Formal Representation of Design Knowledge and Process
Omer Akin and Bharat Dave

Department of Architecture
Carnegie-Mellon University
Pittsburgh, PA 15213, USA

KEYWORDS

architectural design, domain knowledge, heuristies, formal representation,
simulation

ABSTRACT

Our work focuses on the processes of search and inference involved in architectural
design. This requires identification and representation of knowledge that an
architect brings to bear upon the design task. Based on a protocol analysis of

an expert architect solving a design problem, we describe a paradigm that has

been developed to simulate these processes into a computer program. The paradigm
organizes various representations used by the designer in distinect knowledge
categories representing geometric, topological and contextual relationships.

These, in turn, are driven by design propositions in the generation of design
solutions and their evaluation. This paper broadly describes features of the
paradigm that have been implemented as a computer program.

251

Representation Formelle des Connaissances et Processus lies a la Conception
Omer Akin et Bharat Dave

Department of Architecture
Carnegie-Mellon University
Pittsburgh, PA, 15213 USA

MOTS-CLES

design architectural, domaine de connaissances, heuristiques, representation
formelle, simulation

RESUME

Nos travaux portent sur les processus de recherche et d'inference mis en jeu lors
du design architecrural. Cela requiert 1'identification et la representation des
connaissances qu'un architecte utilise lors de la phase de design. En se basant

sur l'analyse de la demarche d'un architecte expert confronte a un probleme de
design, nous decrivons un modele destine a simuler ces processus sur ordinateur.

Ce modele classe les diverses representations utilisees par le designer dans
differentes categories de connaissances representant les relations geometriques,
topologiques et contextuelles. Celles ¢l sont ensuite activees par les propositions
de design pour engendrer les sclutions et leur evaluation. Cet article decrit

les caracteristiques du modele tel qu'il a ete implemente sur ordinateur.

252

1. BACKGROUND

In the past few years, many researchers have focused their attention on
understanding design expertise. Many of these efforts view design process
as a problem-solving activity within the framework of information
processing (1) theory.

Based on protocol analysis, it has been shown (2) that design expertise is
reflected in selecting appropriate representations and being able to retrieve
structured information from memory rather than external cures. Expertise
accrues over experience and provides a designer with 'pre-solution

models' (3). Such an approach restricts and directs search for solutions
depending on specificity of the design problem. In most cases, a designer
does not have explicit specifications for the solution but renders them
explicic within the process of design, tramsforming "{l1l-structured’
problems into 'well-structured' component tasks (4). Over the years, an
expert develops a repertoire of promising strategies for effectively
utilizing his expertise in a goal-directed way (5). Since design problems
usually have a potentially large number of ways to traverse the solution
space and select one solution, it has been also proposed that designers
tend to 'satisfice' rather than 'pptimize' solutions (6). These ideas
provide some of the major characterizations of design expertise.

A designer applies his expertise in a purposeful fashion, searching for
solutions that are subject to a set of criteria. Most of the criteria are
derived from domain knowledge rather than being given explicitly as part of
the problem definition. Solutions are generated on the basis of what is
known at each stage and are evaluated against applicable criteria. These
processes of search and inference in design are not exhaustive or
algorithmic in nature. Instead, designers employ heuristic methods (7) to
guide their search.

1.2 OUR GOALS

Our ultimate goal is to develop an .operational model of the designer's
behavior in terms of two functionalities (8): inference making (problem
solving)- seeking a solution on the basis of known parameters of the
problem; and search (problem structuring)- an activity that transforms
parameters of the problem. A more immediate goal of our work is to model
the behavior of an expert architect solving a non-trivial design problem.
In this paper, we will describe our research approach and findings so far
and general properties of the model that we have developed.

2. APPROACH

Building models of phenomena has always relied on empirical evidence
gathered from observations. By collecting all pertinent observations,
underlying patterns that explain phenomena have been elucidated in various
disciplines. Protocol studies, in this sense, provide a useful tool for
these purposes. We adopted this tool to address several issues discussed
below.

253

An expert designer has at his disposal a set of well-proven or promising
actions for a given context. These actions or schemata represent structured
relationships among and information about the elements of design. Our
immediate concern has been to discover these relationships and information;
and how and when such information is brought to bear upon the development
of design.

