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AHSTRACT

es the development and evaluation of a parallel c?mQuter
lation modelling of construction activity,
t methods of using computer-based

The paper discuss
architecture dedicated to simu
arising out of research into more efficien

simulation techniques.

A brief description is given of parallel computers, w%th part%ful?r.refi;ince
to multiprocessors. Previous research islrevieweq brlOFly, d;ui:ssigzanté -
ways in which multiprocessors can be applleq to SLmulat}on an - .e c" Thg.
which may be gained over the use of conventional compgt%ng tec nlqu?ﬂ;lation
special points to be considered in optimizing the eff}CLanydof a sim
implementation on this type of computing device are discussed.

A diagrammatic method of representing construction systéms as iaﬁgsxs for
creating simulation models, is introduced. The forms of péral % ism

els produced using this method are assessed dng, that
form which results in the most efficient implementat?on on a multlproc?isor
is established. From this, a multiprocessor-based simulator fo¥ model ng]
construction activity is proposed. Part of Fhis ?roposal dcﬁcFLbeshatnave,
approach for both keeping account of simulation time and EnsgrtggtF a
events occur in their correct order during the course of a simulation.

apparent in the mod

A prototype of this simulator is evaluated by comparing its performance Dvgr
a range of modelling situations with both that of a micro-type cemputer an da
powerful mini computer. A general discussion of these results is presented.
The paper concludes with suggestions for a number of areas for future

research.
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ABSTRACT

Nous discutons dans notre article du développement et de 1'évaluation de la
mise en place d'un ordinateur simultané avec pour but la modélisation de
simulation de l'activité de construction, ceci & la suite de recherches sur
des méthodes d'utilisation de techniques de simulation basées sur ordinateurs
plus efficaces.

Nous donnens une bréve description des ordinateurs simultanés, en nous
référant plus particulidrement aux multicalculateurs. Nous décrivons bri2ve-
ment les travaux de recherche précédents, y compris la facon dont on peut
appliquer les multicalculateurs 23 la simulation et les avantages de ceux ci
par rapport 2 des méthodes conventionnelles. Nous discutons ensuite des
problémes spécifiques qu'il faut prendre en compte si 1'on désire maximiser
l'efficacité de la mise en oceuvre de la simulation dans «e type de systéme.

Mous introduisons ensuite une méthode schématique de représentation des sys-
témes de construction, en tant que base pour la création de moddles de
simulation. Nous évaluons les formes de parallélisme apparent dans les
modeéles produits en utilisant cette méthode, et décidons de la forme qui
donnera la mise en ceuvre la plus efficace sur un multicalculateur. A partir
de 1a, un simulateur basé€ sur multicalculateur est proposé pour une activité
de construction de modélisation. Une partie de cette étude décrit une aproche
nouvelle, tant pour surveiller le temps de simulation, que pour s'assurer que
1'ordre de déroulement des diverses phases est respecté au cours de la
simulation.

Nous évaluons un prototype de ce simulateur en comparant sa performance dans
une variété de situations de modélisation avec celle d'un micro ordinateur et
celle d'un mini ordinateur puissant. Nous présentons ensuite des commentaires
généraux sur ces résultats.

La conclusion de l'article suggére bon nombre de domaines vers lesquels des
recherches vont s'orienter & l'avenir.
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1. Introduction

vent simulation is potentially a powerful modelling

Computer-based discrete-e aotinaEion;

tool for use by construction managers in assisting with the design! . :
planning, programming and control of all types of construct19n ai?l?ltx_[ ]:n
It is an effective means of assessing possible problems and zvefllcmcngles i
a construction process, and their causes, as wél} as for p;edlct%?g ai i
optimizing project duration, costs and proquctlv1ty. Despite Fhls‘po eg lﬂ£;
simulation has tended to be neglected within the construction industry due
the comparative expense in its use of both human and computer resgurces.

The high cost in human resources has been most apparent in the mgdel dg;gizﬁ:
ment sfage of the simulation process. Often, the development and comml e
ing of a model would require several mDntys work from a team of two szail
computer gcientists/ systems analysts. This problem need no longer p(‘ thé
With the development of increasingly sophisticated softwaFe pac&ag%sf.Lnll
form of computer-based simulation modelling languageg designed speci ically
for the construction situation [2,3], it is now possible for constructlinx
managers with little or no computer expertise to develop models of comple
construction systems in a matter of hours.

