Design and Implementation of a Natural Logie System in
Conjunction with a Relational Objeet Oriented Database
as Applied to the Architectural Engineer

Marty Diamond, and Arthur L. E. Schumacher

Phoenix Advanced Software Systems
201 Park Place, Suite 105
Altamonte Springs, FL 32701, USA

KEYWORDS

Natural Logie, Relational Object Oriented Database, Computer
Aided Design and Drafting (CADD).

ABSTRACT

Two ecritieal areas needing major improvements remain in
present CADD applications. The solutions to these problems
will make CADD an extension of the human creative proecess
instead of a restriction.

The first area of concern is the user interface. New systems
will adapt to the user's procedures and work flow. Based on
the natural logie concept, these systems will require a
trivial length of time to learn and will be able to adapt to
the reality of an ever changing work flow.

The second area of concern is database struecture. Present
applications use an objeet representation for graphie
manipulation to the detriment of associated informational
data. The new generation of systems will be based on a
relational object oriented data structure. This structure
allows for optimal performance whether the data is used for
graphieal representation or associated data processing
information.

The arehitectural engineer looks to CADD to enhanee his/her
abilities and productivity. The future of the CADD industry
is dependent on the adoption of these radical new prineiples
to meet these expectations.

68

DESSIN ET MISE EN OEUVRE D'UN SYSTEME DE LOGIQUE ORIENTE
CONJOINTEMENTE AVEC LE FONDEMENT DE UONNES ORIENTE AUX
OBJETS RAPPORTES A L'INGENIEUR ARCHITECTONIQUE

Dr. Martin Diamond and Arthur L. E. Sehumacher

Phoenix Advanced Software Systems
201 Park Place, Suite 105
Altamonte Springs, FL 32701
U.S.A.

MOTS-CLES

Logique au QHsssrdL Fondement de Donnés orienté aux
Objets/Rapportés aidé par la machine a Calculer pour se
dessin (CADD)

SOMMAIRE

Il n'y reste que deux sujets délicats dans les applications
du CADD en besoin de majeurs ameliorations. Les solutions
pour ces problémes oceassioneront une extension du procés
createur humain au lieu de restriction.

Le premier sujet & regarder est 1'interfase d'usaguer. Les
nouveaux systémes s'adapteront aux procés d'usageur et au
flux de travail. Basé sur le concept logique au hassard, les
systemes requeriront une durée de temps pour l'apprentissage
et adaptation la realité d'un flux de travail gui change
constantament.

Le seconde sujet h amelliorer est la strueture du fondement
de Donnes. Les applications actuelles utilissent les
representations des objets pour manipulations graphiques pour
le detriment des Données d'information assoecié. La neuve
generation de systémes sera basee sur une structure de
Données rapportées _aux objets rapportes. Cette structure
permet que les Donnes soit utilisé pour la representation de
les Données associé pour la meilleur accomplissement.

L'ingénieur ﬁrchiteclonigue regarde CADD pour relever ses
habilités et productivité. Le future de 1'industrie de CADD
depends sure les adoptions de ceux principes radicaux a la
recherche de ceux expectations ci.

69




Introduction

This paper deseribes some advances in computer applications
that will have a significant impact on Computer Aided Design
(CAD) systems. They will have a particular impaet on
architectural design and construction packages. The advances
originated with users and designers of previous CAD systems
and were prompted by a desire to make CAD a tool that matehes

the negds and procedures of users. The resulting new
generation of CAD systems is intended to be Computer Aided
Design as opposed to Computer Aided Drawing. The new

developments are the following:
1. To make systems object or concept oriented rather than
line oriented.

2. To allow users to move freely through various funetions in
a sequence that is determined by the user according to his or
her design procedure rather than by a system imposed struet-
ure.

3. To store data in a concept-oriented hierarchy that matches
the designer's conceptualization, thus allowing objects to be
referenced in an order that is consistent with the design.

4. To provide report definition procedures that allow users
to specify reports in sueh a way that they visually represent
the report logie. The specifications not only provide tools
that make good logie structure, but actually enforee good
logie structure and readability.