2.1. PROTOCOL EXPERIMENTS

To uncover these issues, subjects were given two different tasks; a bin-
packing problem and a space-planning problem. In the first problem, the
subjects were given 23 rectangular pileces to fit (without overlap or gap)
in a specified rectangular area. In the task of space-planning, the
subjects were asked to design a layout for an office for which a list of
personnel and furniture to be accommodated was provided. For both the
tasks, the subjects were provided with cardboard pieces representing
rectangles or furniture, to be fitted in a delimited bourdary on a board.

Two different subjects were chosen for these tasks: an operations research
specialist (51) and an experienced architect (52). They were instructed

to verbalize their thoughts while solving the tasks. The entire session
was video-taped with sound on the same tape. Following the recording, the
session was transcribed in a sequential list of sentences, supplemented
with sketches marking the stages of design development. (A complete
discussion of experiments and differences in behavior of both the subjects
is included in Baykan (9).)

2.2 PATTERNS OF DECISIONS

Two major patterns of decisions emerge from the protocol analysis. One of
them involves establishing the relevant parameters of the problem at hand.
We refer to this activity as problem structuring. An example of this isl:

23. These are two doors here?

24. Which is the primary one?

Experimenter: Doesn't matter.

25. One becomes primary though.

26. What I've got to do 1s invent a scenario and design to it.

27. 1f there'd be time, I'd design to a different scenario.

Experimenter: How would you use that scenario?

28, There are certain constants that'd come in like someone is going to be
coming in from time to time and the engineers wouldn't want to be disturbed
so the secretary would be an interceptor.

In this episode, 52 is trying to establish a spatial relationship: primary
door, need for control, location of secretary. With this structural
information, now all 52 needs is assigning a primary door and locating
secretary in reference to that. The design process moves onto a more
focused problem solving task.

lnumbers refer to line numbers of $2's protocol in solving the space-
planning problem

254

84. This is the way people come in allowing a separation.
85. We'll put the secretary someplace ...

Such information can be applied for generating a solution (as in the above
example) or for testing it:

200. T can't break the front door relationship with the secretary. It is
the one rule not to break.

201. If T break that one, then one of those people functions as receptionist
and that's a no-no.

First we identified such statements in the protocol transcript, providing
us with some broad design strategies used by 52. These statements, in
essence, reflect desired relationships among design objects. These
relationships are selectively applied by S2 as either generative constraints
or criteria of acceptability or rejection of a solution. These predicates
of relationships are large chunks of domain knowledge which can be
represented as component expressions with varying degrees of specificlty.

41. The conventional one, which is hierarchical.

42, Which means that the chief engineer wants to be separated from the
others.

43. want to have direct access to the secretary

44. and vet wants to be able to bypass the secretary for direct access to
the other engineers.

In this example a relationship is identified and its design implications
(i.e. chief engineer needs privacy) are used to generate solutions. This
predicate, in turn, leads to another predicate 'spatial privacy', defined
in terms of spatial location and degree of enclosure provided. This can go
to arbitrary depths of processing for obtaining specificity, although the
subject relies on his past experiences to make such inferences. At the
bottom most level of such predicates, we see what are perceptual assertions
which don't seem to be further atomized.

48. Because corners are more valuable than centers because they are bounded,
which means no intrusions can come in.

To sum up, the processing sequence seems to flow through a tightly meshed
network of relationships. The subject, whenever he does not have a specific
and externally defined relationship, draws upon his personal expertise to
infer to generate missing information. The process consists of identifying
problem-specific information, generating scenarios of relationships,
asserting them in terms of topological and geometriec attributes and testing
these relationships for accepting or rejecting a solution.

These relationships can be differentiated on the basis of the kind of
information they represent. The important feature of such representations
is to transferm information (relationships) from one to another. Following
such an analysis, we developed a paradigm that can be encoded and tested

as a computer program.