However, the high demand on computer hardware rescurces %s a probleT_tha;ngas
persisted. Even simple simulation models involve efte?s;ve computaLLon-

thus tend to involve lengthy execution despite continuing impr?uemfnt§0;n
computer technology. Consequently, it is often the caselthat bim§1: to
results cannot be produced quickly enough to be of pragtlcal bgne -
censtruction managers, particularly when the model being run‘ls }Erie b
detailed. The time required to process a very complex model is 1i ?fy Zh

so long that final results may take several days to pr?duce‘ E?en i gun i
processing periods are acceptable, interactive simulation experimentatio

model will certainly be precluded by tedious delays between the isgsue

g The use of

of interactive commands by a user and the feedbac# of informati?n. Mppflol
a large powerful computing system to reduce‘the time of prO?Esslng aui;:

is not always a satisfactory solution to th1§ problem. A ldige cgmg Segcral
system (as well as being expensive to use) will ?u;mally be u.ax? Y iz
concurrent users, and thus will be prone to significant degradation in p

mance.

ated to construction simulation has been developed in
eering at UMIST, Manchester to overcome the

This simulator (the development and evaluation
1 models

A computing device dedic
the Department of Building Engin

roblem of lengthy processing. i el
gf which is the subject of the paper) was designed specifically to ru

built using the ICONS [2] simulation language.

2. ©Parallel processing

Typically, discrete-event simulation models are implemented as a ser%al
algorithm on a general purpose digital computer, whereby each computing e
operation in a simulation run is executed in sequence by Fhe compgteréase
alternative computing technigue not in common USagg, ?ut which can incr ase
greatly the speed at which a simulation is executed, is ?arallel préceszzzzée
This requires the use of a parallel compu;er - a speclal+zed CONPUtlnEF
consisting of a number of digital processing elements which can operate
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simultaneously, each on its own section of the overall computing task.

There are many different types of parallel computer (a discussion of which is
given by Hockney and Jesshope [4]), though a simple means of classification
[5] is based on whether or not all processing elements must first, execute the
same sequence of instructions and seccondly, operate on the same sequence of
data. The multiprocessor is an example of a parallel computer where all
processing elements can operate independently of each other in both of these
respacts. In effect, each processing element can follow its own program.
This facility makes the multiprocessor highly flexible in programming and a
viable medium for applying parallel processing to simulation. Fig 1 shows an
outline of a multiprocessor where each processing element has access to both
its own private memory and a shared memory. Fach private memory may contain
program code and/or data specific to its processing element. The shared
memory, on the other hand, may contain program code and/or data common to
several processing elements and, can be used as an area by which processing
elements communicate information.

Korn [6], Pimentel [7) and Nakagawa et al [8], amongst others, propound the
use of a multiprocessor to increase the efficiency with which a simulation is
executed. Efficiency as such (measured as the ratio of processing speed to
hardware cost) is usually cited as the primary advantage of multiprocessing.
However, Dekker et al [9, 10] emphasize that a parallel computing device can be
used to enhance significantly the extent to which a user can interact with a
simulation. To achieve this, they note that the implementation should be made
in such a way that there is a one-to-one correspondence between the structure
of the computer and that of the system being modelled. Pimentel [7] adopted
this philosophy in his multiprocessor-based simulation of an internal combus-
tion engine. He noted that by partitioning the object system into its

physical components and allocating each of these to its own processing element,
the simulation processes occurring within the computer are easier to interpret
and the development of the software is simplified. Alternatively, a simulation
program can, for example, be split into a number of functional tasks (such as
activity duration generation, event checking and simulation time advancement)
each of which can then be allocated to its own processing element. Such an
approach, however, is unlikely to procure any benefits other than fast
processing.

