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ABSTRACT

Over the past two decades many computer codes have evolved which simulate the
dynamic thermal behaviour of buildings. An integral part of the validation
of such simulation packages is to perform a differential sensitiv%ty analysis
where several of the input parameter values are adjusted and the induced
changes in the output parameter values are used to deduce the response
functions between the various input and output parameters. Unfortunately
this approach suffers severe limitations and in the past such analyses have
been substantially incomplete due to what has been termed the N factorial
problem (basically the number of ways one can choose different sets of inp?t
parameters to adjust from a total set of N input parameters}. A stochastic
sensitivity analysis technique has been developed which appears to overcome
this deficiency and it has been used to perform a sensitivi?y analysis on the
UK Strathclyde thermal model ESP. Noise was added to the input parameter
time series so that the auto-correlations and time delayed cross-correlations
could be extracted. These have been used to evaluate the impulse response
function for each parameter and hence deduce the sensitivity of each
parameter of the dynamic thermal model.
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ABSTRACT

De nombreux codes de calculateurs ont eté développés ce dernier temps pour la
simulation de comportement dynamique thermique des b3timents. Un contr@le
de validite de tels codes doint comprendre une analyse de sensibilité
différentielle. On fair varier les valeurs de quelques paramétres d'entrée,
et des changements induits dans les param€tres de sortie on déduit les
fonctions de réponse. Malheureusement ce proced® a des limitations
sérieuses. Jusqu' ici de telles analyses ont neglige en particulier le
probleme dit de N! (Soit le problZme de choix d'un ensemble de paramdtres 3
faire varier, parmi 1'ensemble totale N). Un technique stochastique est
presenté qui semble surmonter ce défaut. Par moyen de ce technique, une
analyse de sensibilit& a &té effectué@e pour le modéle thermique ESP
(Strathelyde, GB). Par 1'addition d'une composante de bruit au
développement temporelle des paramétres d'entre, on en extrait les fonctions
d'auto-corrélation et de corrélation croisée retardee. La rEponse
impulsionelle, et par conséquent la sensibilité, 3 chaque paramétre du modéle
thermique dynamique, ont ainsi £t& Evalufes.
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INTRODUCTION

Over the past two decades the widespread availability of increasingly
powerful digital computing resources has made possible the development of
large discrete multivariate computer simulation model's in most areas of
gcientific endeavor. Numerical solutions produced by such simulation models
are becoming available for many problems that have been considered
insoluable, for practical purposes, using classical theoretical methods.
Confidence in the numerical solutions thus produced must remain low until
the model has undergone a validation process.

Several distinct steps must be followed by the model-developer in forming
the simulation model. A prototypical region of the real world must be
chosen and its set of underlying physical laws and principles be identified.
These physical laws may be embodied in several different mathematical
formulations, from which a suitable representation of the mathematical
equations is selected by the model-developer. The mathematical formulation
of the underlying physical laws must then be rendered into discrete form and
transformed into an algorithmic form using the axioms of a suitable computer
language. The algorithms produced can finally be integrated into the
simulation model on a computer which has a given precision. Many
assumptions, approximations and compromises are inevitable at each of these
steps. Consequently an exact replication of a reality should not be
expected; rather that some confidence interval may be identified, within
which the model-developer would bet that the numerical solution produced is
an accurate representation of reality. Alternatively the model maybe said
to be valid over some range within some specified uncertainty. This
confidence interval is established during the validation phase of the
simulation model's development; One of the main tools available to
simulation model validators is sensitivity analysis.

Differential sensitivity anslysis is the most commonly employed method used
in sensitivity analysis. Tomovic and Vukobratovie define the sensitivity
as the value of the partial differential of an output with respect to input.,
This is a local function evaluated for a particular set of input values.
Further, it is a function of all the model parameters. For a complete
description of the sensitivity function all orders of partial differentials
need to be considered. It is usual for these partial differentials to be
approximated by finite difference ratios and in order to obtain all the
necessary ratios at least N! simulation runs need to be performed.

