

Gulliver in the land of generative design

Charles C. Vincent

Abstract — The current trend in architectural design towards

architectural computing has been treated both from a

philosophical standing point and as an operational systems’

problem, in a quest for explications which could at last break

ground for a more broad development and adoption of digital

design tools. But the intuitiveness that architects have put on so

high a pedestal seems to be the central issue to be dealt with by

both views. The very foundations upon which we prepare future

professionals might change, not only in College, but also in High

School. In this paper, we delve further into the discussion about

the disconnect between current curricula and digital design

practices and suggest new disciplinary grounds for a new

architectural education.

Key Words — Digital Design, Humanist Computing,

Intuitiveness, Digital Education, Architectural Curricula.

I. INTRODUCTION

The current trend in architectural design towards

architectural computing has been treated both from a

philosophical standing point and as an operational systems’

problem, in a quest for explications which could at last break

ground for a more broad development and adoption of design

tools.

As Kostas Terzidis (2007) puts it, the intuitiveness that

architects have put on so high a pedestal seems to be the

central issue to be dealt with by both views. There seems to be

no apparent shortcut toward the reconciliation between

traditional practice and new media and most certainly it is not

only a problem of interface design, but one of design method

clarification and reinterpretation of those methods into

computing systems. Furthermore, there’s no doubt left as to

whether computing systems can generate such new patterns as

to impact our own understanding of architecture.

But even if computer algorithms can make possible the

exploration of abstract alternatives to an abstract initial idea,

as in Mathematica, Processing or vvvv, to name a few, the

issue of relating abstract and geometric representations of

human centered architecture lays in the hands of architects,

programmers or, better yet, architect-programmers. What

seems now to be the relevant change is that architectural

design might escape from the traditional sequence embedded

in the need – program – design iterations – solution timeline,

substituted by a web of interactions among differing

experimental paths, in which even the identification of needs

is to be informed by computing.

It is interesting to note that the computational approach to

architectural design has been praised for the formal fluidity of

bubbles and Bezier shapes it entails and for the overcoming of

functionalist and serialization typical of modern architecture.

That approach betrays a high degree of canonic fascination

with the tools of the trade and very little connection to the day

to day chores of building design. On the other hand, shall our

new tools and toys open up new ways of thinking and

designing our built landscape?

What educational issues surface if we are to foster wider

use of the existing technologies and simultaneously address

the need to overtake mass construction? Is mass customization

the answer for the dead end modern architecture has led us to?

Can we let go the humanist approach begun in Renascence

and culminated in Modernism or shall we review that

approach in view of algorithmic architecture?

Let us step back in time, to 1726 when Swift’s ‘Travels into

Several Remote Nations of the World by Lemuel Gulliver’

was first published. In Swift’s fierce critic of what seemed to

him the most outrageous ideas, he conceived a strange

machine devised to automatically write books and poetry, in

much the same generative fashion that now, three centuries

later, we begin to cherish.

“Every one knew how laborious the usual method is of

attaining to arts and sciences; whereas by his contrivance, the

most ignorant person at a reasonable charge, and with a little

bodily labour, may write books in philosophy, poetry,

politicks, law, mathematics and theology, without the least

assistance from genius or study. He then led me to the frame,

about the sides whereof all his pupils stood in ranks. It was

twenty foot square, placed in the middle of the room. The

superficies was composed of several bits of wood, about the

bigness of a dye, but some larger than others. They were all

linked together by slender wires. These bits of wood were

covered on every square with paper pasted on them; and, on

these papers were written all the words of their language in

 CCIA’2008 2

their several moods, tenses, and declensions, but without any

order. The professor then desired me to observe, for he was

going to set his engine at work. The pupils at his command

took each of them hold of an iron handle, whereof there were

forty fixed round the edges of the frame; and giving them a

sudden turn, the whole disposition of words was entirely

changed. He then commanded six and thirty of the lads to

read the several lines softly as they appeared upon the frame;

and where they found three or four words together that might

make part of a sentence, they dictated to the four remaining

boys who were scribes. This work was repeated three or four

times, and at every turn the engine was so contrived, that the

words shifted into new places, as the square bits of wood

moved upside down.” (Jonathan Swift, Gulliver’ Travels, A

Voyage to Balnibarbi)i

What astonishing forecast did Swift show in that narrative

that, in spite of the underlying incredulity and irony, still

clarifies our surprise when faced to what might seem to some

of us just an abandonment of all that architects and designers

have cherished: creativeness and inventiveness.

Yet, we could argue that such a radical shift in paradigm

occurred once when master builders left the construction

ground and took seat at drafting boards. The whole body of

design and construction knowledge was split into what now

seem to us just specialties undertaken by more and more

isolated professionals. That shift entailed new forms of

representation and prediction which now each and all

architects take for granted. Also, Cartesian space

representation turned out to be the main instrument for

professional practice, even if one can argue that it is not more

than an evolution of stone carving techniques that master

builders and guilds were so fond of.

