=
Q
<
X
O
<
S
L
S
o
=
=
e
o)
©
o
E=)
3
IS
=
=z
[a)
0
L
=
©
IS
S
o
o
=
c
§e]
=
o
=
S
=
17}
c
@]
®)

—
c
[J]
s}
c
o
o
Lo
AN
o
[o0]
[e0)
()]
!
[e0]
~
=
S
)
o
©
o

225

COMMERCIAL SOFTWARE DEVELOPERS VIEWPOINT

Automation of draughting and building modelling - historical reviewv of
commercial development since the seventies.

Paul Richens

McDonnell Douglas
Vellington House
Bast Road
Cambridge
England

October 1988

KEYWORDS

Architecture, Assembly model, BDS, Building, Design, Drafting, GDS
modelling, Solid model, User interface, Visualisation

ABSTRACT

The present day GDS system has its roots in BDS, started in 1970, BDS
was a 3D data-centred system for design, analysis and documentation of
system-built buildings. GDS started as a 2D drafting system, and
proved more effective and marketable. Specialised applications and 3D
capabilities were added gradually. Current interest is in simplifying
the softvare, especially its user interface.

5.1

226

227

INTRODUCTION

I am going to talk today about our experiences in applying computer
graphics and geometrical modelling to architectural design and the
construction industry. It is the story of growth - growth of a
softvare product called GDS, growth of a business, and growth of our
own experience and skill. ;

The story starts for us in the early seventies, wvhen a group of
researchers at the School of Architecture in Cambridge banded together

to form Applied Reséarch,of-Camhtidge Ltdl, a commercial organisation
intended to exploit their research. :

At that time there was a major boom in public building (schools,
hospitals and housing), and a serious concern that the construction
industry could not cope with the load. There were many initiatives to
improve design and construction such as modular coordination,
prefabrication, system building and quantitative methods for design
and analysis. In this idealistic environment we acquired our first
clients, who were public sector bodies interested in the whole life
cycle of their buildings. They took a long term view, and were
prepared to spend extra money on the design (and even on the
construction) of buildings if they could thereby reduce the cost-in-
use.

So started the first phase of our history, which was one of Idealism.
It lasted from 1970 to 1978, and gave us a mere handful of clients.
It did not last; by 1979 we entered our second phase of Realism, and
by 1982 had acquired around 50 customers. Our next age was one of
Pragmatism and saw a very substantial growth in the business, to
around 700 customers. That brings us to the present; I think now we
are looking for a new philosophy, perhaps Minimalism, which will help
us expand to reach thousands of customers. '

This paper will describe these,fdur stages df,our development and the
shifts in philosophy that occurred with our increasing success and
understanding of the market. '

PHASE 1 IDEALISM (1970-1978)

Our greatest success in this period vas the development of O0XSYS,
later renamed BDS. Our client was the Oxford Regional Health
Authority (ORHA); they had a large programme of hospital buildings and
had already developed a system of prefabricated construction called
the Oxford Method. Now they wanted a complementary software system
for design and documentation. '

1. Acquired by McDonnell Douglas in 1985

5.1

228

This was our age of idealism; we set out to implement a centralised
design database accessible to all disciplines, recording all design
decisions, supporting all kinds of analysis and design automation,
Finally it would produce coordinated dravings and schedules, which
being derived from the central database, would have none of the
inconsistencies which usually bedevil a large project.

The design process as idealised by our client was:-

a) Establish brief (i.e accommodation and equipment needs)
b) Devise 3 or 4 strategic alternative building forms

c) Evaluate alternatives and select one

dy Refine detail planning for selected alternatives

e) Develop construction details

£) Issue construction documentation

This is a more straightforvard and linear process than we usually
encounter, because the materials and components of construction are
pre-defined and held constant by the Oxford Method. They are not
design variables. During evaluation we could make a lot of
assumptions about the physical properties and cost of the building,
and therefore perform sophisticated analysis without a lot of input.
Detailing, it was anticipated, could be largely automated by using
software incorporating the rules of assembly of Oxford Method. Final
drawings would be produced automatically from the developed model.

These objectives were largely achieved. The system was built around a
design database containing two models; the planning model and the
detail model.

The planning model represented the building as a set of nested
polygonal extrusions. The outermost polygons represented the building
envelope, inner ones floors, departments and rooms. This model was
built and analysed during the conceptual design stage. It had
gufficient detail to support cost planning, thermal analysis,
ventilation and traffic flov predictions. Sketch plans and block
perspectives could be extracted from it.

The second part of the model dealt with detailing. First a library of
components was created, to define the Oxford Method. Each component
had attributes describing its coordinating dimensions, plan and
elevation views, cost and so on. Then the design wvas detailed by
recording the locations of these components in the planning model.
Sometimes (e.g ductwork) we also recorded their interconnectivity.
When every component needed to build the building had been located,
the design was complete, and ve could extract the plans and schedules
required for construction. Simple! s

Softwvare was developed for detailing each element (structure, floors,
cladding, partitions, services and so onj. This software embedded the
"rules of assembly" of Oxford Method. If we had been writing it ten
years later we would doubtless have externalised the rules in a
"knowledge base™ and called it an expert detailing systenm.

