The Art of Computer Graphics Programming: Translating Pioneer Programs

Viviane Alencar
State University of Campinas, Brazil
vivisalencar@gmail.com

Gabriela Celani

State University of Campinas, Brazil
celani@fec.unicamp.br

Abstract

Considering the importance of the use of programming languages for teaching computational design to architects, this paper proposes

the translation of computer programs from a pioneer work in this field into a more contemporary programming language. The book The

Art of Computer Graphics Programming: A Structured Introduction for Architects and Designers was published in 1987 by William J.
Mitchell, Robin Ligget and Thomas Kvan, and remains an important reference for architects. The original Pascal codes in the book were

translated into Processing, and made available through an Internet website, along with images and comments, in order to give late Prof.

Mitchell’s work the consideration it deserves.

Keywords: Processing; Pascal; Computer graphics.

Introduction

In the 80's, at the MIT Media Lab, Harel and Papert (1991)
proposed the use of computers as a learning tool, in order to
stimulate creative processes that should be involved in learning. In
the same line of thinking, architecture educators have also
proposed the use of programming for teaching design, such as
Schmitt (1988) and Coates (1995) (Celani, 2008).

One of the very first books that was published with this purpose
was The Art of Computer Graphics Programming: A Structured
Introduction for Architects and Designers (1987), authored by
William J. Mitchell, one of the most influential authors in the field
of Computational Design theory, along with Robin Ligget and
Thomas Kvan. The book was one of the first to establish a
relationship between architecture and computer science by means
of computer programming code that implemented computational
design ideas. However, this book has never been republished and
it is almost forgotten since the codes in it were written in Pascal,

an obsolete language.

The Art of Computer Graphics Programming is much more than a

Pascal programming manual. In the Preface, the authors
deliberately affirm that they “are at least as concerned here with
issues of design theory and visual aesthetics as we are with
computer technology” (p.viii). The book introduces programming
techniques along with computational design concepts, through a
number of shape generation concepts that can be implemented in
Pascal (as in any other computer language): variables that can take
different values, thus defining parametric shapes; symmetry and

repetition, which create different composition from the same

SIGraDi 2013

vocabulary; conditionals, lead to environment-dependent
solutions; encapsulation of shapes, which creates hierarchic
structures; and finally, transformation operations, which carry
objects from one state to another. The code examples and
exercises always establish a relationship to existing architectural
examples, validating the concepts presented as actual
architectural design generation strategies. Along with The Logic of
Architecture (Mitchell, 1990) and The Poetics of Gardens (Moore,
Mitchell and Turnbull, 1988), the book can be seen as part of a

trilogy (Celani, Duarte, Vaz, 2011).

This educational matter is one of the principal aspects of this
work, and also of this book. Not only have the authors aimed to
teach programming skills, but also they intended to explain the
inner works of the computers, printers and plotters available at
the time, in 1987. It is easily notable how much the technological
equipment has changed since that, which made a substantial part
of the book obsolete. Nevertheless, it is important to observe that
even with this specific point being unnecessary to the current
readers, The Art of Computer Graphics Programming is filled with
interesting comments about the relationship between technology
and architecture, especially considering the period.

The project herein described aimed at rescuing The Art of
Computer Graphics Programming from the past, through the
translation of its codes into a more contemporary programming
language, thus allowing the younger generation to get in touch
with an early work of one of the pioneers of CAAD. The main
intention of this work was to preserve the originality of the



content of this book as one of the first to focus on the importance
of programming knowledge for the modern architect.

The renewed codes were made available through an Internet
website, which also includes information about the new
programming language used. All the book’s codes were translated
into this language, and each of them is followed by comments,
explanations and an illustration, allowing anyone to easily use
them. By translating and making these codes available we expect
to contribute with the education of a new generation of architects
who understand that computers can be much more empowering
when one knows how to program them.

Structure of the Book

The first part of The Art of Computer Graphics Programming,
“Introduction to the Medium”, presents information about
hardware and software. The final part of the book, again very
technical, discusses graphic packages for 2D and 3D-modeling, and
for rendering still images and animations. In Part 2, “Elementary
Graphics Program”, after a brief introduction to Pascal syntax
basics, the book introduces computational design concepts along
with programming techniques, all of which are illustrated with
sample codes. The codes on Chapters 5 through 15 were
translated in the present research. The main computational
concepts presented in the book are described below.

