16.

20.

21.

X ique jet de
L.M. Chounet, R. Fauconnier, J. Sormay, "Annexe 1ecﬁn1quc ;E P;gizs
C;n;ention d& Groupement d'Etudes et Recherches ALMETH, AFME, Ts y

septembre (1984)

J.Hirsch, E. Sowell, J.A. Clarke "p Proposal to Develop a Kcﬁne;Fggstem
" : ey TATS St . . , BESG
}érlthe ﬁextGeneration of Building Energy Simulation Software

Group, LBL, Berkeley, november (1985)

z : y -
ASHRAE, "Procedure for Determining Heating and C?olfng LudisTiizsfz?p
teri7i;g Energy Calculations - Algorithms for Buxldlng?gia g
Subroutines", ASHRAE Task Group, Atlanta, february (19

Réalisés dans le Cadre de 1'Agence

. 4 : o
J. Lebrun, "Exercices de Simulati D iae pindt dein s,

Internationale de 1'Energie", Extrai
LPB, Université de Liége, Liege, (1983)

J.A. Clarke, L. Laret, "Explanation of the Data PEo§ossor(fE?fZ§ma .
AﬁAéUS (Gla;gow) and Laboratoire de Physique du Batiment (Liegel,
Working Document, december (1984)

& H te-
CER ALMETH, 'Descriptien Normalisée (PRDFORMA}'d?s godeles g; ;2z$2§ma
ment Thermiquc de BAtiment", Compte rendu du Séminaire ALME 5
Lyon, 7-8 novembre (1985)

. aps S
B. Delcambre, "Vers une C.A.0. Intégrée des Projets de Batiments", Proc
st >

of the 10th International CIB Congress on Advancing Building Technology,
Washington, D.C., september (1986)

516

Formulation of Building Regulations using Interactive Logic Programs

David Stone and David A. Wilcox

Building Directorate
Scottish Development Department
Scottish Office
Edinburgh EH1 3S8Z, U.K.

KEYWORDS

Building Regulations, Expert Systems, Logic Programs, PROLOG

ABSTRACT

The Directorate is responsible for the Building Standards (Scotland)
Regulations which set out statutory technical requirements for building
design and construction. As a part of a major review programme the
Directorate is developing the use of interactive logic-based programs to
assist in the formulation, evaluation and drafting of revised Regulations.
The Regulations are formalized as a set of rules and definitions in logic
programs written in micro-PROLOG, Such programs have both a declarative
and a procedural interpretation. Declaratively the program can be
regarded as a specification of the required Regulation which can be
progressively developed and refined in a top-down manner. The
formalization clarifies the logical structure of the Regulation and helps
to avoid syntactic or semantic ambiguities. Procedurally the formalization
can be run as an interactive program and the logical consequences of apply-
ing a set of Regulation requirements in any context examined. A trace of
the computation records the network of rules and definitions used to arrive
at a given conclusion. The inherent modularity of logic programs allows
changes and modifications to be easily introduced and their effects tested.
Building Regulations developed and formalized as logic programs constitute
a ready-made knowledge base for use in expert systems applications.

517

Formulation des Reglements Se Rapportant Au B3timent,
Utilisant des Programmes Logiques Interactifs

David Stone and David A. Wilcox
Building Directorate
Scottish Development Department

Scottish Office
Edinburgh EH1 38Z, U.K.

MOTS-CLES

Programmes Logique, PROLOG, Reglements se Rapportant au Batiment,
Systémes d'Application Experts.

SOMMAIRE

Le conseil d'administration est responsable des réglements se rapportant au

bitiment (Ecosse) qui spécifient les préscriptions techniques réglementaries

pour le dessein et la construction des b&timents. Au cours d'un examen
important de ses fonctions, le conseil d'administration poursuit le
developpement de 1°' utl]l sation des programmes loglquc 1nLeractifs qui
serviront a formuler, & evaluer, et a redlper les réglements révises.

Les réglements sont formalisés en série de régles et definitions qui font
parLl des programmes 1oy1ques Ecrits en micro-PROLOG. De tels programmes
ont & la fois une interpretation déclarative et de processus.
Declarativement, les pro&rammc% peuvent Bire considérés comme une
spécification de la réglementation nécessaire qui peut &tre développee
progressivement et améliore de haut en bas. La formal;satlon gclaircit
la structure logique de la reglementatlon et contribue 3 &viter des
dmblgulLEb syntacthues et sémantiques. Selon le processus, la
formalisation peut opérer comme un programme 1nLeract1f et les conséquences
logiques d' appllquer un graupe de réglementations engeer quel que soit le
contexte examin€. Un tracé d'un calcul enregistre le raison des régles et
definitions utilis®s pour en arriver & une conclusion donnée., La
modularité inh@rente des programmes logiques permet 1'introduction facile
de changements et modifications et 1'examen de leurs effetq. Les
réglements se rapportant aun bAtiment développés et formallses\en programmes
lopiques constituent une base de connaissances toutes faites a utilisger
dans des systémes d'application experts.