255

3. THE PARADIGM
3.1 PROBLEM-SOLVER AND PROBLEM-STRUCTURER

As observed in the protocol and its subsequent analysis, the design activity
can be seen in terms of two functions: establish parameters of the problem
(problem structuring) and find a solution within those parameters (problem
solving). As part of the first, the designers identify "legal" states (8)
ensuring that the final solution is likely to be found within that search
space. 1f the problem still eludes an acceptable solution, some of the
parameters- criteria are restructured so as to reconfigure the boundaries

of the search space.

Problem solving procedures take given problem spaces and generate solutions
based on known parameters. Just as in restructuring a problem, if a
solution seems to satisfy criteria (based on which it was generated) but
violates some other, then a new solution is to be generated that satisfies
the new criteria added with the previous ones.

3.2 PROBLEM-SOLVER

These design operations can be represented as transformations of
relationships as observed in the patterns of decisions in our protocol
analysis. Briefly, they can be elaborated under the following
representation domains: geometric, topological, tautological (perceptual),
scenario-driven.

Geometric representations are the primary values by which objects are
assigned 'physical' substance. These can be seen as the dimensions, planar
equations or the location of an object in space.

Topological representations provide definitions of shapes. Primarily, they
explicate planar invariants of an object. These are used as templates for
defining a shape to which are attached the geometric attributes mentioned
earlier,

Tautological representations encompass concepts which are largely perceptual,
e.g. spatial privacy. They could surely be made manifest or manipulated in
terms of topological or geometric attributes but yet are distinct from them.

Scenario-driven representations rely heavily on the external information
about the problem as well as personal expertise of the designer. In other
words, they can be seen as the top-level relationships which permeate down
in other representational domains and attain specificity. This implies that
all these representation domains are not independent of each other and

tend to fuse together or to be defined in terms of each other.

To illustrate the adequacy of such data representation, we can refer to the
following episode in the protocol:

34. The first thing I was working on is a scenario with no walls because
there is no reason for walls.
35. The purpose of the walls would be if they needed to hang things up, or

256

if they needed visual or acoustical privacy.

36. But visual privacy can be achieved without walls just turning desks back
to back, so the direction you are looking into gives you the privacy.
Strategy of people looking in different ways.

Here S2 deliberates on a possible scenario- not using the walls, and debates
its implications on functioning of the office. This derives from his domain
knowledge and that in turn, brings up the notion of privacy- a tautologiecal
predicate. It could be achieved by translating it in terms of topological
patterns- placement of desks facing away from each other. And at this level
of detail, it is possible to assign geometric values to satisfy all these
constraints.

Although we have elaborated these concepts as distinect representations,
usually they are manipulated as composite entities (constructs). The site
that was given to the subjects in the experiment is an example of constructs.
It was given as a volume of space as part of an existing building. This
defines its 'interior' and 'exterior' spaces. Being a rectangular volume,

it has six bounding planes, two of which are 'solid' walls, one contains
'windows', another 'doors'. And each of the elements in this assembly of
primitives has geometric values assigned to it.

3.3 PROBLEM-STRUCTURER

Such representations by themselves do not say anything about design
development which depends on the given problem context as defined or inter-
preted by the designer. They are invoked and manipulated in respomnse to
different design contexts. To restate an earlier example- if the layout is
to be hierarchical, functions should be placed in the order of their status,
contains a condition. These assertions derive from the domain knowledge
about what is desirable for a given design context. If a solution is not
feasible- e.g. within the given site, if the functions can't be placed as
desired; then domain heuristics is exercised to assert an alternate path of
inquiry. In the end, these predicates of knowledge can be thought of as the
agents of control that invoke and manipulate constructs or primicives
discussed above.

4. IMPLEMENTATION

To formally test and compare this paradigm, we are implementing it in a
computer program in SRL (10). SRL is a knowledge representation language
and it provides mechanism for making hierarchical networks of schema and
inheritance of information among them.

4.1, TEMPLATES OF OBJECTS AND RELATIONS

As shown in the analysis of the protocol, we need three ways of representing
and manipulating design information. Descriptive information about the
design elements, prescriptive information about assigning values to them and
another module to trigger and control the processing sequence. In essence,
we intend to implement design information in three tiers: objects and their
known attributes are represented as schema, their relational data (e.g.
locations) are to be computed as functions of the known attributes. These,

257

in turn, are to be driven by conditional predicates to be represented as
functions or productions (e.g. IF-THEN statements).