Chapter 8, “Graphic Vocabularies”, introduces the “distinction
between the essential and accidental properties of an object” (p.
167), i.e., between the general description of an object (its type)
and its actual instantiation. The same chapter describes the
“Parameterization of Graphic Elements” (p. 166), including a
discussion about ranges of parameters, and the degrees of
freedom of a parameterized element. The chapter ends with a
section called “Defining vocabularies” of graphic elements”.

Chapter 9, “Repetition”, introduces “Principles of regular
composition” (p. 201), and proceeds with the “Use of Control
Structures to Express Compositional Rules” (p. 202), which means
looping through code with statements such as For/Next, While/Do
and Repeat/Until. This chapter ends with a discussion about
generate-and-test-procedures.

Chapter 11, “Conditionals”, presents structures that allows “to
vary conditionally, according to context” (p. 273): If/Then/Else and
Boolean variables. This concept is exemplified by many design
situations, such as choosing among many design alternatives
(state-action diagrams), exterior and interior conditions,
conditional insertion of architectural elements to generate

rhythms, and generate-and-test-procedures.

Chapter 12, “Hierarchical structures”, shows how to create
subsystems and spatial relations by specifying “the relation
between its constituent vocabulary elements” (p. 324). It also
introduces the concepts of recursion and recursive subdivision.
Finally, Chapter 14, “Transformations”, introduce Euclidean

operations and show how to combine them with hierarchical
structures, parameters and loops to generate symmetries.

Choosing a new Programming Language

In a previous work, we have proposed the translation of the codes
from The Art of Computer Graphics Programming into a CAD
scripting language, VBA for AutoCAD (Celani and Lazzarini, 2007).
However, we realized that that language would soon become
obsolete, because AutoDesk was shifting towards Dot Net.
Besides, associating the scripts with a specific CAD software was
very limiting. For that reason, we decided to look for a more
general,

free-standing programming language, and after

considering different alternatives, we decided to use Processing.

Since its creation, in the early 2000’s, Processing was intended to
guide architects, designers and anyone without previous skills
through learning a simple, but powerful, programming language. It
is described in its website as “an open source programming
language and environment for people who want to create images,
animations, and interactions (...) developed to teach fundamentals
of computer programming within a visual context”. Therefore, it is
a perfect match with the ideas presented in the book.

Processing was developed by two students from MIT Media Lab to
teach computer programming concepts for architects and artists.
However, due to its full potential, it is now widely used for
professional language in architecture, arts and computing itself, in
areas such as embedded systems and artificial intelligence, as can
be seen in the tutorials and examples found on the internet.

At this moment, there are different versions available for
Processing. The latest version, 2.0, was released in June 2013. For
this project, version 1.5.1 was chosen, since it was the most stable
version when the translation process started. In theory, the codes
developed in this version can run in future ones, since only the
most basic aspects of the language are used. More information
about the language and its development environment can be
found and downloaded for free from Processing website.

Methodology

The development methodology adopted for the project involved
the following stages:

Preliminary study

A preliminary research was conducted on programming languages
in general and Processing specifically. As it is possible to see by
this article’s references, many books on Processing have recently
been published. However, they look more like manuals than text
books. The most effective way to get objective information proved
to be on the Processing forum. In this forum one can ask for help
and suggestions, ask questions to other more experienced
programmers and discuss technical aspects of the language. Many
applets, environments for

applications and development

Education



Processing were found on the Internet, which confirmed that this
language is very popular.

Analytical phase

The second phase consisted of creating an online support website
for Processing users. The site was created with an open source
online Content Management System, (Concrete 5), which allows
using add-ons for inserting content, such as text, images and even
computer codes. The website was divided in two parts: Languages
and Projects. On Languages, a page describing Processing presents
a brief description of the language, with links to online resources
that had been previously identified, such as websites, e-books,
videos, and apps for tablets.