518

1.0 Introduction

The Building Directorate of the Scottish Development Department is respons-
ible for the Building Standards (Scotland) Repulations. The Regulations
are intended to safeguard public health and safety in the built environment
and set out statutory technical requirements for building design and

construction . The Directorate is currently engaged in a major review
programme which is intended to revise and simplify both the format of the
Regulations and their technical content. As a part of this review

programme the Directorate has been developing the use of computer-based
analytic methods to assist in the revision process.

The problems inherent in expressing and organizing complex rules and regula-
tions in text form are well documented (1,2,3). The absence of recognised
formal methods for the specification and testing of proposed regulations
often results, despite the best intentions of their authors, in regulations
with in-built inconsistencies which can lead to differing interpretations by
users and enforcing authorities. In addition, the inappropriate organiza-
tion of regulation texts often impedes easy reference to requirements and
effectively obscures their intention.

Models of the information structures inherent in repulations and codes have
been proposed as a basis for the development of systematic methods for the
formulation, evaluation and drafting of regulations material (4,5,6).

Fenves et al.(6,7) proposed a three level model of regulatory information
using decision logic tables to model the content of individual requirements,
information networks to model the relationships between items of information
and argument trees to model the intent and scope of a set of provisions.
Fenves (ibid) showed how the practical advantage of these methods could
extend to all aspects of regulations work, from the initial collation of the
information content of provisions, to the formal analysis of provisions to
ensure certain important syntactic properties and finally to the expression

and ordering of provisions in text form. In addition, the information
model and analytic methods proposed could be implemented in computer-based
information systems. Stahl(8) and Gero(9) report on implementations of the

Fenves model in computer systems for building code writers.

The current work of the Directorate is similarly concerned with analytic
methods for the specification and testing of regulations and their
implementation in computer systems and in particular in computer systems
using interactive logic programs. Logic programming provides a direct and
natural way of implementing the logical features of the kind of information
model outlined above and, at the same time, offers a number of advantages
over conventional software systems.

2.0 Logic programming

The objective of logic programming is to provide a means of defining
computer applications in terms of a machine intelligible form of symbolic
logic . Symbolic logic is based on propositional logic:which is concerned
with expressing propositions and the relationships between propositions and
determining how one proposition can be validly inferred from another; a
proposition in this sense is simply a statement which may be either true or

519

What uniquely distinguishes logic programming froT conventxoga}
programming is that by uging logic as a descriptive fo?mallﬁw anq logical
inference as a computational mechanism, logic programming eiiect;ue%y

the description of a problem from the computational behaviour

false.

separates
necessary to solve it.

The most practical and efficient implementation of the noti?n of }og+f
programming at the moment is the programming language FRQLO& and it is a
version of this language, micro-PROLOG, which is in use in the work .
reported here. All program statements in PROLOG c?rre§pond to a réstrlcted
form of sentence called clauses. Clauses are implications of the form:-

(this conclusion is true) IF (this set of conditions is true)

or, alternatively:=-
Aif Band C and &and D

of a set of such clauses which represent either

ic program consists)
e Pt A fact is merely a conclusion

facts or rules about the domain of interest.
with no conditions. For example:-

warehouse occupant-load-factor 27.9
is a fact whilst:-

X total-width escape-route if
¥ ealculated-total-width escape-route and

Z minimum-total-width escape-route and
X greater-of (Y %)

is a rule. It is this combination of rules and facts, expressed in
clausal form, which enables the representation in a computer system of the
information contained in regulation requirements.

All computation in logic programming is a process of logical infercnce, that
is the process of establishing what can be logically deduced from a get 9?
rules and facts in response to some query. This inferencing‘mcchan1sm is
an in-built property of PROLOG and, in effect, is what makes it a_programang
language. Whereas in a conventional programming lanQU§ge th§re }s ? cl?ar
distinction between program and data, in logic programming this distinction
is blurred; a set of logic program clauses can be regarded as bath.data

and program. That is to say, a set of clauses has both a declarative and

a procedural interpretation (10). For example, for the rule shown above a
declarative reading is:-

Wthe total width for an escape route is the greater of
the total width calculated as necessary and the minimum
total width allowed"

whilst a procedural interpretation is:-

520

"to derive the total width of an escape route, calculate
the total width required, find the minimum total width
allowed and take the greater of the two"

A set of logic program clauses, then, can be regarded as both database
and program with logic as a shared formalism and logical inference as the
shared model of information retrieval. Most of the advantages of logic
programming as an environment for the specification and testing of
regulations derive from this dual interpretation of logic program clauses
as both description and process.

