213

A Meta-’Iopology for Product Modeling.!

Peter Willems
TNO-IBBC
P.O.Box 49, 2600 AA Delft
The Netherlands

Abstract

A major issue in product modeling is the integration of two essentially
different modeling approaches: the top-down functional-oriented
approach, and the bottom-up technical-oriented approach.

The ISO-STEP General AEC Reference Model (GARM) supports this
dual design principle around the kernel entities Functional Unit and
Technical Solution.

During the development of GARM a number of topology related issues
were encountered. To mention two main issues:

- How to structure a functional network to be consistent over
several decomposition/aggregation levels, as well as over the
branches of the hierarchical tree?

- How to relate this network and the multiple coexisting
representations which share this same kernel?

Both issues can be addressed, in principle, using a pure topology
independent network and an intermediate layer to relate the
dependent representatmns

This mtermedxate layer is called: Meta-Topology.

Introduction

For several years product modeling is a major research topic at the TNO Institute for Building
Materials and Structures (TNO-IBBC). One goal of this effort is to participate actively in the
development of the ISO standard for the exchange of product model data (STEP). As a result we
developed a reference model for AEC product model data which was accepted by ISO
TC184/SC4/WG1 as the General AEC Reference Model [1].

The core of this reference model is based on two fundamental views to look at a product:

- ~ the functional view, represented by the entity class Functional Unif, and

- the technical view, represented by the entity class Technical Solution.

The Functional Unit part collects all requirements and constraints which must be fulfilled. The
Technical Solution part describes a possible solution to meet those requirements. Generally more
than one Technical Solution can be found for the same Functional Unit. Evaluation of those
solutions should reveal which Technical Solution fits best the specified functional behavior.
The figures in this paper represent this duality by two matching crescent-shaped symbols, as
shown in the next figure.

1Pa\per for CIB meeﬁng, Lund, Sweden, October 1988

=
Q
<
X
O
<
S
L
o
=
=
e
o)
©
o
E=)
3
IS
=
=z
[a)
0
L
=
©
IS
S
o
o
=
c
§e]
=
o
=
S
=
17}
c
@]
®)

paper w78-1988-213.content

4.7

214

4 ™
functional unit requirement

___unif !
. is fulfillad by
technical
fechnical solution characteristic

Y .

A Technical Solution may specify, in its turn, a number of (sub) Functional Units. This principle
supports the decomposition/aggregation mechanism [3]. The resulting hierarchical structure
constitutes a tree.

> \

- . functional unit
—

decomposes nip lﬂ‘s fustillad by

technical solution

S

functional
" unit
Y, A

The Functional Units which constitute a decomposed Technical Solution are related to each
other in a functional network. Each Functional Unit refers to a Node in the network. Each Node
has zero, one or more Ends, and two Ends can be connected via an Interface. This allows us to
define any kind of network relation between Functional Units.

Often the Functional Units and their interrelations will have geometrical aspects, which can be
mapped on a geometrical/topological model. Such a topological model may also be interpreted
as a (topological) network.

In this paper I will demonstrate how to combine the functional network and the topological
network by an intermediate structure we have called Meta-Topology.

Functional Network

For historical reasons and because of the dominance of geometrical/ topological relations in the
modeling area which is covered by AEC products the functional network was based originally on
a geometrical/topological structure.

A geometrical/topological structure acting as a functional network has several disadvantages.
The most obvious disadvantage is that all relations have to be modeled according this point of
view, even if a relation is not at all of a geometrical/topological nature. Another disadvantage
is that the model could not support the use of different geometry/topology-descriptions for
different applications at the same time. Gradually consensus arose that the kernel of the AEC
Reference Model should stay entirely independent of any geometrical/topological
specifications.

The result of this insight reflects in a pure type of functional network. According to this network
a Functional Unit may specify a number of Ends. The End concept offers its Functional Unit a
potential relationship with another Functional Unit (it may form an interface). The relation
itself is established by an Inferface, which connects two Ends of two different Functional Units
on the same level in one branch of the hierarchical tree. Mark that an End may or may not be
mated with another End by means of an Interface. Most parts and (sub)-assemblies will have
free Ends.