Coneept Oriented CAD

Historieally, CAD was a tool to replace the draftboard. Its
functions were intended to duplicate those of a draftsperson
rather than those of a designer. The basie drawing funections
will, of ecourse, have to be part of any usable CAD system,
but new functions are being added to satisfy the needs of
designers. For instance, it is now possible to draw a simple
figure and identify the lines as being part of a particular
construet or of a particular generie type. Then, at any
later time, the generic type can be changed to a specifie
type and the CAD system will automatically replace the lines
with the representation required by their specified types.
Thus, for example, lines could be drawn as a generie wall and
later changed to a specifie wall type. The single lines
would then be automatically replaced by the appropriate
multiple-line representation of the specified type. The set
of multiple lines would still be known to the system as a
wall and could again be changed to yet another wall type with
yet another graphiec representation.

70

The faet that lines can be entered as part of larger con-
struets allows an advanced CAD system to identify items of a
given type within a given area., For instance, it is possible
to identify all doors in a room, a wing, a floor, or a
building. This identification could be for highlighting on
the screen or for use in a report. Being able to identify
all items in a room for a report allows analysis of such
things as consistent fire ratings in an area.

The most significant point here is that the items maintain a
conceptual relationship determined by the designer. The
designer is thus able to work with walls and rooms instead of

lines.

Natural Logie

The next advance presented in this paper is in system logiec
flow. Whereas previous systems have imposed & rigid struet-
ure on the user, advanced systems allow the user to move
through the funetions as desired. An example will illustrate
the differences. Suppose you wanted to put a ecircular
island in the middle of a kitechen. You would have to speecify
a center and a radius. In traditional CAD systems, you would

have to:

1. Determine where the ecenter is to be and what the radius
should be.

2. Start ecirele econstruction and specify this center and
radius. (It would, of course, be possible to specify an
arbitrary ecirele and then edit it into place.) In an
advanced system, you could decide that you want a cirele and
enter the eirele construction module. You would then have to
specify a center and radius just as before. But now you
could start some entirely new funetion to determine the
center without having to exit circle construetion. When the
center is determined, you would exit the secondary funetion
and return to eirele construction. You might, then, start
another secondary funetion to determine the radius. The
result is the same, but the procedure is determined by the
designer acecording to his or her thoughts instead of by some
predetermined order imposed by the CAD system. That is, the
logie followed is natural logie rather than computer-imposed
logie.

The program structure that is employed to do this is a
well-known nesting procedure in which pointers are stored to
keep track of the return points, the items already defined
and those yet to be defined. Indeed, some computer games
where the players work their way through a cavern picking up,

71




putting down and consuming objects encountered do this.
Syntax parsers also do it to some degree. But what is
revolutionary is the use of these procedures in real problem
interactive design systems. Thus, although there 1is no
algorithmie breakthrough, there is really a user interface
breakthrough.

Data Base Structure

We now consider some advances in CAD data base structure. A
combination of relational data base functions and internal
network structure ecan provide a lot of power in a CAD
attribute data base. The strueture is created as the
designer inputs data and specifies the relationships between
different items in a drawing or between an item and some
properties. The data base is thus struetured in a near
optimal way since relations that will be required by reports
or interactive requests will already be recorded in individu-
al reecords. The relations ecean be made in any order and
between any items with the only restriction being that
they make sense to the designer.

Relations input by the user forms links in a network struct-
ure. There can be many links to any item and many links from
any item. Furthermore, there can be link paths of different
lengths between two particular items. There ecould, for
instance, be a direet link between two items and also a link
from the first item through some intermediate items and
finally to the second item.

Report Writer Facilities

The data base system report writer could automatically
structure reports using the network links to determine a
hierarchy. Thus, breakdowns for bills of materials according
to any specified selection would be automatically produced.
The exact contents of the printed output would be specified
in a report definition supplied by the user or as a standard
feature of the CAD system. The searching, sorting, seleet-
ing, and structuring would, however, be an automatie funetion
that required no programming by the user. Alternately, a
where-used report could be generated automatiecally with the
exact output format specified by a report definition.