Most basic schema are conceptual spatial units. They have two major
attributes: space that is occupied by the unit, and space that is required
for functionally accessing that unit. From this basic schema, we defined
more specialized omes which have added attributes. This created a generic
network from which we can create specific instances of design elements.

Having defined basic objects, we have built a set of procedures which
operate on them to assign and/or retrieve values and return inferences, to
be used subsequently. These include checking and updating adjacencies;
assigning or returning edge (wall attributes); locating furniture patterns
as a function of orientation and area of spatial units; enlarging or
reducing a spatial unit to cover residual areas or resolve overlap
conflicts; ete. These are to be augmented by procedures to invoke design
scenarios and consequent actions.

These procedures are the workhorses of the program. But they have to be
driven by higher level domain heuristics, providing the problem structuring
functionality to the program. That is the next module to make the program
operational and test it against behavior of the designer observed in the
protocol. This module is not implemented yet.

4.2 FUNCIIONAL BEHAVIOR

Basic object schemata to be manipulated in the design task are stored in the
database. But these are prototypes and only specific instances of them are
to be manipulated in different design contexts; the instances would not have
locational information at the start of the system. For these instantiations
to oceur, the system needs to assert particular predicates based on design
strategies and scenarios.

Once these top-level predicates are asserted, they invoke actions. These
actions are the implications of the predicates, invoked as procedures that
are already defined (e.g. for assigning location to a spatial unit or
evaluating if two spatial units are in visual proximity of each other).
These functions operate on the values already present in the object schema
and either change, add or simply retrieve necessary data and provide
inferences.

Currently, we have encoded the basic descriptions of the objects, functions
that manipulate these data, and compute and generate locational values for
different objects. The scenario-procedures to trigger specific series of
actions for a design context are being developed. At the same time, we are
also working on identifying heuristics that would assert these scenarios and
thereby provide the top-level control.

In its present state, there is much that remains to be implemented in the
computer program to enable us to draw concrete conclusions but its partial
performance seems encouraging enough to substantiate our paradigm.

258

ACKNOWLEDGEMENT

This work is funded by NSF Grant No: CEE-8411632. We would also like to
acknowledge collaboration of Can Baykan during the early phase of this
project.

REFERENCES

1.

A. Newell and H.A. Simon, Human Problem Solving, (Prentice Hall,
Englewood Cliffs, 1972).

C. Eastman, "On the Analysis of Intuitive Design Processes', Emerging
Methods in Environmental Design and Planning, edited by G.T. Moore
(MIT Press, Cambridge, 1970), Chap. 3, pp. 21-37.

A.T.K. Foz, "Observations on Designer Behavior in the Parci", DMS-DRS
Journal: Design Research & Methods, 7, (4), pp. 320-323, (1973).

H.A. Simon, "Structure of T11l Structured Problems", Artificial
Intelligence, 4, (3-4), pp. 181-201, (1973).

0. Akin, "Exploration of the Design Process", Design Methods and
Theories, 13, (3/4), pp. 115-119, (1979).

H.A. Simon, "Style in Design", EDRA TI: Proceedings of the 2nd Annual
Environmental Design Research Conference, edited by J. Archea and

C. Eastman (Dowden, Hutchinson & Ross, Inc., Stroudsburg, PA, 1970),
rp. 1-10.

0. Akin, "Models of Architectural Knowledge: An Information Processing
View of Architectural Desipgn", (Carnegie-Mellon University, Pittsburgh,
1979), PhD thesis.

0. Akin, "A Formalism for Problem Restructuring and Resolution in
Design", (Dept. of Arch, Carnegie-Mellon University, Pittsburgh, 1985),
manuscript.

C. Baykan, "Heuristic Methods for Structuring Architectural Design
Problems", (Dept. of Arch, Carnegie-Mellon University, Pittsburgh,
1984), manuseript.

J. M. Wright and M.S. Fox, SRL/1.5 User Manual, (The Robotics
Institute, Carnegie-Mellon University, Pittsburgh, 1983), 1.5 ed..

259

