Object Interaction Query:

A Context Awareness Tool for Evaluating BIM Components’ Interactions

Carolina Soto Ogueta
Chile
carolinasotoo@yahoo.com

Abstract

Moa Carlsson
Sweden
moac@mit.edu

During the creative process, designers constantly evaluate the relations between objects in space. BIM aids this process by providing a
modeling platform where objects are embedded with information, which can be extracted on demand. The object Interaction Query

(olQ) proposes a novel way to query BIM models, not only for geometric properties and dimensions, but also about the relations among

the components. By including the queried objects’ context and interrelations as part of the computation, the prototype tool is able to

provide feedback on complex interactions and conflicts in the design environment. The olQ approach and its implementation are

developed as integral parts of the design process, allowing users to perform customized queries through a GUI in which users can apply

their knowledge and design preferences to the model’s evaluation.

Keywords: BIM; Object interaction; Context awareness; Rule-based system.

Introduction

Relationships between objects in space are key to the enterprise
of design and construction, and designers are constantly
evaluating them during the creative process. Building Information
Modeling (BIM) aids this process by providing a modeling platform
where objects are embedded with information, which can be
extracted on demand. The present research, developed in
response to an identified need for more design-oriented query
systems in BIM, proposes a novel way to query models not only
for geometric properties and dimensions (direct query), but also
about the relations among the components (indirect query). The
olQ approach and its implementation are developed as an
integrated part of the design process, allowing users to perform
customized queries in which they can easily apply their expert
knowledge and design preferences to the model’s evaluation.

Several research initiatives, as well as commercial products, have
sought ways to utilize the information embedded in BIM to
automate the evaluation of compliance with different building
norms. While these can be very powerful tools to avoid design
conflicts, two areas have not yet been thoroughly researched.
First, the research and commercial tools have been devised to
work outside the actual design application through the utilization
of the Industry Foundation Classes (IFC) format, moving the
evaluation further away from the design process and into the
realm of engineering or trade specialists. Second, these tools have
mostly focused on evaluating written rules, such as building codes,
and not on spatial relations, which are a key part of the design
process.

The current paper presents an ongoing research initiated at the
MIT Design and Computation Group. As master’s degree students
from the group, the authors started this work within the context
of a 2012 workshop titled Computational Design Lab: Reinventing
BIM. The paper outlines a novel approach to the evaluation of
building models which focuses on enabling context awareness
among BIM objects, i.e., access to the spatial relations between
objects, through the embedded information available in these
environments. The approach is being researched through the
development of the object Interaction Query (0lQ), a prototype
application that enables the inclusion of the user’s expert
knowledge in the evaluation, integrating the spatial computation
in the design process, and providing instant feedback on possible
undesired spatial relations in several formats. The main goal of olQ
is to create a platform which enhances the design process by
allowing for fast and informed decision-making.

Embedded
knowledge

information in BIM and users’ expert

Embedded information enables BIM to streamline design
evaluation and error detection; both tasks which were previously
performed manually by domain-specific experts, making them
time-consuming, expensive, and error-prone.

BIM components contain embedded information regarding their
functions (e.g., walls, floors, and doors), dimensions, materials,
and other characteristics, which can be utilized in the evaluation of
spatial relations. This embedded information may allow users to
conduct specific assessments for the different model objects. As

Building Information Modeling

BIM recognizes the function of a model object, evaluation tools
can access specific data regarding that component and then
evaluate it in an object-specific way, according to its particular
properties. Despite the above, it is important to note that while
BIM components contain information about their properties, they
do not contain knowledge. Analyzing BIM in the light of
Alexander’s pattern language, Ozel (2007) distinguishes between
information and knowledge, stating that while information in BIM
components is intended to be value- and context-free, knowledge,
which is not included in BIM components, refers to domain-
specific, expert lessons extracted from past experience (p. 458).

Proposal

The current research proposes to integrate a method to enable
designers to evaluate complex spatial relations inside the design
process. The embedded information contained in BIM positions
this technology as a powerful environment in which to conduct
this research. Through the inclusion of the user’s expert
knowledge in the evaluation, the work assesses the possibility of
allowing designers to easily evaluate potential conflicts, as well as
unwanted behaviors and interactions between architectural
components. As will be described in the next section, the presently
existing tools allow users to conduct clash detection and rule-
based checking on BIM models, enabling users to automatically
find geometrical clashes between components as well as report
code compliancy violations. The current work investigates how to
generate project evaluations that go beyond described geometric
clashes and established code to allow for identification of more
complex and hard-to-detect conflicts and undesired relations, with
the purpose of enhancing the creative process by giving designers
a tool to assess projects focusing on their design intent. This
design assessment automation is achieved through granting
objects the ability to detect and report information about their
contexts and the potential conflicts that can result from the
interactions with them.