2.1 Logic programs as specification

The formalization of regulation requirements as a logic program data-base
has a number of benefits from the declarative or descriptive point of

view. Repgulations, by their very nature, map gquite readily into the
rule and fact clausal form. This process of formalization itself can
often help clarify the logic of a reguirement. The consequent database

of rules and facts represents a concise and logical description of the
regulation requirements which, even in the precise syntax of PROLOG,
remain expressive and easily read. The inherently modular structure of
the clausal form is itself of benefit. Each clause isolates a fragment
of information and it is the accumulation of such fragments which enables
the construction of more complex requirements. This modularity
encourages an incremental, top-down development of regulation requirements.
High level rules can be defined without the rules or facts governing their
conditions necessarily having been defined. During develeopment, informa-
tion can be added, deleted or modified easily, either to clarify a
requirement or to test an alternative formulation. This combination of
expressiveness and modularity enables the rule database to be regarded as
a specification of a regulation which can be progressively tested and
refined during the formulative stages of defining regulation requirements.

2.2 Empirical and formal tests of program properties

Fenves (7) identified three important properties which regulatery infeorma-
tion should exhibit in use. These are:-—

1) regulation requirements should be complete: that is to say for any
possible set of values to rule conditions the database must yield
an explicit requirement or conclusion.

2} regulation requirements should be unique: that is to say for amy
given set of values to rule conditions the database should yield
only one requirement or conclusion.

3) A set of regulations should be correct: that is to say the regula-
tions should yield the result intended by their author.

521

The first two of these properties are concerned with the syntax or

structure of the rule database whilst the third is concerned with the

semantics or meaning of the rules. A procedural view of the database,
that is the fact and rule clauses interpreted as a program , enables the
specification of a regulation to be empirically tested for these proper-
ties. In order to describe this it is necessary to elaborate a little
on PROLOG's inferencing mechanism and clausal structure.

All computation in logic programming is initiated by addressing a query
to the rule database. PROLOG attempts to respond by matching the query
pattern to a fact or rule conclusion in the database. When a match is
found, rule conditions then represent goals to be proved. Rule
conditions can themselves be defined by other rules or facts in the
database. For example, in the rule shown earlier the conditions,
Wealculated-total-width" and "minimum-total-width", are defined by other

rules thus:-

¥ calculated-total-width escape-route if
Y occupant-capacity and
TIMES(Y 5.3 X)
X minimum-total-width escape-route if
Z minimum-width escape-route and
* number-of-routes and
TIMES{x Z X)

The condition for the minimum width of an escape route in the second
rule is itself defined by two further rules. This kind of interdepend-
ant, hierarchical structure has been identified as characteTistic of
regulatory information and the basis of much of its complexity (6).

The rule-based, clausal form of logic programming naturally implements
such hierarchical structures and PROLOG's built-in inferencing strategy,
a top-down, recursive search through a tree of goals, enables the
logical consequences of such structures to be examined.

Not all rule conditions, however, will be defined in the database.

Some will depend upon circumstantial data, that is, upon particular
design proposals and configurations. In these circumstances, the
behaviour of PROLOG's inferencing mechanism must be enhanced to include
the assumption that values for rule conditions not defined in the data-
base can be solicited from the user. The empirical testing of a rule
database for the properties outlined above is, then, an interactive
process with the user querying the database and the system, where
required, soliciting data values from the user. In this way, th?
database can be tested for completeness by ensuring that, for various
sets of condition values, the system does not fail to generate a
requirement. Similarly, the database can be tested for gniqueness by
exploiting the recursive nature of the inferencing mechanism. After
the confirmation of a guery the system can be requested to back-track

522

and seek other solutions; if the database is unique, for a given set
of condition values, it should yield no other requirement. This
interactive querying of a proposed regulations database is, in effect,

a simulation of the requirements in use, It reveals the behavioural
properties of the database and, in this sense, can be regarded as a
subjective test of correctness. It confirms that the database behaves
as intended and does not yield unexpected results. The testing process
provides assurance that the meaning and intent of a set of requirements
has been properly conveyed in the expression and organization of the
rules.

Other properties of a database can become evident during testing. For
example, self-referencing in definitions can be detected, that is, where
the value of a rule condition depends upon the outcome of the initial
query. This circularity is often difficult to detect in conventional
text or even a declarative reading of the database and only becomes
apparent in application.