The Projects page contains a sub-page that introduces the book
The Art of Computer Graphics Programming and its authors. In this
page we included links for each chapter of the book, as well as to a
page explaining how the information is organized and how the
website should be used.

The idea is to add other computer languages and translation
projects to the websites in the future.

Implementation phase

In this step, the following procedures were performed for each
code in the book:

a. Translating the code from Pascal to Processing, using

Processing’s Integrated Development Environment - IDE;
b. Generating an output image;
c. Writing comments on the implementation of the code;

d. Pasting the translated code and corresponding image in the
corresponding chapter’s page, and adding comments about the
translation process. In some cases, a flow chart was also created
to help explaining the code structure.

During the translation process, many issues arose. They were
solved by consulting e-books, by posting questions on the online
forum, or even by using the tablet application. A total of 199 small
programs were translated into Processing (Table 1).

Evaluation phase

When all the pages are finished, the website will be evaluated by
potential users in terms of usability and contribution to the
teaching of computational design concepts.

Four examples of translated programs and their resulting graphics
are presented in Figure 1.

SIGraDi 2013

Table 1:. Programs translated from each book Chapter

Chapter Programs translated
5 9
6 5
7 10
8 24
9 31
10 17
11 29
12 8
13 20
14 36
15 10
Total number of programs 199

Discussion

During the completion of the translation some conceptual
differences between the Pascal and Processing programming
languages were found. Some of them did not cause relevant
differences in the codes, such as the orientation of the coordinate
axes being opposed. However, we realized that some exercises in
the book should be moved to later chapters because, although
they involve very basic concepts in Pascal, they require a bit more
knowledge in Processing. This can be exemplified by the function
that takes input values: in Pascal it requires just a simple
command line asking for the input value, but in Processing it
requires a function. A document explaining these differences will
be included in the website. Despite these observations, the
translation of Pascal codes into Processing was considered to be
very feasible, allowing the examples and exercises in the book to
maintain their original pedagogical aims.

The choice for the Processing language over other languages
surveyed (such as C, Java , Python , Design By Numbers, POV Ray
and Cinder) proved consistent as it is a programming language
that has focused on teaching since it was conceived. The
pedagogical aspect was one of the main issues considered of the
present work, as well as in the book. The authors not only sought
to teach programming techniques, but also intended to propose a
new, computational way of understanding architecture. Thus, one
of the challenges of this work was to preserve the originality of the
contents of the book, focusing on the fact that it was one of the
first to emphasize the importance of programming knowledge for
the contemporary architect.

Conclusion

Despite the use of an obsolete language, The art of computer
graphics programming remains a useful guide to learning
programming for anyone, not just architects. Its pedagogical way
of teaching each concept based on the previous is unique and
could inspire other computer science educators. Moreover, the
relationships established between computational concepts and
architectural design in the book remain an important and actual
issue, so we expect that the translated version of the codes will
make it possible to give this book again the credits and the
consideration it deserves.



PROGRAM SQUARE;

USES GRAPHICS;

VAR X1,X2,Y1,Y2,SIDE :
INTEGER;

BEGIN
{ Independent variables }
X1 :=400;
Y1 :=200;
SIDE := 300;

{ Dependent variables }
X2 := X1 + SIDE;
Y2 :=Y1 + SIDE;

{ Draw the square }
START_DRAWING;

MOVE (X1,Y1);
DRAW (X2,Y1);
DRAW (X2,Y2);
DRAW (X1,Y2);
DRAW (X1,Y1)

FINISH_DRAWING;
END;

void setup(){
size(800,600);
}

void draw(){

//independent variables
int x1 = 400;

inty1 = 200;

int side = 300;

//dependent variables
int x2 = x1 + side;
inty2 =y1 + side;

line(x1,y1,x2,y1)
line(x2,y1,x2,y2)
line(x2,y2,x1,y2)
line(x1,y2,x1,y1)
}

PROGRAM SQUARE (1)

PROGRAM SQUARE (2)

PROCEDURE STAIRS

B B8

B T T O

@ E O

PROGRAM GRID

PROGRAM SQUARE;
USES GRAPHICS;
{ Declare the coordinate
variables }
VAR X1,X2,Y1,Y2 : INTEGER;

