process model is mainly relevant to the construction phase of the project life
cycle. We have adopted the "activity" as a unit of construction effort. This is a
more general concept than a scheduling activity, which is primarily a logically
constrained time interval, and it implies no specific level of detail (i.e., tasks and
work packages would both be specific types of the general concept "activity").

3. Resource Model objects represent anything that can be employed in performance
of the construction process.

201

Organization Model objects represent projects’ organizational elements; for

example, the companies participating in the project, the contracts that exist
between the participants, etc.

B Proc ess T T e
Model § Model | Model . Model

b= Component Activity Resource Material
| .“g’ Category Category Category Supplier
84 concre pu'mp conc. pump | jake's
o8 columns columns lumber
ok - standard avg. productivity

- phone

agimensions rate number

Concrete . Contract

column pump conc.

42 for column 42 \ truck 13 supply contract

, , - rental .
- location - duration company contract price

Project-
Specific

legend: A Class An Instance
an attribute

Figure 8. Major Categories of Objects in OPIS’ Project Model

Project-Specific vs. Project-Independent

In addition to the above four categories, most objects fall into one of the two following
designations: :

1. Project-Independent objects are those that do not refer to a specific project. These
objects often, though not necessarily, represent collections or categories of things,
such as a "form concrete activity" object that represents information applicable to
all concrete forming operations (e.g., average productivity rates).

2. Project-Specific objects relate to one specific project. These objects often
represent individual things that are members of project-independent category
objects. For example, a “pump concrete for column 42” object would represent a
specific construction activity on a job, and would have a “member of”” relationship
to the project-independent *“pump-concrete-columns activity” object.

Dynamic
Different views of a project model and its underlying objects are necessary not only
because various applications require different data to work with, but also to support the

several levels of abstraction a project passes through from inception to completion. For
example, design progresses through fairly predictable levels of abstraction. Schematic

202

design is used to capture the basic requirements of a project and to provide sufficient
information to communicate these concepts to the client. For this purpose, architects use
visualization tools, such as 3D design models, “paste-in” pictures, sketches, etc.
Engineers of a process plant, for example, develop layout and piping and instrumentation
diagrams (P&ID) that will carry out the chemical and energy processes defined in the
process flow diagram for the plant. Such early design tasks are followed by more
detailed design phases. The next stages of design complete the design concept sufficient
for client review and approval. The succeeding stage permits construction bidding and
the last stage (working drawings) is adequate for actual construction work. Each of these
phases requires a representation of the project at different levels of abstraction, each of
which must be supported by the shared project model.

Implementation Technology

Object-oriented systems provide many of the underlying concepts required to implement
product models with the characteristics described above. Their support of abstract data
types, object identity, encapsulation, active data, inheritance, and so on makes it possible
to model a project explicitly and comprehensively in a computer (Ahmed et al. 1991).
These concepts also support the dynamic and inter-disciplinary use of such models
throughout the project life cycle.

Conclusions and Future Outlook

This paper discussed two research projects that were recently completed at Stanford
University. Both projects developed and used shared project models to integrate various
engineering applications. We then outlined the characteristics of such shared project
models. We presented these characteristics as an initial list to foster discussion of their
usefulness and their implementation with available or future technology. We believe that
all these characteristics are essential, though we have not yet formalized how each of
them would be implemented and put to practical use. Implementation may be
unimportant from a pure research perspective, but we have found that it leads to new
ideas, it allows us to communicate with the practitioners who will ultimately use these
advanced tools, and it helps us to build bridges to computer science researchers since we
can demonstrate our application of their concepts and tools.

We are convinced that shared project models can contribute significantly to increased
productivity and quality in the project delivery process. However, the discussion and
examples presented above show that international and inter-disciplinary collaboration is
necessary to further the development and use of shared project models. We must address
the need for modeling and data standards and the differences between traditional
application developers and data modeling experts. We must investigate parallel work
such as the product modeling efforts of PDES/STEP [Gielingh 88] or enterprise-
integration efforts in other industries. Finally, we should step back and assess how
computer integration supports overall integration among a project team’s individual
members, within a company, and throughout the AEC industry.