229

This softvare performed fairly well at ORHA. But problems arose vhen
ve tried to sell it to a wider market.

PHASE II REALISH (197941982)

The idea of a central complete building model supporting all design
functions had (and still has) terriflc market appeal. So we soon had
a few customers trying to use BDS on a diversity of building projects.
These projects used traditional construction rather than system
building, and the apparent advantages of BDS crumbled, for a number of
reasons:- : ‘

1. The linear design process does not apply when there is a choice
of construction as well as of building form.

2. The normal design sequence tackles concept first and details
later. BDS requires the component library (containing details)
to be created first. ThlS is d1ff1cult and unnatural.

3. - The pay-offs of easy analysis and automatic detailing were not

available outside Oxford Method. Ve were left with 'a clumsy
method of producing dravings.

The age of,reallsm,dawned when we perceived that:
a) BDS vas being used almost entirely to produce working drawings.

b) The BDS model contained more 1nformation than appeared in ~the

drawing set and that model building was actually and

theoretically an 1neff1c1ent vay of produc1ng the drawvings.

Ve argued that the main output of an archltects offlce congists of
drawings, that about 40% of their working hours is devoted to drawing,
and that automation would have the greatest impact if it focussed
directly on drawing productlon :

Our next product was GDS, a drafting system aimed directly at drawing
production. It was determinedly two-dimensional, and made no attempt
“to provide a central single design model “Multiple: representation ‘was
actively encouraged ,

In these respects it contradicted our idealism in BDS. Ve retained,
however, the idea of a component - called an object in GDS. All
~ graphics and text belongs to an object, vhich has a name. This simple
but mandatory structuring of dravn informatlon remains an important
differentiator of GDS. ' :

On the functlonal side ve provided a very full set of constructlon
functions for lines and circles, and comprehensive editing, so that
anything you did could be readily altered or undone. Finally we paid
very great attention to graphical quality.

5.1

230

GDS arrived on the marked at just the right time. It could competie
easily with BDS and similar systems (such as RUCAPS) because of its
flexibility - it could produce many more types of drawings and was far
more efficient. It competed well with systems from Intergraph and CV
because of its quality, object structure and roots in architecture.
Our business began to expand and by 1982 we had around 30 users.

The first important addition to GDS was the "Attribute Data" sub-
system. This allowed properties (text or numbers) to be attached to
objects, or instances of objects. The second was the XBASIC customer
programming language. This was a Baslc interpreter with extensions
for manipulating the GDS geometry and attributes, for drawing, and for
user interaction in the GDS style. These two additions opened
enormous opportunities for extending and specialising the
functionality of GDS.

PHASE II1 PRAGMATISM (1983-1987)

The next phase was lively and exciting. We had a growing group of
customers, and all sorts of people in different design disciplines
(some very remote from architecture) began to approach us. We started
to look for opportunities to develop and add to the basic GDS
capabilities so as to expand our market and our usefulness.

Our general aim was to expand from the architectural market to related
building design discipline. Our first venture was into structural
engineering with a Reinforced Concrete Detailing System. It was quite
easy to utilise the GDS object structure and attribute data
capabilities to represent reinforcement details as drawings, and to
extract bending schedules from them. We did this by adding functions
to GDS; no extra structures or concepts vere needed.

The second was a little more elaborate, and was for modelling ground
surfaces. Land survey data is captured by GDS, and recorded as spot-
heights at random locations. The site system reads this data from a
GDS drawing, and builds a triangulated representation.

This can be contoured, measured, modified and presented in a number of
ways, and the results returned to GDS. The site system ‘added no
concepts to GDS, but does use its own specialised, temporary data
structures while it is working. ‘

During this period the rate of development of hardware, both
processors and graphics displays, began to accelerate. 4n increasing
part of our development effort had to be dedicated to keeping up-to-
date. GDS originally used storage tube displays, keyboard commands,
16-bit processors and an overlayed program structure. Over a couple
of years ve moved to raster graphics, a tablet interface, 32 bit
processors and virtual memory. ‘

231

The determinedly 2D outlook of GDS had forced a break with the "whole
building" modelling of BDS, and had enabled us to produce something
less ambitious but more complete (in its own terms) and far more
effective in practice. But it was not a sustainable philosophy in the
face of the rising demands of our customers, and strengthening
competition from other vendors. Ty

Ve began to add 3D capabilities, taking advantage of raster graphics
and virtual memory, but without restoring the rigidities of BDS. Ve
felt that 2D approaches were best for most routine work, 3D should be
‘used in special cases, in limited areas. We aimed to get a smooth mix
of 2D and 3D capabilities. :

Ve déveloped 3~subsystems,'XSOLIﬁ for creating,solid models,,PAH,(Part
‘Assembly Model) for locating them in space, and SVS (Super View
System) for rendering. R , : T

