J.P. Pantouvakis

Computer Science Department,
University of Nottingham,
Nottingham, NG7 2RD,

UK.

Absiract

The implementation of relational databases describing the building product has to face difficulties
imposed by the very nature of buildings, such as large amounts of data with complex
interrelationships which are time and place dependent and dynamically changing integrity constraints.
This paper suggests that a succesful implementation should be based on relatively few concepis and a
set of powerful techniques by which these concepts can be transformed into a database. Subsequently,
these techniques can be used as the basis for the development of software tools. When software tools
are available, the creation and/or modification of the database describing the building product can be
easily achieved. Two such tools have been identified, designed and implemented at Notting

ham University and are described in this paper. A database design tool, based on state-of-the-art
relational database theory and a generalized integrity preservation tool. These tools can be linked
together to form an integrated building product modelling environment. The major advantage of this
approach is that the dynamic in nature Building Product Model produced is independent from software
and hardware systems and is capable of adapting to different working practices.

1. Introduction

In recent years the building industry has started 1o take advantage of new developments in
Information Technology [Bjork, 1985 and CICA, 1987]. These developments have been
assisted by the availability of personal computers and an upsurge of research interest
covering a wide range of application areas which resulted in cheap off-the shelf software.

Such proliferation of hardware and software systems is not, however, without problems.
The lack of standards resulted in incompatible systems [Fisher et al, 1985] which in turn
hampered the unification of approach of an already highly fragmented industry.

It would be desirable [CICA, 1979] to produce an integrated information system describing
the building product. This system should be based on relational database theory which since the
presentation of the original paper by E.F. Codd [Codd, 1970] has grown to a subject in its own
right. Relational database theory offers a set of methods for the structuring of information
which is far more efficient than any other database model in existense [Date, 1986].

Unfortunately, integrated building product information systems based on relational database
concepts are not yet available. A research program on the subject is just starting in Finland
[Bjork, 1988]. Before such integrated systems emerge, however, there is a lot to be done in
conceptualizing the methods and producing tools to aid the development. This paper presents
and evaluates such software tools designed and implemented at Nottingham University.

2. yct

A Building Product Model (B.P.M.) is a conceptualization of some aspects of a real building.
Such a model is required by many functions of the Design & Construction (D & C) process. The
aspects of a real building that need to be modelled, depend upon the function served. For
example, a bill of quantities may serve as such a model for the estimating function.

Different functions require different models of the same building (Fig. 1(a)). These models
may gverlap (i.e. more than one contain the same piece of information) or contain jnformation
gaps (i.e. a model being incomplete when the information missing could be derived from
another model). The operation of such a collection of models has a number of major
disadvantages, such as update anomalies and infeqrity preservation anomalies.

An alternative approach is the development of an integrated B.P.M. containing all needed
information and capable of producing different "views” according to the function served. Fig.

=
Q
<
X
O
<
S
L
o
=
=
e
o)
©
o
E=)
3
IS
=
=z
[a)
0
L
=
©
IS
S
o
o
=
c
§e]
=
o
=
S
=
17}
c
@]
®)

paper w78-1988-147.content

3.7

148

1(b} depicts such an integrated B.P.M.. Such a model as a product of a logical process, will be
independent of current hardware and softwars technology.

; B c A Function
SN @ 1 View/Model
Model AModel BModel C? View A ¥
M ' Bullding
- {a) Incompatible Models (b} Integrated B.P.M. ‘

Fig.1 Traditionally different functions are served by incompatible models. When a basic
conceptual model is introduced, the major disadvantages of the incompatible models
will be overcome and at the same time the end usar practices will not be affected.

Such basic "conceptual” models capable of "presenting” themselves in different ways {(or
views) according 1o users' requirements are not specific to the building industry. They were
introduced [CODASYL, 1971] as an aid to the information system developer forming a data
abstraction level at which one specifies what data should be stored and what are their
interrelationships.

3. Properties of the Building d

The main properties of the B.P.M. are :

1. It should be complete, i.e. it should contain all the information needed to the various
functions involved in the D & C process.