Report Definitions

All reports are produced by colleeting information, sorting
it, structuring it in some way, doing calculations according
to some eriteria, and, finally, outputting results. As
mentioned in the previous section, advanced CAD systems can
automatically strueture reports. It is, of course, possible

T2

to specify some other non-standard strueturing in a report
definition.

The procedures for collecting data and later doing calcula-
tions acecording to some eriteria requires first a search of
the data and then a selection procedure. The report writer
can automatically seareh a portion of the network if a
starting point is specified and the type of seareh or report
structure is chosen from a list of options.

Although specifying the seleetion procedures is a little more
complex than simply echoosing something from a list, it is
done in a way that is a significant advance in the computer
user interface. Historically, selection specification has
been done through a series of computer program IF tests.
Even sophisticated query languages and report writers have
used these tests. The original IF developed into IF THEN or
IF THEN ELSE statements with indentation to improve read-
ability. But the basic programming language syntax re-
mained. Furthermore, the individual conditions were made of
Boolean combinations specified by the operators AND, OR, NOT,
and possibly XOR. Unfortunately, a condition containing only
a few AND's and OR's in a single IF can be confounding even
to experienced programmers, causing them to read suech
statements two or three times to be sure they have compre-
hended the condition. The situation is aggravated if the
condition specified is not correet or contains NOT's. Those
who are not programmers have an even more diffiecult time
specifying, reading, or debugging suech statements.

The following procedure for specifying conditions has been
used very successfully in a special purpose report writer
that has not been marketed and is, thus, virtually unknown.
Conditions are specified in a tabular form that graphically
displays the tests and makes them easy to specify, read, and
debug. There are three principal features. The first is
that conditions are prefixed by dots that determine the AND
OR strueture. The second is that conditions are defined and
named in one step and grouped together in an implied IF,
THEN, ELSE-IF, ELSE strueture in another step. The third is
that both the condition specification and the grouping
together are done on form-fill-in displays that limit
the number of things that ean be specified at one time.
Sinece it is possible to ineclude conditions within the
definition of other econditions, the limit does not restriet
the conditions that ean be specified. It merely enforces a
structure on the specification. This is, ultimately, a
benefit in that it makes the specifications more understand-
able and imposes a top down structure on the user. This is
something like & computer program architecture's "less is

73




more."

The faet that the system imposes a strueture is also a
benefit. There have been many higher-level languages that
have provided tools for developing top down programs. But,
in reality, it has always remained the obligation of the
programmer to use the tools and create the top down struet-
ure. The languages themselves ecould not guarantee such
structure. The procedures described above, together with
other report definition forms that limit what ean be speci-
fied at one time, guarantee a top down structure. Actually,
they do not force the user to create definitions by using a
top down procedure although it is the most natural thing to
do when using the forms. But it is guaranteed that the
end result will have a canonical top down struecture that
would be seen when anyone read the report specification.

The Boolean logie implied by prefixing dots is specified as
follows:

1. A test item is speecified.
2. Conditions on the item are specified in blocks.

3. A bloek ecan be broken into sub-conditions that are
themselves blocks.

4. Each level of bloek nesting is indieated by one dot.
Thus, a bloek that is n levels down would be prefixed by n
dots.,

5. All blocks at level n+l1 within a bloeck at level n are
OR'ed together.

6. The OR'ed combination of bloeks at level n+1 is AND'ed
with the econtaining block at level n.

7. The following three examples that specify a letter is a
consonant and not a vowel illustrate the syntax of the condi-
tions:

Example 1

(¥BI=YRL)Y; (Fdl<tNT)

.NE*E*

CRI=YPy,, N
.NE*Y!

74

Example 2

(*B'-"N')
.NE'E'
LLNETT!
(*P'-"Z")
.NE*U'
..NE*Y!

Example 3

NE'E!
.(CCB'-"H")
A IT=ET)
..NE*O'
(V=2
..NE*U'
..NE'Y'

75