Background Survey

Several approaches have been developed and tested to take
advantage of the expansive amount of information available in
BIM. Two of them are main reference points for the current
research: clash detection and rule-based checking systems. Clash
detection does not rely heavily on the model’'s embedded
information, only utilizing it for the purpose of identification of
objects and reporting of conflicts. The process of rule-based
checking, on the other hand, may rely on the model’s embedded
information depending on the rules being queried. According to
Zhang et al. (2012), currently no commercially available BIM
authoring tool includes rule-checking capabilities (p. 4).
Nevertheless, a few commercially available software packages
(e.g., Solibri) as well as research initiatives (e.g., Borrmann and
Rank, 2009) have focused on external rule-based checking for BIM.

Another type of rule-checking application, which has not been

SIGraDi 2013

developed extensively, is the plug-in tool, developed to work
inside the BIM authoring application, providing an immediate
dialogue between design and evaluation. By putting the evaluation
directly inside the design environment this type of tool allows
designers to control the evaluation and enables them to use the
application as part of their design toolset.

Rule-based checking in BIM has been widely studied and
developed by, among many others, Charles M. Eastman (Eastman
et al.,, 2009, 2010; Zhang et al.,, 2012). In their paper titled
Automatic Rule-Based Checking of Building Designs (2009),
Eastman et al. provide a thorough survey of both the technology
and structure of several IFC-based rule-checking efforts. In the
paper, Eastman et al. recognize the fact that “almost all efforts in
automating rule checking to date have been applied to building
code and accessibility criteria” (p. 1012). Among the model
evaluation efforts studied three are key to the current research.
The first effort, undertaken by Zhang et al. (2012) involves an
implemented approach for automated hazard identification and
correction. The second study, by Lee J-K et al. (2012) is a project
for the GSA and U.S. Courts, investigating design rule checking of
federal courthouses using the IFC format. Finally, the third
approach is a project developed by Borrmann and Rank (2009) and
implemented as a Spatial Query Language (SQL) for 3D buildings
and 3D city models. The SQL provides metric, directional, and
topological spatial operators and is applied to read the geometric
descriptions of objects rather than defining their boundary
representation extracted from the

based on information

embedded properties.

Object Interaction Query (olQ)

The object Interaction Query is an application which aims to
integrate the evaluation of spatial relations between objects inside
the design process. By allowing users to easily apply their expert
knowledge and design preferences to a model’s evaluation, the
system enables the computation of complex spatial conditions.
Designed as an open framework, olQ allows users to add their own
rules and constraints to a model’s evaluation. This user-generated
content constitutes pieces that can be plugged into the defined
framework. The framework contains the data that determines
how these user-generated rules are stored, retrieved, and
executed. Following an executed query, the tool can report

conflicting conditions in different output formats.

Summarizing the order of operations, designers select objects and,
through the application of predefined or custom-made rules,
query these objects to evaluate possible spatial constraints;
thereafter the tool provides the users with feedback on
interactions and conflicts (Fig. 1). The application is being designed
to answer queries about spatial constraints, such as: Is there
enough clearance around mechanical equipment for installation
and repair? Are there any elements obstructing the projected door

swing area? Is the desired clearance for stair landings being

applied to all areas of the building? The ability to answer these
types of questions, which depend on user knowledge rather than
established codes, is accomplished through the inclusion of the
Query Volume (QV), which will be explained in the following
sections. The tool also allows answering more simple queries such
as: Is the width of the door ADA-compliant?

The procedure of olQ follows the steps identified by Eastman et al.
(2009) for rule-based checking applications: first,
translation stage, where spatial constraints are translated into
machine-readable second, the building model

the rule

language;
preparation stage where modeled elements are selected and rules
and values to test are introduced by the designer through a Ul,
third, the rule execution stage where the evaluation is conducted;
and finally the reporting stage, when results are reported back to
the user.

The main goals of the olQ development are: (a) including the
evaluation inside the design process, (b) taking advantage of the
information embedded in BIM components, (c) enabling the
inclusion of the user’s expert knowledge in the evaluation, (d)
allowing rule customization, and (e) reporting query results in
user-friendly formats.

Direct and indirect queries

BIM components (e.g., walls, doors, floors) contain different
information. Furthermore, the information is organized in very
dissimilar ways depending on whether the family is linear-based
(e.g., walls), hosted (e.g., doors, windows), component-based
(e.g., columns), sketch-based (e.g., floors, ceilings), etc. Therefore,
the method olQ uses to access the embedded information varies
accordingly.