2. It should be capable of producing different views of information according to the function
served.

3. It should be minimal. Redundant information should only be included if it's derivation
consumes significant time.

4. It should be consistent. Neither the information contained in it not the deductions made
from it, should lead to logical contradictions.

5. It should allow the representation of information at different levels from very broad to
very detailed according to managerial needs.

6. It should be able of being implemented in stages (because of the complexity and diversity
of the subject, it is unlikely that a B.P.M. can be produced in one step)

7. It should be able to store and manipulate a wide range of data types, such as variables,
dates, different methods of construction, planning and costing, pictures e.t.c.

8. It should assist decision making by providing at least as much information as manual
systems.

9. It should be an adequate means of communication befween the participants of the D & C
process. ‘

10. 1t should not cloud the responsibilities of the participants.

11. It should be easily implemented (io accept wider use)

12. 1t should be independent from the end user inferface.

13. It should preserve the security of ils users.

14. It should be suitable for computerized processing.

should know what it is they should design), testing {ihey should have means of finding out

149

whether or not they have achieved what they set out to achieve) and modification (they should
know ways by which an unsatisfactory design can be changed).

iteration is at the heart of the design process. Design loops around these three stages until a
satisfactory result is reached. These iterations, however, do not necessarily lead to better
designs in a sequential fashion. Different designs form a tree structure where significant
backtracking may be required. [Rich, 1983].

In addition to these difficulties faced by any design activity, further ones are imposed by the
very nature of the building product. These can be derived from the properties of the B.P.M. and
can be classified under two headings.

a) Difficulties imposed by the large amount of data required to describe the building product
which is time and place dependent. For example, as hew construction methods replace old ones,
their data requirements may not coincide. Consequently, the B.P.M. should be modified to allow
for the introduction of these new methods. ;

b) When the B.P.M. changes due to a), the constraints imposed on data to maintain it in
working order also change. Thus, the designer of the B.P.M. should take into account the
dynamic nature of integrity constraints.

Such considerations show that it is worth spending some time trying to identify and produce
tools that would reduce the time taken for a full design cycle. Two broad categories of tools can
be identified:

a) Relational database design 1ools.

b) Generalized data integrity tools.

In the followings the design and implementation of these tools will be discussed.

5. Relational Databases-Basic Definitions
Attributes are identifiers taken from a finite set A = { a4, 85, ..., @, } Each attribute has

associated with it a domain, denoted DOM(a;}, which is the set of possible values for that

attribute.

A relation scheme on an attribute set A, is a finite subset of the cartesian product DOM(a,) X
DOM(a,) X... X DOM(a,,) and is denoted by T The elements of a relation scheme are called
tuples, e

A key for a relation scheme T is a unique identifier for the M relation scheme. This means
that a key is an attribute {(or a set of attributes) from f with the property that, at any given
time, not two tuples in r, have the same value for that attribute (or for that set of attributes).

J
A functional dependency {FD) from an attribute set X to an attribute set Y, denoted X->Y,

{(X,Y in rj), exists in r, if independent of time, for every X-value that appears in r;, the

corresponding Y-value is unique.
Let X,Y,Z be arbitrary atiribute sets in some relation scheme T A multivalued dependency

(MVD) from X to Y, denoted X ->-> Y, exists in r, if the set of Y-values maiching a given
{(X-value, Z-value) tuple in T depends only on the X-value and is independent of the Z-value.

A _Generalized Database Design Software

The goal of a relational database design methodology is o produce a set of relation schemes
containing non-redundant, lossless and easily retrievable information. Two relational database
design methodologies are well-known:

a) The decomposition approach which was originally introduced by Codd [Codd, 1971] and
was generalized by Zaniolo [Zaniolo, 1976]. A systematic presentation of the method can be
found in [Tanaka et al, 1977]. After the introduction of multivalued dependencies [Fagin,
1977a), the method was extended [Fagin, 1977b].

The methodology accepts as input an initial set of relation schemes, along with a set of
functional and multivalued dependencies. By using the information contained in the
dependencies, the initial set of relation schemes is decomposed a number of times until a

3.7

150

satisfactory set of relation schemes is achieved.