The job of XSOLID is to create 3-dimensional objects. Contemporary
architectural systems were all less than fully functional in this
respect. BDS and RUCAPS used the gross approximation of "box
geometry". Others offered simple 3D shapes such as virelines, planes,
simple extrusions and surfaces of revolution. Ve determined to borrow
true solid modelling technology from the world of industrial design
and mechanical engineering. The idea is to start with simple shapes
such as extrusions or solids of revolution, and then combine them, or
use one to cut holes in another, so as to create shapes of arbitrary
complexity. ‘ : ,

The Part Assembly Model uses a GDS 2D drawing with attribute data to
describe the positions of 3D components. They appear in the
appropriate projection on the PAM drawing, and may be mixed with 2D
objects. A PAM plan can be processed automatically into another view
such as a section or elevation. This gives us a fundamentally 2D
interface for defining 3D models, which is simple to use, and costs
less in computer resources.

The final module SVS, will take 3D data (from a PAM drawing or

elsevhere) and render it as a perspective projection. Ve offer a

number of rendering algorithms for different purposes; so you can
trade-off between the sophistication of the image and the time it

takes ' to generate. The best images use expensive ray-tracing

techniques (e.g for shadow casting and reflections), and need 24 bit
~ colour displays. At present these are rather too expensive for
routine use in architecture, so ve have spent a good deal of effort on
faster algorithms, and techniques for "dithering" colours to get
acceptable images on terminals with a lower colour resolution.

5.1

232

Our ambition to offer something useful to all disciplines involved in
building design has now broadened to cover not only buildings but all
kinds of infrastructure. So now we do a lot of work in roads, transit
systems and mapping. One problem that we faced and solved for mapping
has had a tremendous pay-off for architects and buildings designers.
A mapping database (e.g for local government) is likely to be very
extensive in area, and carry data from many departments (e.g highways,
land tax, drainage, building permits). Many people will be using it
at the same time, so concurrency control becomes an important issue.
Originally a GDS session would open a single drawing file, and the
normal locking protocols apply - many people can read a file
simultaneously, or alternatively one person can update it. To solve
the mapping problem we did two things. A session can now access many
files at once. These can be regarded as "layers”™ seen in
superposition, or as a mosaic of drawings seen in juxtaposition, or
both. The boundaries are invisible, and files are opened and closed
automatically. So our user can access a large database consisting of
thousands of maps as though it were one seamless drawing. The second
change was to the concurrency protocol, to permit many readers and one
writer to coexist. In combination these two changes allow for
effective multiple access to a large mapping database. Update
activity does not lock-out readers, and only inhibits other updates if
they are to precisely the same layer of the szme small region.

The use of multiple layers has proved invaluable in building design,
especially in multi-disciplinary offices. Each discipline has its own
layer, and the exclusive right to update it. Other disciplines can
see it, but not change it.

Our pragmatic phase greatly extended the amount of software we had on
offer, the size of our business, and the number of users. By 1987 ve
had about 700 users, and vorld-wide revenues of between 540 million
and $50 million.

PHASE TV MINIMALISM 1988

Ve continue of course to expand the software - we are currently
“working, for example, on land-use polygons for administrative mapping,
road design, and extension to the 3D systems for architecture and
plant. But I do not see these as the major issues facing us at
present. The real issue is to simplify what we have.

The expansion of the last period has left us with over a million lines
of code, 800-odd commands, and 11,000 pages of documentation making up
a metre of manuals. The rigidities of BDS, or the first period of GDS
have gone; we have in effect about a dozen loosely coupled systems
with rather less consistency than I would like. The result is getting
to be rather expensive to maintain, to learm or to use.

233

Ve would like to expand our user base into the thousands, and increase
the enetration, that is the number of people in each user
organisation that use our software. To do this we have to a) reduce
the cost and complexity of the hardware, and b) to simplify and
consolidate the software.

The most exciting work we are doing at present towards these alms are
concerned with the user interface. By employing the X-11 software
from MIT, running on the latest networked engineering workstations, wve
can develop a direct-manipulation user interface similar to that on
the Apple Macintosh. Ve hope thereby to decrease the documentation
load, shorten the learning curve and make the software vastly more
"approachable”. An unexpected, but very welcome, benefit of this
style of interface is that it enables us to considerably reduce the
number of separate commands or functions that the user sees. In some
cases we can replace a dozen old style commands by a single new style
contral panel, and simultaneously make it more obvious what the
options are.

Our early work was very much "data-centred". BDS tried to develop a
central database capable of supporting a wide range of activities.
Later work was "output-centred”. We looked at what output wvas
required, and designed softvare to achieve it in the most cost
efficient way.

Qur current pre-occuption with simplicity leads me to suggest that the
important thing is to minimise the number of concepts in a software
system. Concepts should be few in number, simple to grasp, limited in
their interactions, and continuously and consistently reinforced by
the user interface. These principles apply regardless of whether your
software design approach is object-orientated, based on data-flow, or
based on conceptual modelling.

5.1

234