In spite of these advantages, programming a multiprocessor requires special-
ized computing skills. Unless special attention is paid to the way in

which a simulation is implemented on a multiprocessor, it is unlikely either
that a significant gain in processing efficiency will be realized, or that
the simulation programs will function correctly. Key factors in achieving an
efficient implementation on a multiprocessor are:

a) The number of tasks in parallel execution should be maximized at all
stages in a simulation.

b} All processing elements should have a balanced workload throughout a
simulation run, since a simulation cannot progress anylfaster than the
processing element with the most work to perform. An exception to
this rule can be when a multiprocessor is built from different types of
processing element. In this case each processing element can be
apportioned a workload corresponding to its performance characteristics.
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c) Computational overheads resulting from, for example, the communication of
information between processing elements and the sychronization of
processing elements at crucial points in a simulation, should be minimized.

The extra skills reguired for programming multiprocessors is one of the major
reasons why this type of device has not been adopted widely within the field
of simulation. The aim of the work described in this paper, however, was to
develop a multiprocessor-based simulator specifically for the ICONS construc-
tion simulation package. In this way, a user of the system can be provided
with all the benefits of parallel processing without having to become invol-
ved in programming the device.

3. The ICONS simulation language

A detailed description of the ICONS simulation language is presented in the
Users' Manual [2]. However, for the purpose of this paper, an understanding
of the ICONS diagrammatic method of representing construction systems is
sufficient. These diagrams (an example of which is shown in Fig 2) form the
basis of a model, representing the process flow and logic of the system under
investigation. ICONS diagrams are developed from a suitable combination of
the standard process symbols shown in Table I. The first two symbols are
variant forms of the actqueue which is defined as a single operation, or
discrete part of a process, undertaken by productive resources. The first
type of actqueue represents an operation of a stationary productive resource
such as a fixed batching plant, whilst the second is that of a moving
productive resource such as a truck. Actqueueshave both an activity phase
(representing the actual operation to be executed) which normally takes
productive rescurces time to execute, and a queueing phase, in which produc-
tive resources wait while they are prevented from starting the activity.

The next two symbols in the figure are material nodes, representing a location
in a system where material is transferred between productive resources. The
hopper—-type node has a facility for accumulating a buffer store of material
between transferring productive resources. It can be used to represent, for
example, a source of material input to a system or, an actual hopper/store
such as a wet concrete hopper between a mixer and distribution trucks.

The direct-transfer node, on the other hand, requires material to be
transferred straight from one productive resource to another, making no
provision for storage. BAn example is where an excavator loads spoil into
trucks. The arrows on both types of material node indicate the direction of
material transfer.

The final symbol is an arc which links successive actgueues illustrating the
sequence of operations followed by productive resources. Usually, actqueues
are linked into cycles, that is, the last in a sequence of actqueues is
linked to the first of that group. The ICONS diagram shown in Fig 2 has two
cycles of actqueues. The first represents the sequence of cperations of an
excavator and the second a fleet of trucks.

4. Forms of parallelism in ICONS models

There are a number of ways in which an ICONS model can be broken down into
tasks for parallel execution on a multiprocessor. A fundamental problem is
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to determine which of these forms of parallelism results in the most efficient
implementation.

A simple approach is to allocate each cycle of actqueues in a medel to its own
processing element. During a simulation run, each processing element would
check for, and execute, events associated with the operations of the productive
resources within its allocated cycle. This would include:

a) Checking whether productive resources waiting in queues can start their
activities;

b) generating activity durations;

c¢) checking to see whether productive resources have finished performing
their current activities;

d) deciding to which actqueues productive resources should subsequently
move (if there are several alternatives); and

a) ordering queueing productive rescurces.

Communication between processing elements is required when material is trans-
ferred between productive resources on different cycles. 1In the case of the
excavation model illustrated in Fig 2, the processing element responsible for
cycle Cl, and that responsible for cycle C2, communicate when material is
transferred at direct-transfer node N2,that is, when the excavator leoads spoil
into a truck. Although the time spent by processing elements whilst they are
communicating is likely to be negligible, the overall efficiency of this type
of implementation would be low. For many models, the number of tasks in
parallel execution would be small and there would be a large imbalance in the
workleoads of processing elements. A processing element allocated a cycle
performed by two productive resources would have approximately twice as much
computation to perform as a processing element allocated a cycle performed by
one productive resource. For the excavation model, there would only be two
processing elements operating and that responsible for the trucks' cycle would
have about five times the workload of that responsible for the excavator's
cycle.