BEGIN

{ Prompt for and read in
coordinates }
WRITELN (‘Enter integer for X1');
READLN (X1);
WRITELN (‘Enter integer for X2');
READLN (X2);
WRITELN (‘Enter integer for Y1');
READLN (Y1);
WRITELN (‘Enter integer for Y2');
READLN (Y2);

{ Draw the square }
START_DRAWING;

MOVE (X1,Y1);
DRAW (X2,Y1);
DRAW (X2,Y2);
DRAW (X1,Y2);
DRAW (X1,Y1);

void setup(){
size(800,600);
}

void draw(){

text("ENTER INTEGER FOR X1

AND PRESS ENTER",10,90);
text(saved,10,130);

int x1 = int(saved);
inty1 = 200;
int x2 = 700;
int y2 = 500;

if(x1 1= 0}
line(x1,y1,x2,y1);
line(x2,y1,x2,y2);
line(x2,y2,x1,y2);
line(x1,y2,x1,y1);

}

}

String typing ="";
String saved ="";

void keyPressed(){

if (key =="\n") {
FINISH_DRAWING; saved = typing;
typing ="
END; Yelse {
typing = typing + key;
}
}

PROCEDURE STAIRS
X_INCREMENT,Y_INCREMENT,

VAR COUNT,X,Y,
LANDING_DEPTH : INTEGER;

BEGIN

X :=X_INITIAL;
Y := Y_INITIAL;

FOR COUNT :=1TO
NUM_OF_STAIRS DO
BEGIN

BEGIN
RECTANGLE
(X,Y,LANDING_DEPTH,WIDTH)
X:= X+ DEPTH;
END
ELSE
RECTANGLE
(X,Y,DEPTH,WIDTH);

X := X+ X_INCREMENT;
Y :=Y + Y_INCREMENT;
END;
END;

(X_INITIAL,Y_INITAL,DEPTH,WIDTH,

NUM_OF_STAIRS N : INTEGER);

LANDING_DEPTH := 2 * DEPTH;

{ Determine when to insert landing }
IF COUNT MOD N =0 THEN

void setup(){
size(800,600);

void draw(){

int x_initial = 25;
int y_initial = 180;
int depth = 50;
int width1 = 5;

int x_increment = 10;
inty_increment = 10;
int num_of_stairs = 20;
intn=5;

int landing_depth = 2 * depth;
int x = x_initial;
inty =y_initial;

for(int count = 1; count <=
num_of_stairs; count++){
if(count % 2 == 0){

rect(x,y,landing_depth,width1);
X =x + depth;
Jelsef
rect(x,y,depth,width1);
}

X =X + x_increment;
y =y +y_increment;

PROGRAM GRID;
USES GRAPHICS;

PROCEDURE SQUARE (X,Y,SIDE :
INTEGER);
VAR X1,Y1,X2,Y2 : INTEGER;
BEGIN
{ Calculate values for X1,Y1,X2,Y2 }
X1:=X- (SIDEDIV 2);
Y1:=Y - (SIDE DIV 2);
X2 := X1 + SIDE;
Y2 :=Y1 + SIDE;
{ Move to bottom left corner }
MOVE (X1, Y1);

{ Draw the four sides of the square }
DRAW (X2, Y1);
DRAW (X2, Y2);
DRAW (X1, Y2);
DRAW (X1, Y1);
END;

PROCEDURE NESTED_SQUARES
(X,Y,DIAMETER, INCREMENT, NEST :
INTEGER);

VAR COUNT : INTEGER;

BEGIN

{ Loop to nest squares centered around X,Y

FOR COUNT :=1TO NEST DO
BEGIN
SQUARE (X,Y,DIAMETER);
DIAMETER := DIAMETER -
INCREMENT;
END;
END;