The major drawback of this approach is that the output of the method is severely limited by
its input. In fact, the final design cannot be very different from the initial one, because the
decomposition can only go "down", not "up" or "sideways" [Fagin, 1977b].

b) The_synthelic approach was first discussed by [Dalobel et al, 1873} and [Wang et al,
1975]. [Bernstein et al, 1975] and [Bernstein, 1976] presented systematic design
algorithms. The method was later extended by [Fagin, 1977b] to cope with multivalued
dependencies. '

The design process begins with a set of functional and multivalued dependencies. This set is
subsequently refined to obtain an equivalent more desirable set of dependencies which in turn
is used to synthesize the set of relation schemes. ‘

The major advantage of this method is that it does not require an initial design of the set of
relation schemes and thus is not limited by its accuracy. ‘

Such considerations show that it is advisable to follow the synthetic approach fo relational
database design. In fact, the software produced at Nottingham synthesizes relation schemes
from a set of dependencies. The user provides the program with a dependency matrix. The
program then produces a set of relation schemes (Fig. 2)

Z = { 1-»2,3 (1,4)-»5,6 (2,3)-»1 (2,3,4)-=5,6 }
Zs= { 1-22,3 }
Ze= { (1,4)-=8.6 {2,3)-=1 {2,3,4}-»5,6 }
n =6
K = 3
1 2 3 4 5 6
1 ENPUT
2
3
4
5
6
7
o ,
2
M T2 T3 1 CUTPUT

Fig.2 Let X be a set of FDs on a set of attributes A={1,2,...,n}. Let s be the set containing
the FDs in X whose left subset contains one atiribute, T¢ be the difference of ¥ and ¥s
and k be the number of FDs in Z¢. ¥ is converied 1o a [(n+k) X n] dependency matrix
{DM). A dependency i-> in s is represented by the it row of the DM. A dependency
in ¢ is represented by one of the n+1, n+2, ..., n+k rows of the DM. The attributes
in the left subset of a dependency are represeniad by a black triangle where those in
the right subset by a right rectangle in the appropriate row and in the corresponding
column. In the example above, a [(6+3) X 6] DM is needed. The 1st row of this DM
represents the first dependency in X, where the 2"9, 3" and 4th dependencies in I
are represented by rows 7, 8 and 9 respectively. This DM is provided as input to the
program. The program then produces a set of relation schemes, indicating the
{candidate} keys for each relation (shown here underlined).

A minor complication faced by the designer is the fact that some database designs although
more logically correct are less desirable due to perforrnance requirements ([Fagin, 1977b]
and [McFadden et al, 1985]). Taking this fact into acount, a program was developed that
produces a set of relation schemes as soon as possible. Any subsequent designs are then stored

151

for future reference. At the end, the designer is provided with a set of alternative designs each
one of which is logically better than the previous one. The designer can then select the set of
relation schemes that suits his needs best. ‘

Before any of the designs is adopted, a final test should be performed. This test will reveal
whether the design in question possesses the lossless-join property, since . without it
information will be lost. A tableau method for testing this property has been described in [Aho
et al, 1979]. A program based on this tableau method has been produced. The program accepts
as input a set of relation schemes and a set of functional dependencies and returns either
lossless or lossy. The time savings from using the program are important, since the method
takes 0(54) time, where s is the space needed to write down the set of relation schemes and the
dependencies. ~ : ;

If the set of relation schemes is lossless then it can be adopted. If it is lossy, the set of
- attributes and dependencies should be modified [Fagin et al, 1982] and the whole design
process should start again. This fact alone could justify the assumption that a database design
tool is needed. ‘ ~ ‘

The term refers to the accuracy or correctness of the data in the database. There
has not been much work done so far on data integrity as such. Only a few texts devote a
considerable part to data integrity (e.g. [Fernandez et al, 1981]). Other good discussions can
be found in [Wiederhold, 1983}, [Uliman, 1882] and [Date, 1986]. The main reason seems to
be that most databases consist of a small number of relation schemes with few
time-independent integrity constraints.

As far as systems are concerned, only a few provide general data integrity handling facilities
([Stonebraker, 1986], [Zloof, 1978], [IBM, 1982]). Most integrity checking is done by
user written procedural code. The major disadvantage of this approach is that when a
modification to a relation scheme or a change to an integrity constraint is introduced, the
integrity checking code needs to be ammended or even re-written from scratch in some cases.