Ancther approach, likely to yield greater efficiency, would be to allocate each
actqueue to its own processing element. A major drawback with this type of
implementation, however, is that the level of efficiency would fluctuate
markedly during a simulation run. The efficiency at each stage in a

simulation would depend on the number of productive resources currently at each
actqueue. For example, the highest degree of efficiency in the excavation
model would occur when each of the five trucks is at a different actqueue - in
this case, there would be six processing elements operating each with
approximately the same workload. The worst case would occur when all the
trucks are at the same actqueue, when only two processing elements would be
operating, one of which would have about five times the workload of the other.

An alternative approach to implementing ICONS on a multiprocessor, would be to
allocate each productive resource to its own processing element. This way, the
number of tasks in parallel execution would be maximized (for the excavation
model, there would always be six processing elements operating) and each
processing element would have approximately the same workload. Processing
overheadswould result, however, from the need for communication between
processing elements when productive resources interact with each other. Overall,
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this type of implementation would yield the highest degree of efficiency and
is, therefore, the approach proposed for the multiprocessor-based simulator.

5. A prototype simulator

A multi-microprocessor developed in the Department of Electrical Engineering
and Electronics at UMIST (the CYBA-M [11]) was used as the base of a prototype
of the simulator. The CYBA-M is a shared memory multiprocessor (as illus-
trated in Fig 1) built from 15 INTEL BOBO-A microprocessors.

Each microprocessor was programmed to act as a productive resource. For this
purpose, a standard set of program routines was developed detailing the var-
ious processing tasks associated with a productive resource in the execution
of a simulation. To increase efficiency, each microprocessor was given its
own copy of these routines in its private memory.

The shared memory was used to store a description of the structure, logic and
state of the particular ICONS model being run. This consisted of a complete
set of the model attributes which define the specific characteristics of each
component (such as the material capacity of a hopper-type node) and keep
account of the state of each component as a simulation progresses (such as
the number and order of productive resources in a queue). By storing the
description of a model in the shared memory it was guaranteed that changes
made to its state by one microprocessor would be communicated to all the
other microprocessors.

A number of parallel operating digital clocks were added to the CYBA-M to
execute the timing element in an ICONS simulation. One group of clocks were
dedicated to measuring the time of the day, day of the week and week in
simulation, whilst another group had the function of ensuring that productive
resources finished performing activities at the correct times in a simulation.
Each productive resource was allocated one of the latter types of clock.
Whenever a productive resource started an activity, its microprocessor would
calculate the activity duration and load this value into the clock. The
clock would count from this value down to zero and then signal that the
productive resource had finished the activity. The productive resource's
microprocessor would then update the state of the model accordingly.

All clocks were designed to count in synchronization with a master clock to
ensure that they would advance time at the same rate. This method of
synchronization was chosen since it allows an interactive user to reduce the
speed at which a simulation progresses to any slower scale of time (that of
real-1life if necessary) simply by changing the speed at which the master
clock counts. By running a simulation at the slower speeds, a user can
observe in detail the various processes cccurring in the model.

6. Performance of the prototype simulator

The prototype simulator was evaluated by comparing its performance with two
conventional serial-type implementations of ICONS made on a PRIME 750
machine (a powerful minicomputer) and, one of the microprocessors of the
CYBA-M.

An initial set of experiments were made for a variety of modelling situations
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starting with one actqueue performed by one productive resource, ranging
through to fourteen actqueues each being performed by one productive resource.
The results of these experiments are shown in Fig 3, where the horizontal axis
indicates the number of actgueues in a model and the vertical axis indicates
the pericd of time it took to advance a model by one state. It can be seen
from this figure that the performance of the simulator, unlike that of the
serial implementations, was independent of the size of a model.

The above set of experiments were repeated for two through to fourteen
productive resources performing each actgueue. In the case of the simulator,
where the experiments required the use of more than fourteen microprocessors,
performance results were arrived at by extrapolation. The shaded regions of
Fig 4 show under which of these modelling situations the performance of the
simulator surpassed that of the serial implementations. It can be seen from
these results that for larger models (where processing speed is most
critical) the best performance was achieved by the simulator. Minor
inefficiencies were incurred by the simulator, however, which increased with
the number of productive resources performing each actqueue.