215

interface
. end end "
tunc:;pn al ™ . funcbpnal free
unit ﬂ ' D] unit end

é functional unit ' interface

__.*@ @

T]
 free end mated end

C } { i
L)
To solve the problem of the loose Ends, the dual concept Functional Unit versus Technical
Solution is copied to the Ends: the functional part by the entity End, the technical part by the
end of a Technical Solution called Porf. After selecting a Technical Solution for a Functional
Unit each End should be connected unambiguously with a Technical Solution Port in a one to one

relation. If the Technical Solution decomposes into one or more sub Functional Units each Port
should similarly decompose into one or more sub Ends. Those Ends must be in a free status.

male | famale

interface

functional end end functional
unit ‘: H:J . unit

pon
interface interface
functional end _end functional end end
i unit 'Z_/_} D" unit
free free
end end
(functional unit ' end © interface W
) e)
_TJ
‘ Is fulffled by s fulfitied by datus ! !
dhacormp nte : J
. | |
technical solution port tree end mated end male| male
nas [N{(____©(C)
end v,
l decomposes Iro ’
AN :

Generalized Topology

If we consider different topology frameworks for geometric modeling, a set of basic boundary

elements is shared in almost every scheme. These basic boundary elements are vertex, edge, face

and shell. Each of these boundary elements is attached to a geometry domain of a distinct
dimensional order. A shell encloses a three-dimensional area. A face encloses a two-
dimensional area. An edge for a one-dimensional area, and a vertex is attached to a singular

4.7

216

(nought-dimensional) point. Of course, the lower order dimensional areas reside in the same
three-dimensional modeling space.

If we focus on these four basic boundary elements, we will notice that in most topology
frameworks higher order boundary elements are defined, directly or indirectly, by lower order
boundary elements. Neglecting all kinds of particularities in the different frameworks, we
could generalize this principle in the following pure form:

NN\

shell vertex

face | @@ | edge

With this scheme one is able to represent solids without voids or holes and, in general, without
depressions or protrusions. This 2-manifold scheme can easily be extended to a more general n-
manifold scheme:

g2 P P 2
sheill [/ W—— face [W—— adje B | vertex

In the IDEF-1x terminology these relations are considered unspecific and need a further
refinement. The usual approach is to create in-between entities:

shetl face adys veriex

shell-face | face-edge dge-verten
boundary boundary boundary

The basic entities and the in-between entities can be generalized using the category construction:

domain

R

dimensional order

I] H)

~h ==y

veriex

shell-face faco-edge dge-vertex
boundary boundary boundary
1 | 1
type
"\r’
boundary

And by omitting the category entities:

217

domain

may bound — is bounded by
higher order fower order

boundary

In this respect a Domain allocates an area in three-dimensional space of a certain dimensional
order. It is therefore in itself not a boundary but it may act as (part of) a boundary of a higher
order Domain. In reverse the boundaries of a Domain can be defined using lower order Domains.
As noticed before, this schema is still too restricted to meet our modelmg needs. What we lack
is an additional structure to model holes in faces and inner spaces in solids. Besides we want to
be able to define so called non-manifold relations: e.g. placing a vertex on an edge or a face, an
option which is rather common in reference models and idealized models for certain analysis -
applications.

All these options can be offered when we generalize the Loop concept. In common topology the
Loop is used to define faces. One loop is used to define the outer boundary while a number of
successive loops define inner boundaries: holes. This principle can also be achieved by the
relation a face-in-a-face. More general a Domain-in-a-Domain. The inner Domain may have
the same or lower dimensional order and must reside completely within the enclosing Domain.
As a result we are able to model a face-in-a-face, an edge-in-an-face, a vertex-m-a-face, etc.
The diagram below shows the general idea.

may act as - : encloses
) internal

Reference Topology

Why consider topology frameworks in this manner? The principle motive is the need for a
reference topology. A reference topology is not in the first place meant to accurately describe the
shape of an object, but to offer a geometrical /topological network to organize the information
resources which constitute a product model. Therefore boundary elements, which represent the
contours of a solid in a geometric modeling application, may become more significant by having
also meaning in itself.