In the development of their Latin hypercube sampling2 scheme for
experimental design, McKay and co-workers used as a measure of sensitivity
the partial rank correlation coefficient. This technigque rank orders the
input parameters with the assumption that the input parameters are related
in a linear manner to the output parameters. They cannot be compared
directly to the other semsitivity techniques which are local function of the
parameters and will not be considered further in this work.

Recently Schruben and Coglianu3 illustrated how the frequency response
function of a multi-input multi-output simulation model could be obtained.
The simulation model is driven with sinuscidal inputs at various assigned
frequencies. Spectral analysis of the output signals obtained can then be
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used to identify the sensitivity, in the simulation model's response, to

each of the input parameters.

Stochastic Sensitivity Analysis

The present work uses L stochastic inputs to obtain directly the partial
impulse responses of the multi-input multi-output simulation mode. In the
following the input time series to the simulation model is presumed to have a
deterministic part to which is added a stochastic part which is presumed to
b? ergodic with a zero mean. Now the output of the physical system y(t), at
time t, may be described in terms of the input series {x(t)}, up to time t
with a weighting sequence {h(7)} which are functions of time delay. Thes;
weighting co-efficients h(t) are usually known as the finite impulse response
of the system. If the input series {x(t)} is an arbitrary piecewise
continuous function then the output of the system, y(t), is related to the
input of the system x(t) by the convolution integral

y(&) = /> h(D) x (t-0dt = h(1) @ x(t-1) (1)

o

For real physical systems it is only possible for the system to respond to
past inputs.

There exists a relationship between the auto-correlation

E[(x(t) - x)(x(t-17) - x)] and the cross-correlation

E[(x(t) = x)(y(t-1) - y)] in terms of the impulse response function h(1)
known as the Wiener-Hopf equation.

E[(x(t) - X)(y(t-7) = ¥)] = h(v @ E[(x(t) - %) (x(t-1) - X)] (2)

An interesting feature of the Wiener-Hopf equation is that if the input
auto-correlation function is a delta function the equation simplifies to

E[(x(t) - X (7(t=-1) - N1 = h() * E[(x(t) - 0] (3

This makes the evaluation of the partial impulse response function between
the input x and output y simply a case of obtaining the time delayed
cross-correlations between the input and output pairs of the system.

Now x(t) is a random or stochastic process so that the differential must
also be developed in a probabilistic framework. Calculus is based on the
idea of convergence and we shall assume that the idea of mean square
convergence is valid. So now it is only meaningful to consider the
differential of the expectation value E[x(t)] over some small range 0<t<T.
This may be considered as a time window which moves along the time series.
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&
1t can be shown .

5
3y = 2E[y(t)] = I h(1) ®)
Ix E[x(t)] =0

je. the area under the curve this links Tomovic and Vukobratovic's definition
of the sensitivity function at t, to the expectation value of the impulsed
response function up to time t. The impulse response function is re}&te to
the frequency response function by the Fourier tra?sform. So there is an
obvious correspondence with the frequency sensitivity analysis technique

proposed by Schruben and Cogliano.

Results

erential sensitivity analysis for one point

of the input parameter space at least N! simulat}aas need to be pe::ozmed.
For many simulation models N % 100, ie. N! > 10 " This means i
differential sensitivity analysis is ge;erall¥ impractical and erronious

i{ons may be drawn from an incomplete pilcture.
;;nziiirast, uiing the stochastic technique to obtain the first oria;l ; ]
estimate (or any order up to N, dependent only on the storage available) only
several thousand simulations need to be performed.' When perfnrm%ng a 3
stochastic sensitivity analysis it may mot be possible or apprcprlatilio Taw
the values of the input parameters of a simulation model from probab ty g
distributions. It may be that only sub-sets of the %nput paramet;;: ;in et
used. For the stochastic sensitivity analysis technique to be va o muz
be demonstrated that the partial impulse response functions obtained betwee
particular imput-output pairs (or more generally input-output sets) a;ed
independent of other input parameters which are simultaneously per;ur ed.
Here, perturbed is used in the sense that the input parameter is given a
different value at each time step, this value being drawn from some
probability distribution which may be time dependent.