The algorithm to access information is pre-coded (hard-coded) to
allow that each time a user selects an object to query olQ
identifies the type of object and distinguishes the path to acquire
about the location, orientation, dimensions,
performance conditions, and other data of that specific type.

information

olQ is designed to conduct two types of queries on BIM objects:
direct and indirect. These two types of queries were identified

user input

during the development of the plug-in, and the differences they
establish are a direct result of the research and coding work
carried out. Zhang et al. (2012) in their implementation of an
automatic safety checking method for construction in BIM, make a
similar distinction - “direct access” and “extended access” - but
referring to the ways in which their tool accesses the information
in the model, while in 0lQ the difference relies on the computation

carried out after accessing the information (p. 10).

Direct queries can be answered by accessing the information
embedded in elements. For example, as the height of a ceiling is a
property commonly contained inside a ceiling object in BIM,
querying a ceiling to evaluate its compliancy with a minimum
height can be done through a direct query. The application
acquires the height information, compares it to a minimum
defined by the user according to his/her criteria, and reports
whether the minimum condition is being met or not.

Indirect Queries involve not only the information contained in BIM
components, but also the conditions generated by the relations
established between two or more components in space. An
example of this would be the distance between a door and a wall.
Because this information depends on the actual design in progress
and is contained neither in the door nor in the wall, in order to
acquire the distance and then evaluate whether it meets a certain
boundary condition, a new process needs to be introduced.
Information such as location, orientation, and dimensions of both
elements needs to be acquired to execute a more complex
evaluation in order to report any violation of a preset minimum
distance condition. The information acquisition, as well as the
subsequent computation, is conducted through the QV.

Query volume

The Query Volume (QV) represents a transient boundary condition
used to fulfill the query of the objects selected at a given time. The
QV is used ‘behind-the-scene’ in the automated computation, to
transpose the users’ expert knowledge into a computable
algorithm. Although, the QV combines that knowledge with
information acquired from the component, it is not a mere offset
of recognized geometry, but it also adapts to the performance
capacities of components, e.g. the swing of a door.

automated process

Objects for query
are selected by

!

° vl
e " 2
user 3 I 3 Attributes and
§ Desired queries ‘:3] embedded Qv redt
Objects from 8 [aresetbyuser | B i information in s QU required 9
previous query % (direct / indirect) | 1 > components are complete query’
are automatically [g extracted No

re-loaded

Figure 1: Steps of the query process.

When a query refers to the relation between two or more BIM
components (indirect query), the computation is executed through
the QV. For example, when the user queries a model to assess

Yes —» based on extracted

QV boundary
condition defined

New 3D viewport
Conflicting objects created. Color-
= Yes —> On screen listing of coding of queried
detected violations — are highlighted in - —> 4 ¢onfiicting
viewport objects

information and
values from Ul

there conflict?

On screen listing of

Exporti f
queried object ID’s Xporting of

— % > No —
query report

whether there is enough clearance around a certain object, the
protocol of the query will operate according to following steps:

Building Information Modeling

1 The
dimensions, and performance conditions of the queried

application acquires the location, orientation,

object(s). (e.g. does this door have a swing projection?)

2 The QV, a discrete volume built according to the information
acquired from the component, as well as the information
input by the user, is introduced in the BIM.

3 The application uses the QV to look for other components
that may represent a violation of the rule being queried.

4 Once the computation is done, and the possible conflicts are
recorded in the different reporting output formats, the QV is
eliminated.

Proof of concept - prototype implementation

In order to test the feasibility of the proposed design-oriented
query system, a prototype implementation was developed for
Revit using the software’s APIl. The tool approaches olQ’s main
goals, previously described as follows:

a. Including the evaluation inside the design process: The
prototype implementation is a plug-in integrated in the typical
BIM workflow. This integration allows the tool to be activated by
the designers at any point of their creative process without the
need of exporting the model to an external application.

b. Taking advantage of the information embedded in BIM
components: The information embedded in BIM components is
used by the tool in direct and indirect queries to assess the
compliance with the conditions set by users.

c. Enabling the inclusion of the user’s expert knowledge in the
evaluation: The tool reads the information input by the designers
through the user interface (Ul), allowing the designers to evaluate
constraints and rules derived from their own experience and
knowledge, and from constraints set by clients or design teams for
specific projects. In this way, the olQ allows designers to
constantly test the model to assess whether their design intent is
being maintained across the different phases of the project.

d. Allowing rule customization: The Ul allows users to customize
the evaluation by: loading existing rules, changing the values
assigned to rules, saving rules and or values for future queries, and
combining sets of rules.

e. Reporting query results in user-friendly formats: Query results
are reported graphically and through descriptive text in three
separate ways. First, a popup screen opens, listing the objects and
rules queried and the encountered conflicts. Second, this list is
saved to an external text file that can be used to track conflict
evolution. This file is automatically named using the date and time
of the query. Third, a color coded 3D view is automatically created.
This view shows all the queried elements in green and all the

SIGraDi 2013

conflicting elements in red. Similarly to the text file, this view is
also named using the query’s date and time (Fig. 2).