E.g. let's model, in an AEC application, a room in a building. For the topological specification a
reference is made to a shell (third order Domain). At the same time a set of faces, edges and
vertices is introduced, which are necessary to define the shell correctly. Information concerning
this room can be stored by referring to this reference shell. If there is also information concerning
a wall, which bounds this same room, it is obvious that we will use an existing face, which was
already created to define the shell, to refer to. It is essential to realize that this face has a
twofold function:

1 a topological function for partly defining a shell, and

2 a reference function for the object it stands for: in this case a wall.

In the same example information about the connection of two walls, e.g. a column, may refer to an
edge, while information concerning the connection of a column and a beam can be attached to a
vertex.

To avoid confusion because of the double semantics it is useful to split the data model into two
levels: a topological level to describe a framework which has a pure topological nature, and a
functional level for elements and relations which have also a functional significance.
Contradictions should be avoided by recording each relation only once.

4.7

218

functional
unit

interface

The IDEF-1x diagram above is meant to visualize the two levels of semantics. It is too simple
and unrestrictive for practical purposes. However, the complete IDEF1x diagram is appended to
this paper. ;

For reference topology the difference between material and non-material areas is not very
relevant, at least on the topological level. To return to the room-in-a-building example: the
reference shell for the room is, of course, void, or at most filled with air. Even a bounding face
need not be materialized at all, for example if the room represents an open kitchen. In all cases
these interpretations are decided at the functional level, not on the topological level.

Still the void concept is very valuable, also for reference topology. There is certainly a need to
mark sub-domains, but the semantics should be more flexible than the choice between material
or non-material! To have the the void concept available &t the functional level is much more
flexible and powerful for product modeling applications.

- On the functional level two Functional Units are related by means of an Interface. Interfaces can
now be distinguished into the Boundary Interface for a functional relationship of type Domain A
bounds/is bounded by Domain B, and the Domain Interface to model a functional relationship of
type Domain A encloses/is enclosed by Domain B.

Meta-topology

In fact we have created a three level structure now: on the top level Functional Units and
Interfaces which form, if they are not further specified in a topological sense, a pure non-

- topological network. On the bottom level Domains, Voids and Boundaries, which form a pure
topological framework. The in-between level links the functional network and the topological
framework to each other: the meta-topology layer.

When we define an Interface to be the connection between two Functional Units this Interface
need not be present all the time, e.g. the two separate parts of a door lock. Another possibility
is one Functional Unit which interfaces with different partner Functional Units, e.g. a photo
camera and its lenses. Yet another possibility is an Interface with a still unknown Functional
Unit, e.g. a wall plug and the future use by an electrical apparatus.

In all those cases the two sides of the Interface have to be modeled separately. To be able to do
this the End concept was introduced. Besides the reasons mentioned before, Ends are needed in a
product model structure which is organized by a hierarchical tree, which is the result of
decomposition or aggregation, depending the modeling approach: top-down or bottom-up. If
such a tree structure is applied, it is inevitable that relations are cut, which exist between the
branches of the tree, and have to be diverted along the branches to a common node [6].

It is obvious that the End concept on the functional level must have counterparts on the other
two levels. This offers the additional advantage to restrict the modeling domain to possibly
meaningful models.

On the meta-topological level Ends are categorized on the'r type (Boundary End or Domain
End), on their direction (Boundary End: pointing to decreasing or increasing dimensional order,
resp. Internal Boundary End and External Boundary End; Domain End: pointing to sub-domain or
super-domain, resp. Internal Domain End and External Domain End), and status {free or mated
by means of an Interface). Each combination has a restricted set of allowed relations.