In order to perform a complete diff

del ESP (Strathclyde) typically uses several hundred
her with stochastic boundary conditions (meteorological
data). In order to extract the partial impulse ?esponse func;io;s;isuizziie
software has been incorporated into ESP and used in a serles simula zn
performed. The input data set chosen as the test case was a two zo:
bungalow. A three day period was simulated using &4 time stepsdp:r our.
This three day simulation was repeated until 110 simulations ha ien
petformed. During each simulation the values of one or many inpu cer was
parameters was perturbed at each step as describe§ ab?ve. One paramete
perturbed for 110 repeat simulations and the partial impulse risponse e
functions deduced. In a similar manner the same partial impulse resiors
functions were extracted when two, ten, a?d f?;r Tun&rzdI;niﬁgczagzgisethat

i neousl erturbed. Figures la, , le an :
:::Ep:;::i;aimpulsi Eesponse functions are independent of which cthezn::puts
are perturbed. Having obtained the individual partial impudse r;ipo:dgr g
functions the principle of linear superposition may be tested.

The dynamic thermal mo
input parameters toget
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do this the impulse response functions obtained were each drivenm with
meteorological data and their outputs added together to produce an effective
internal air temperature and surface temperature as shown in Figures 2a and
2b.

We are now able to evaluate the semsitivity of the output parameters with
respect to the input parameters. For the non-zero mean case the partial
impulse response functions may be evaluated using the central moment estimates
for the auto-correlations and time-delayed cross-correlations.

Examples of the sensitivities, h,.(t), determined using the stochastic
technique, with 3000 repeat simui&tions, are given in Table 1. For
comparison sensitivities obtained using the differential technique are
included.

In the differential sensitivity analysis only single parameters were varied
and the parameter was adjusted by an amount equal to the standard deviation
obtained for the same parameter in stochastic sensitivity analysis. In
performing the differential sensitivity analysis it was observed that
different values for the sensitivity were obtained for a parameter, say a
thermophysical property when different boundary conditions were used. For
this reason the same boundary conditions were used in both the differential
and stochastic sensitivity analysis.

In parallel to this work analytical tests are being developed using the
stochastic sensitivity technique and comparisons with multiple differential
sensitivity analysis made.
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TABLE I

Internal Internal
Output Air Temperature Wall Surface Temperature
Y
Differential Stochastic Differential Stochastic
Input X Sensitivity Sensitivity Sensitivity Sensitivity
Dry Bulb 0.418 0.522 0.415 0.419
Temperature °c +0.008 +0.006
Diffuse _2 0.0127 0.0143 0.0193 0.0260
Radiation Wm +0.0005 +0.0030
Direct Normal =9 0.0068 0.0050 0.0105 0.0115
Radiation Wm © +0,0002 +0.0003
Wind -1 -0.092 -0.091 -0.217 -0.273
Speed ms +0.009 +0.040
Wall Layer -1 -1 0.08 0.17 0.58 0.55
Conductivity Wm = °C +0.10 +0.17
Wall Layer -0.96 - 7.6 -3.67 -3.2
Thickness m t 3.6 +2.0
Wall Layer -3 -0.00051 -0.00041 -0.00054 ~0.00050
Density kgm +0,00020 +0.00036
Wall Layer =1 -1 -0.00002 +0.00048 -0.00002 -0.00012
Specific Heat Jkg = °C +0.00028 +0.00005
Wall External -1.42 -1.32 -3.81 -3.13
Surface Absorptivity +0.19 +0.12
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F%gure: 1(a) Auto-correlation of the external dry bulb temperature; the
time delayed cross-correlations between the dry bulb temperature and’l(b) the
internal air temperature; 1(c) the wall internal surface temperature; |(d)
the floor surface temperature. Obtained using 110 resimulations. ’
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Figure: 2(a) shows the external dry bulb temperature, curve 1, and the

internal air temperature as
: s predicted by ESP, curve 2, and using th
response curves shown in figure 1, curve 3. kel

Time

Figure: 2(b) as for figure 2(a) for the wall internal surface temperature.
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