PROCEDURE ROW
(INITIAL_X,Y,DIAMETER,INCREMENT,NEST,
SPACING,NUM_COLUMNS : INTEGER);
VAR X, COUNT_COLUMNS : INTEGER;
BEGIN
X := INITIAL_X;
{Loop to place row of nested squares }
FOR COUNT_COLUMNS :=1TO
NUM_COLUMNS DO
BEGIN
NESTED_SQUARES
(X,Y,DIAMETER,INCREMENT,NEST);
X := X+ SPACING;
END;
END;

{ Main program }
VAR Y,COUNT_ROWS : INTEGER;
BEGIN
START_DRAWING;
Y :=500;
{ Loop to draw grid of nested squares }
FOR COUNT_ROWS :=1TO 3 DO
BEGIN
ROW (100,Y,60,20,3,200,4);
Y =Y -200;
END;
FINISH_DRAWING;
END.

void setup(){
size(800,600);
}

void draw(){
inty = 500;
for(int count_rows = 1;
count_rows <= 3;
count_rows++){
row(100,y,60,20,3,200,4);
y =y -200;
}

void row(int initial_x, int y,
int diameter1, int increment, int
nest,
int spacing, int num_columns){
int x = initial_x;
for(int count_columns = 1;
count_columns <=
num_columns;
count_columns++){

nested_squares(x,y,diameter1,
increment,nest);
X = X + spacing;
}
}

void square(int x, int y, int
side){

int x1 = x - side/2;

inty1 =y - side/2;

int x2 = x1 + side;

inty2 = y1 + side;

line(x1,y1,x2,y1);

line(x2,y1,x2,y2);

line(x2,y2,x1,y2);

line(x1,y2,x1,y1);
}

void nested_squares(int x, int
y, int diameter1, int increment,
int nest){

int count;

for(count = 1; count <= nest;
count++){
square(x,y,diameter1);
diameter1 = diameter1 -
increment;

}

Figure 1: Four examples of translated programs and the resulting graphics.

Education



Acknowledgments

The authors would like to acknowledge CNPq for supporting this
research, by providing a one-year scholarship to Viviane Alencar.

References

Celani, M. G., & Lazarini, K. (2007). Using CAD for generating architectural
form: Reviewing and translating pioneer programs. Proceedings of
the V Mathematics & Design International Conference.

Celani, M. G. (2008). Teaching CAD programming to architecture students.
Gestdo & Tecnologia de Projetos, Sdo Carlos. Retrieved from
http://www.iau.usp.br/posgrad/gestaodeprojetos/index.php/gestao
deprojetos/article/view/73

Celani, M. G., Duarte, J. P., & Vaz, C. V. (2011). The gardens revisited: The
link between technology, meaning and logic?. Proceedings of the
16th International Conference on Computer Aided Architectural
Design Research in Asia / The University of Newcastle, Australia, 643-
652. Retrieved from http://cumincad.scix.net/cgi-
bin/works/Show?caadria2011_061

Coates, P., & Thum, R. (1995). Generative modelling — student workbook.
London: University of East London.

Concrete5 (n.d) Retrieved from http://www.concrete5.org

Greenberg, I. (2007). Processing: creative coding and computational art.
Friendsof.

Harel, I.; Papert, S. (1991) Constructionism. Norwood: Ablex.

Mitchell, W. J., Ligget, R. S., & Kvan, T. (1987). The art of computer graphics
programming, a structured introduction for architects and designers.
New York, NY: Van Nostrand Reinhold Company.

Mitchell, W. J., Moore, C. W., & Turnbull, W. (1988). The poetics of
gardens. Cambridge, MA: The MIT Press.

Mitchell, W. J. (1990). The logic of architecture: design, computation, and
cognition. Cambridge, MA: The MIT Press.

Processing.org (n.d) Retrieved from http://www.processing.org

Project Website (n.d) Retrieved from
http://www.revistaparc.fec.unicamp.br/lapac/index.php/re/program
ming

Reas, C., & Fry. (2007). Processing: a programming handbook for visual
designers and artists. Cambridge, MA: The MIT Press.

Schimitt, G. (1988). Microcomputer Aided Design for Architects and
Designers. New York; John Wiley & Sons.

Shiffman, D. (2008). Learning Processing: a beginner’s guide to
programming images, animation, and interaction. Morgan Kaufmann.

SIGraDi 2013