UNRESOLVED CONFLICTS'
= A\ W
2 \ \ \ \\

AR\

olQ indicates in red these two
doors have clearance conflicts

olQ indicates in red this door does not comply
with minimum height and width set by user

— X T

SOLVED CONFLICTS

ﬁ \\ \ \ \\ \ A\

-

After fixing the conflicts, the re-executed query
= shows all the elements in green (conflict free)

Figure 2: Top: Automatically generated 3D image reports conflicting doors.
Bottom: After modification the automatically created 3D view indicates
there are no conflicts.

Test scenario

The prototype was used to query doors in order to test the
compliancy of three different conditions. The first two — minimum
height and minimum width of a door — were direct queries, while
the third one — clearance of door swing and projection area — was
executed through an indirect query. The rules for evaluating these
three queries were hardcoded in the application, while the Ul
allowed users to input values for minimum door width and height
to customize the query. The Ul also allowed for storing of these
values for future queries.

The tool was tested on a basic BIM model of a residential building.
The scene was seeded with different conflicting elements, placed
in key positions relating to different doors. The olQ plugin was
able to identify all the conflicts between doors and surrounding
objects, as well as violations of height and width minimum
conditions. The values input by users through the Ul were
successfully identified by the application and incorporated in the
computation.

After modifying the model to solve the conflicts identified by olQ,
on a re-execution of the same query, the tool indicated that there
were no conflicts related to those objects.

Conclusions

The present research, developed in response to an identified need
for more design-oriented query systems in BIM, provides a novel
way to query BIM models, not only for geometric properties and
dimensions (direct query), but also to query models about the
relations among the components (indirect query). The olQ
approach and its implementation are developed as an integrated
part of the design process and allow users to perform customized
queries. The possibility for a user to not only design queries to suit
specific and local needs but also to combine rules of different
characters, aids the design process by allowing for fast and
informed decision making.

The implemented prototype was designed and proved to
successfully handle both direct and indirect queries, although
operable only within a predetermined, i.e., hardcoded, rule set.
The next steps of the research will include further development of:
data structure, management of rules, and input and output data.
Another key area for future work is the development of an
expanded Ul to enable users to modify and add new queries more
freely, as well as the improvement of the reporting and
visualization of query results.

The research presented has shown great potential for becoming
an enhanced feature of design in BIM, and the promising results
and identified limitations have productively opened up new areas
of research, which will be investigated by the authors in future
work.

References

Borrmann, A., Rank. E. (2009a). Specification and implementation of
directional operators in a 3D spatial query language for building
information models. Advanced Engineering Informatics, 23 (1). 32—
44.

Borrmann, A., Rank. E. (2009b). Topological analysis of 3D building models
using a spatial query language. Advanced Engineering Informatics, 23.
370-385.

Borrmann, A. (2010). From GIS to BIM and back again — A spatial query
language for 3D building models and 3D city models. Proceedings of
the 5th International 3D Geolnfo Conference. International Archives
of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, 38, 19-26.

Eastman, C. M. (2009). Automatic rule-based checking of building designs.
Automation in Construction, 18 (8), 1011-1033.

Eastman, C. M., Jeong Y. S., Sacks, R., Kaner, I. (2010). Exchange model and
exchange object concepts for implementation of national BIM
standards. Journal of Computing in Civil Engineering, 24, (1), 25-34.

Ghang L., Sacks, R., Eastman, C. M. (2005). Specifying parametric building
object behavior (BOB) for a Building Information Modeling system.
Automation in Construction 15, 758-776.

Lee J-K, Lee J., Jeong Y., Sheward, H., Sanguinetti, P., Abdelmohsen, S.,
Eastman, C. M. (2012). Development of space database for
automated building design review systems. Automation in
Construction, 24, 203-212.

Ozel, F. (2007). Pattern language and embedded knowledge in Building
Information Modeling. Proceedings of eCAADe 25, 457-464.

Zhang S., Teizer, J., Lee J., Eastman, C. M., Venugopal, M. (2012). Building
information modeling (BIM) and safety: Automatic safety checking of
construction models and schedules. Automation in Construction.
Manuscript submitted for publication.

Building Information Modeling