A final series of experiments undertaken on a variety of different sized
models, showed the simulator's hardware timing structure to vary from 31 to
1284 times faster than the serial software timing routine of the INTEL BOBO-A
microprocessor implementation. This vastly superior performance was
attributable to the use of dedicated hardware clocks which precluded the need
for software to perform timing calculations.

The main implication of the performance test results is that the processing
speeds of a parallel computing device does not limit the size of model that it
is practical to run. An added advantage of the simulator, however, was that

it enhanced a user's ability to contrel and monitor a simulation. A user could,
for example, stop and start productive resources during a simulation run, simply
by stopping and starting their respective microprocessors. This, coupled with
the facility for warying the scale of time at which the simulation clocks
counted, was found to be particularly useful for checking for errors in the
design of a model and identifying likely bottlenecks in the system under

investigation.

7. Conclusions and recommendations

Parallel processing is a viable means of procuring fast and efficient proces-
isng of construction simulation models. High performance as such is essential
if simulation technigues are to be exploited to their full potential within
the construction industry, particularly where studies require the use of large
and highly detailed models and results are often required quickly.

The unit with the highest performance in the simulator was the hardware
timing structure, being several orders of magnitude faster than a serial
software timing routine. Ideally, the same level of performance should be
realized in all units. It is recommended, therefore, that future work should
be concerned with developing futher hardware units for the simulator, thus
removing, or at least minimising, the need for software. A future simulator
should, however, have the necessary hardware to run models with up to 100
productive resources, to cover most situations.
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A current area of research in the Department of Building Engineering at UMIST,
is concerned with the development of a graphics interface for ICONS, which has
the objective of increasing the efficiency of both building and experimenting
with models. This facility should be an integral part of the simulator. Work
is required, therefore, to establish the best approach to implementing the
graphics interface on a parallel computing device.
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Table I Process symbols used for building ICONS diagrams

STATIONARY ACTQUEUE
An operation of a stationary
productive resource

MOVING ACTQUEUE

An operation where a productive
resource travels(the symbol
indicates the direction of travel

material is transferred between
productive resources via a
storage facility

\@/ HOPPER-TYPE MATERIAL NODE
A location in a system where
I
Ny
/@\

£ @ DIRECT-TRANSFER MATERIAL NODE
A location ifi a system where

@ material is transferred directly
between productive rescurces

ACTQUEUE LINK

The arrow indicates the sequence
of actgueue performance

PRIVATE MEMORIES

SHARED MEMORY

Figure 1 Outline of a shared memory multiprocessor
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1 excavator 5 tipper-trutks
fe C2

Figure 2 ICONS diagram of an excavation system

PERIOD TO ADVANCE MODEL FROM ONE STATE
4op TO SUBSEQUENT STATE {milisecends!

351
30
25

INTEL BO&O-A
-
20¢

Pigure 3 Performance results for models with one to fourteen actqueues,
each actqueue being performed by one productive resource.

PRODUCTIVE_RESOURCES

1 g

123456789101 R3%
ACTQUEUES IN A MODEL

Figure 4 Modelling situation where the simulator's performance is superior

to the two serial impelementations.
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ABSTRACT

Profound project control is often crucial to project success. The
paper discusses how computers successfully are being used by con-
tractors in this field and what the future probably will bring.
Two different types of data are identified: Local data sets for a
specific site in question and aggregated data sets for the divi-
sion or company in guestion. Information is needed on both types
of data on the different sites as well as at the main office, but
the focus on site is probably on local data and in main office on
aggregated data. This information structure is very complicated
and will probably in the future technologically be solved by
using intelligent terminals on sites tied to a main computer at
the head office. Implementing such a system and making it work is
a very complicated effort which most contractors probably can't
accomplice in one step. Based on Danish experience two different
implementation strategies are discussed, one based on a Top Down
Strategy starting at main office and one based on a Bottom Up
Strategy starting on site. Each strategy reflects it's own inter-
mediate focus point, a top down strategy a central need for ag-
gregated data, a bottom up strategy a local need for local data.
Danish experience on these strategies are reported and recommen-—
dations on selecting implementation strateqy are offered.
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