It would obviously be preferable to be able to specify integrity constraints in a declarative
fashion and let the system perform the checking. In this case, an integrity constraint would be
expressed as a predicate that all correct tuples of the database should satisfy. A simple
example of such a predicate might be that a field in a relation scheme should be positive. If the
user attempts to violate a constraint, the system should reject the operation.

Five types of integrity constraints can be identified:

a) Key Constraints, i.e. the key fields should be unique and not null.

b) Matching Fields or Foreign Key Consirainis, where a field f{ of a relation scheme ry

should match a field fo of a relation scheme rp, where rq,rp are not necessarily distinct.

c) Domain Constraints, which are implied by the fact that a particular field is defined on a
particular domain. For example, such a constraint could be that a field containing time units
can only accept values from the set {sec, min, hour, day, week, month, year}.

d) Range Constraints, where a (numeric) field should only take values within specified
limits.

e) Format Constraints, where the format of the values of a field should conform to a specific
format. For example, for a date field, this could be {day/month/year].

A generalized system to assist integrity preservation could consist of two parts:

a) A relation scheme holding ‘

1. The kind of operations that the integrity constraints apply. (because there may be
constraints which should be enforced only in special circumstances).

2. The specific "weight" of the integrity constraint (i.e whether its violation is fatal or a
correcting action can be taken).

3. The integrity constraints themselves stored as predicates.

b) A generalized program triggered every time a change in the set of relation schemes is
about to happen. This program should parse and evaluate the appropriate tuples from the
integrity relation scheme. Depending upon the result of this evaluation, the program should

]

5 -’

3.7

152

either accept the operation or abandon it.

It a modification is Introduced, the user could then query the integrity relation scheme and
modify the appropriate tuples as required. No re-programming would be necessary.

The system described so far, has been implemented using a well-known commercial product,
dbase iii plus, running on an IBM PC/AT compatible machine. The struciure of the relation
scheme occupies 0.15K (which means that thousands of itegrity constraints can be stored on a
single diskette) and the compiled version of the program about 40K.

8. Conclusions

The development of a B.P.M. serving all functions of the D & C process is a highly complex
operation due to the large amount of data and interralationships involved. The number of
different practices in existense and the ever changing technology introduce one additional
difficulty: The B.P.M. should be flexible to adapt.

The traditional approach to this requirement is the development of a "huge” model capable of
“anticipating” the future and incorporating any changes. This paper suggests an alternative
approach; the development of a dynamic B.P.M. Due to the complexity involved, a computer
solution is justified. To build such a dynamic B.P.M., a B.P.M. development software
environment is proposed.

This environment should consist of a set of relation schernes and a set of integrated software
tools where the latter should assist the design and maintenance of the former. More precisely,
the set of tools should assist:

a) Addition /deletion of attributes in a relation scheme.

b) Addition /deletion of relation schemes.

c) Addition /deletion of integrity constraints.

The major advantages of this approach are :

1. The dynamic B.P.M. is upwards compatible with developments of hardware and software
systems. A particular case in point is the end user presentation of the system. The system can
use graphical interfaces and take advantage of shortened access times as dictated by the
state-of-the-art computer technology.

2. The dynamic B.P.M. is upwards compatible with more complicated conceptual models. The
degree of complexity incorporated in the model can reflect the currently accepted level of
sophistication (by the building industry).

3. The expressive power of the B.P.M. is not compensated against the potential integration it
offers. All functions of the D & C process are served by the same consistent B.P.M. via
different views. ;

As should have become apperent to the initiated reader, this paper suggests the application of
new techniques o the well-known integration problem of the building indusiry for the
development of a new system. As with the development of any new system, it is important not
io freeze the methods of the past into the systems of the future. This paper sets out 1o open a
little of what lies behind the application of such new technicues.