The interactive testing of a database described above is essentially
empirical in that any given conclusion depends upon the particular set
of data values supplied. Formal tests for the logical properties of
a database can be devised which are independent of any one data set and
rest upon an analysis of the structure of the database clauses them-
selves. These tests constitute integrity constraints which the rules
and facts, viewed as data structures, must satisfy. The tests exploit
the logical mapping possible between the nested list structure of
PROLOG clauses and decision tree and information network representa-
tions. Thus, in terms of a decision network, one test for complete-
ness is to ensure that in traversing the network there are no rule
conditions with only one branching, that is admitting only one data
value. Similarly, it is possible to test for uniqueness by determin-
ing that all paths through a network are mutually exclusive, Whilst
completeness and uniqueness are important properties of a regulations
database from an applications point of view there are other logical
properties which are equally desirable and for which the database can
be tested. For example, it is important for efficiency that there is
no redundancy in the database, either in terms of identical rules or in
terms of rule conditions whose values are immaterial to the outcome of
the rules in which they are embedded.

An important side-effect to this testing of a rule database is the
ability to record a trace of a computation, that is, the network of

rules and facts traversed in response to some guery or test. In the
empirical, interactive testing of the database this trace provides a
logical proof or explanation of the response to a given query. A

trace derived from a formal analysis of the rule and fact clausal
structure, on the other hand, reveals the dependencies and hierarchies
inherent in the database. These traces of process and structure can
be of value when ordering, indexing and cross-referencing regulation
requirements in conventional text form.

523

3.0 Logic programs and expert systems

The interactive testing of a regulations database, in which the system
solicits data from the user and displays traces of the computation, has
all the characteristics of an expert system. Many of the advantages
claimed for expert systems, the explicit representation of knowledge,
the consultative dialogue and the explanation of reasoning, are in
reality advantages of the rule-based languages in which they are imple-
mented. Logic programming provides an ideal tool for implementing
such systems as it inherently separates the representation of knowledge,
using facts and rules, from its processing, using logical inference.

In turn, building regulations, codes and standards are ideal candidates
for expert system as the knowledge they contain is explicit and well
documented.

The specification and testing of regulatory material in a logic program-
ming environment would yield ready-made knowledge-bases Tor use in
expert systems. This is seen as a major advantage of the methods
advocated here. Using currently available expert systems technology,
applications are feasible which would provide end-users with a more
convenient and rapid access to regulation requirements than is possible
with conventional documentation. More ambitious applications can be
envisaged. A regulations expert system interfaced with a suitable
modelling system would enable the automatic checking of design proposals
for compliance with requirements. “Such applications would probably
require meta-level knowledge for reasoning with regulations rules and
facts rather than simply in them. T

4.0 Summary

The paper has described the use of interactive logic programs as a
development environment for the formulation and evaluation of building
regulation proposals. Logic programming provides a number of
important advantages for this work. Regulations information encoded
in clausal form in a logic program can be regarded as a concise speci-
fication of a proposed requirement. The program can be run, inter-
actively, in any number of test contexts and its behaviour observed.
In this way it is possible to determine, empirically, that the
proposed regulation will yield, in practice, the result intended by
its author. In addition, the inherent structure of logic programs
allows the development of formal, computer-based, proofs of the
properties of regulation specifications. The databases developed

in this way can be used directly as knowledge-bases in expert systems
applications.

524

References

1.

10,

I.K. Davies, Get immediate relief with an algorithm, Psychology
Today 3,(11), pp.53-69, (1970).

B.N. Lewis, I.5. Horabin and C.P. Gane, Flow charts, logical
trees and algorithms for rules and repulations, Centre for Admini-
strative Studies Occasional Paper No. 2, (Her Majesty's Stationery
Office, London, 1967)

B.N. Lewis, Decision logic tables for algorithms and logical trees,
Centre for Administrative Studies Occasional Paper No. 12,
(Her Majesty's Stationery Office, London, 1970)

D.J. Nyman and 5.J. Fenves, An organization model for design
specifications, J. Struct. Division, American Society of Civil
Engineers, 101, pp. 697-716, (1975)

J.R. Harris, Logical analysis of Building Code provisions, Proc.
1st NBS/NCSBCS Joint Conference on Research and Innovation in the
Building Regulatory Process, (National Bureau of Standards,
Washington D.C., 1976), pp. 285-316

5.J. Fenves, K. Rankin and H.K. Tejuja, The structure of building
specifications, NBS Building Science Series No.9, (National
Bureau of Standards, Washington D.C. 1976}

5,J. Fenves and R.N. Wright, The representation and use of design
specifications, NBS Technical Note 940, (National Bureau of
Standards, Washington D.C., 1977)

F.I. Stahl, R.N. Wright, 5.J. Fenves and J.R. Harris, Expressing
standards for computer-aided building design, Journal of Computer-
Aided Design 15, (6), pp. 329-334, (1983)

J.5. Gero et al., AMUBC system final report, Computer Applications
Research Unit, Dept. of Architectural Science, University of
Sydney, (1984)

K.L. Clark and F.G. McCabe, micro-PROLOG: Programming in logic,
(Prentice/Hall International, 1984)

525 |