Acknowledgments
Research funded by Stanford University’s Center for Integrated Facility Engineering

(CIFE) and National Science Foundation grant #MSM-91-14095. Portions of this paper
have been based on [Fischer 91a] and [Froese 92].

203

References

[Ahmed 91]

[Bjérk 89]

[Fischer 91a]

[Fischer 91b]

[Froese 92a]

[Froese 92b]

[Froese 91]

[Gielingh 88]

[Howard 89]

[Howard 89b]

[Ito 89]

Ahmed, S., Wong, A., Sriram, D., and Logcher, R. "A Comparison of
Object-Oriented Database Management Systems for Engineering
Applications." IESL Research Report, R91-12, MIT., 1991

Bjork, B. C., and Penttild, H. ."A Scenario for the Development and
Implementation of a Building Product Model Standard.” Adv. Eng.
Software, 11(4), 176-186, 1989

Fischer, M., "Constructibility Input to Preliminary Design of
Reinforced Concrete Structures." CIFE Technical Report, No. 64,
Stanford, 1991a

Fischer. M. , "Reasoning about CAD Data," in L. M. Chang (ed.),
Preparing for Construction in the 21st Century, Proceedings of the
ASCE Construction Congress '91, Cambridge, April 13-16, 1991, 318-
323,1991b

Froese, T. M. ., "Integrating Project Management Software through
Object-Oriented Project Models." Ph.D. Thesis, Dept. of Civ. Engrg.,
Stanford University, In preparation, 1992

Froese, T. M., and Paulson, B. C. ,"Integrating Project Management
Systems Through Shared Object-Oriented Project Models."
Proceedings of AIENG 92, the Seventh International Conference on

 Applications of Artificial Intelligence in Engineering, Waterloo,

Canada, July 14-17, 1992.

Froese, T. M., and Waugh, L. M. . "Project Management and
Computers in the Year 2010." Proceedings of the 1991 Annual
Conference of the Canadian Society for Civil Engineering, Vancouver,
Canada, May 29-31, 1991, 435-444. Also published as CIFE Technical
Report, No. 46, Stanford.1991

Gielingh, W., General AEC Reference Model (GARM): an aid for the
integration of application specific product definition models. Unpubl.
PDES/STEP working document, 1988 :

Howard, H. C., Levitt, R. E., Paulson, B. C., Pohl, J. G., and Tatum, C.
B., "Computer-Integrated Design and Construction: Reducing
Fragmentation in the AEC Industry." J. of Computing in Civ. Engrg.,
ASCE, 3(1), 18-32, 1989

Howard, H. C., and Rehak, H. C., "KADBASE: A Prototype Expert
System-Database Interface for Engineering Systems," IEEE Expert,
4(3), 65-76, 1989

Ito, K., Ueno, Y., Levitt, R. E., and Darwiche, A. , "Linking
Knowledge-Based Systems to CAD Design Data with Object-Oriented
Building Product Model." CIFE Technical Report, No. 17, Stanford,
1989

[Lavakare 89]

[Phan 90]

[Tarricone 92]

[Tatum 87a]

[Tatum 87b]

[Tatum 89]

[Timberline 90]

Lavakare, A., and Howard, H. C. "Structural Steel Framing Data
Model." CIFE Technical Report, No. 12, Stanford, 1989

Phan, D. H., and Howard, H. C..,"Evaluation of the Structural Steel
Framing Data Model." CIFE Technical Report, No. 41, Stanford,
1990

Tarricone, P. "Howdy, Partner," Civ. Engrg., 62(3), 72-74, 1992
Tatum, C. B. "Improving Constructibility During Conceptual
Planning." J. of Constr. Engrg. and Mgt., ASCE, 113(2), 191-207.,
1987a

Tatum, C. B., "The Project Manager's Role in Integrating Design and
Construction." Proj. Mgt. J., 13(2), 96-107, 1987b.

Tatum, C. B., "Management Challenges of Integrating Construction
Methods and Design Approaches." J. of Mgt. in Engrg., ASCE, 5(2),
139-154., 1989

Timberline Precision Estimating Plus. User Manual, 1990

205