Acknowledgements

it is a great pleasure to acknowledge my debt to Dr. M. O'Brien (University of Nottingham)
for his continuous help, support and encouragement. | would also like to thank Dr. M. Wybrow
{Transfer Technology Lid., Birmingham) whose useful comments have benefited enormously
this work. '

eferences
1. AV. Aho, C. Berri, J.D. Ullman, 1879, The Theory of Joins ir

TODS, 4, 3, September 1979, pp.297-314. ;

2. P.A, Bernstein, J.R. Swenson, D.C. Tsichritzis, 1975, A_Unified_Approach io Functional
Dependencies and Relalions, Proc. ACM SIGMOD, W.F. King (ed), San Jose, California,
May 1975, pp.237-245.

153

3. P.A. Bernstem 1976, Svnihesizin I
, ACM TODS, 1, 4, December 1976, pp 277-298

4. B.C. Bjork, 1985 WMEM&EJM, Technical Research
Centre of Finland.

5. B.C. Bjork, 1988, mmmﬂgmmmm, presented at the Seminar
on Knowledge Based Design in Architecture, Otaniemi, Finland, August 1988.

6. C.L.C.A., 1979, Mmgmm&mmmmmﬂﬁﬂm User Report No.4

7. C.I.C.A., 1987, Buildi v 1d § Needs |
the Construction Industry, Peal Marwsck McLintock.

8. CODASYL Data Base Task Group April 71 Report, 1971, ACM, New York.

9. E.F. Codd, 1970, A Relational Model of Data for Large Shared Data Banks, Communications
ACM, 13, 6, pp. 377-387.

10. E.F. Codd, 1971, mmmmmmwuﬂmmm Courant
Computer Science Symposium 6, Data Base Systems, Prentice-Hall, New York, May
1971 pp.65-98.

C.J. Date, 1986, An_Introduction to Database Systems, Vol 1, 4th edition,

Addzson-Wesley
12. C. Delobel, R.G. Casey, 1973, Decomposition of a Daia Base and ine an
Switching Functions, !BM Journal of Res & Dev, 17 5, September 1973 pp 441~446
13. R. Fagin, 1977a, A lued Dependencie] Normal Form for Relational

Databases, ACM TODS 2, 3, September 1977, pp 262 268.

14. R. Fagin, 1977b, MWMWM@M
Database Design, Proc. 3rd International Conference on VLDB, October 1977,
pp 441-446.

R. Fagin, A.O. Mendelzon, J.D. Uliman, 1982, A Simplified Universal Assumption and
ﬂ&_B_LQQEﬂ}&S, ACM TODS, 7, 3, September 1982, pp.343-360.

16. E.B. Fernandez, R.C. Summers, C. Wood, 1881, Database Security and Integrity,
Addison-Wesley.

17. G. N. Fisher, B.L. Atkin, 1985, A Construction Industry Computer

ANo ation-Towards an _Integraled Management Information em, in P. Brandon

(ed), Information Systems in Construction Management, Mitchell's Professional Library.

18. IBM Corporation, 1982, SQL/Data System Terminal Users' Guide, 1BM Form Number
SH20-2078-0.

19. F. McFadden, J. Hoffer, 1985, Data Base Management, Benjamin/Cummings.

20. E. Rich, 1983, Arificial _Intelligence, McGraw-Hill, New York.

21. M.R. Stonebraker (ed), 1986, Ihe Ingres Papers, Addison-Wesley, Reading,
Massachusetts.

22. Y. Tanaka, T. Tsuda, 1977, Decompositi . il j
Proc. 3rd International Conference on VLDB, October 1977 pp. 451 461

23. J.D. Ullman, 1982, Principles of Database Systems, 2nd edition, Computer Science
Press, Rockville, Maryland.

24. C.P. Wang, H. Wedekind, 1975, Segment Synthesis in Logical Data Base Design, IBM.
Journal of Res & Dev., 18, 1, January 1975, pp.71-77.

25. G. Wiederhold , 1983, Database Design, 2nd edition, McGraw-Hrll New York

26. C. Zaniolo, 1976, A ela [35 ems,
Computer Methodology Group Report Computer Smence Dept U.C.L.A,,
U.C.L.A-ENG-7669, June 1976

27. M.M. Zloof, 1978, leqri i
Management Language, IBM Research Report RC6982, IBM TJ Watson Research Centre,
New York.

3.7

154