219

On the topology level the Side and Region entities are introduced. Sides and Regions guarantee
that relations are topological (Boundary or Void) or meta-topological (Boundary Interface or
Domain Interface), but not both. They also fulfill the free End concept. The complete IDEF-1x
model has been appended to this paper, while the table below shows the corresponding entities
on the different levels. The entity names are slightly different to integrate this model with the
General AEC Reference Model [1], especially one should read Functional Unit for Node.

network meta-topology :::;?g‘;;d topology

vertex
edge
face

shefl

variex side

boundaryend | side ‘idqe sice

ace side
shell side
end ; ~ {___veriexregion

ecge region
shell region
‘ edge boundary
?&Zﬁiﬂg boundary ~ face boundary
shell bounda

node ~ node domain

domain end region

' ; T Twiivt
domain . d/ed] edvl
interface void fefic | fofed] fo/vt]

) Ish/snish/ic jsh/ed sh

interface

Example

This example shows a simple frame structure which could be a Technical Solution for a gallows
or a fixation for a sign-board. The Technical Solution can be decomposed into six (sub) Functional
Units: column, beam, support beam and three joints. The functional network shows six Interfaces
{four Boundary Interfaces and two Domain Interfaces) and two free Ends. The column has one
free Boundary End to fix it to a foundation structure, while the beam uses a free Domain End to be
able to connect the sign-board (or the criminal) to the frame. Both foundation and sign-board
are Functional Units which are no members of this functional network. N.B. The arrows denote

the direction of decreasing dimensional order.

o]

4.7

220

Literature:

1. Gielingh, Wim, General Reference Model for AEC Product Definition Data,
TNO-IBBC, August 1987, BI-87-87

2. Lee, Kunwoo and Gossard, David, A hierarchical data structure for representing
assemblies, Computer Aided Design, Jan/Feb 1985

3. Tolman, Frits, c.s., A Modeling Space for STEP, TNO-IBBC, June 1988, PU-88.07-1

4. Weiler, Kevin, Two Taxonomies for Geometric Modeling Representations, 5/1/87,
General Electric, Corporate Research and Development, Schenectady, NY 12301

5. Weiler, Kevin, Non-Manifold Geometric Boundary Modeling, Draft Prepared for
SIGGRAPH '87 Advanced Solid Modeling Tutorial, 5/7/87, General Electric, Corporate
Research and Development, Schenectady, NY 12201

6. Willems, Peter, A Functional Network for Product Modeling, TNO-IBBC, July 1988,
PU-88-16

7. Willems, Peter, A Meta-Topology for Product Modeling, TNO-IBBC, July 1988,
PU-88-10-11

8. Wilson, Peter, Euler Formulas and Geometric Modeling, Computer Graphics &

Applications, August 1985

Abojodog-giaf "L'D Bujsop smels
radoas
Ble() onpold 93V 40} [opo asauaioloy |el8uay) 2051 ,n 1940120 ‘a1eq

:8jeq
LOMPISHBLOL OSH SWBllIM t9led. Joyiny

tiepeey

221

llllllllllllllllllllllllllllllllllllll

re | m ABejedo L
k2 . : s St S : | pes|BEuRD

)) () — —))

g L = :
I 1] aezEl | || ﬁ]

(=) 3:) (e,
; [TT] va _ a:pmwﬁ 983_ aevm n.n.?m 0 o ; "
. " -N
L %l .
T Y T & WYY
0 ety
A @ oo & oo
{ K| { el {) e ia“»ﬁf.!
;!
i

=, R o # ABojodo-Blem

apoy pxfoedeg WOa:.J.axe&»
i

) adds]
] X
i 1w padd £
L _ -
b Nmrssmasprmommned
09% — aa..mﬂmzw 4 EpoN Tt POy
Py pylogodag
i

sl S
_ o Em_ , HHOMION [BISURE)

4.7

222