Enter computing and all its unfolding, i.e. DNA coding,

fractal geometry, generative computing, nonlinear dynamics,

pattern generation and cellular automata, as a whole new

chapter in science, and compare that to conical perspective,

descriptive and analytical geometry and calculus, and an

image begins to form, delineating a separation between

architect and digital designer, much in the same fashion

architects separated from master builders.

II. MATERIALS AND METHODS

It’s difficult for architects and educators whose education

fostered geometry and formal drafting as key tools for

architectural practice to encompass more abstract ideation

tools.

Design processes have been taken quite often as black box

processes, in spite of some theorists’ arguing in favor of glass

box methods. The black box approach is quite similar to what

traditional architects and studio coaches attempt: the ideation

is preceded by carefully collecting data regarding architectural

needs, studying similar cases – both in search of known

typologies and constructive solutions – , and then letting

solutions surface, or emerge, in sort of a divinatory process.

There’s little, if any, tentative of making the ideation itself

controllable or predictable.

The emergence of a broad and ever growing assortment of

tools and associated practices, as shown in white papers,

communications, software briefs, case studies and so forth,

have been mediated by discourses in an attempt to unify views

and produce an acknowledgeable set of practices. Among

these emerge glass box methodologies, derived in great part

from operational research, as old fashioned it may be, and

these methodologies are understood as necessary since

architectural software such as BIMs and their close relatives

Generative Doe favor a deeper control of their inner

processes. How to relate the design process to the

computation process remain an open question, though.

Rivka Oxman (2005) has already touched this ground when

referring to the need of explication of digital design processes.

Her schematic approach for the explication of the connections

among architects and differing types of digital tools can be

unfolded onto more detailed diagrams describing the flux of

information during architectural ideation.

Besides, one of the interesting studies towards the

clarification of architects and designers’ thinking is that of

Paul Lasseau (1986) and the transposition of some of his

graphic thinking into software might prove invaluable to

reconcile traditional practice with parametric and generative

design. As Lasseau puts it, graphics are a powerful tool both

for analytic and synthetic thinking processes, which is what

renders sketching and drafting the tools of the trade for our

practice.

But until some years ago the chore of sketching in software

like Autocad and other geometric calculators has proved

inefficient and thus precluded most architects of beginning

design tasks directly in CAD.

Some attempts to supersede those limitations were devised

in a very crude fashion in software like Autocad

Architecture’s Space object and Vectorworks’ Space Planner.

The idea of representing more abstract requirements such as

spaces (and not their enclosing constructions) offered

architects some loose tools to start design directly in those

software. However, the formal limitations imposed by their

geometric engines and the impossibility of altering the logical

connections between preliminary space design and formal and

conceptual design, i.e. altering propagation rules, greatly

limited their adoption as real design tools.

This seems be the case with Generative Components,

Paracloud and Grasshopper. As out-of-the-box solutions,

those pieces of code try with varying degrees of complexity to

expose the parametric nature of architectural modeling. Even

BIM software such as Revit manage to keep an open door to

inner programming – both at a very shallow depth, in the case

of family creation, and a deeper one, accessible only to those

versed in VBA.

The first and more publicized benefits of these software

have been related to the flow of information from form

conception to construction planning, or fabrication.

This tack leads us back onto an often forgotten triad –

venustas, firmitas, utilitas -, of which apparently only the first

 CCIA’2008 3

two parts have gathered enough attention, the third one being

frequently left aside: utilitas. As broad as we may take their

meanings, these words might now suffice to encompass issues

in architecture that should be tackled in software.

Although it is relatively easy to devise performative

mechanisms in which a piece of code evaluates constructive

geometry against, for instance, solar incidence and calculate

heat gain and illumination levels and return feedback to the

geometry engine, altering parameters and rerunning the

process until a solution emerges, the same cannot be said of

cognitive issues. Those require more abstract representations

of the kind Laseau has explored extensively.

The very possibility of articulating rough graphic

representations of functional and very abstract issues to more

detailed digital modeling will force us to review the old

question of black box versus glass box methodologies, since

the parametric connections between design intent and design

representation – or better yet, design prototyping –, will

demand clearer and more explicit reflections about the

process. 2

This might sound canonical, certainly. However, this very

canonical approach reflects our intuition towards the need to

discuss and evolve our own tools and this might be taken as

an human evolutionary characteristic as well.

III. RESULTS AND DISCUSSION

The yet quite limited practice as carried on at our school has

been taken in the form of free exercises proposed to a few

interested students, outside the classroom. We’ve developed a

feeling that “the general impression resulting from those

experiments is that the correct approach involves teaching

digital tools in a design ambience, i.e. proposing designs

where the impact of digital tools is decisive in the formation

and development of concepts.” (2008: Nardelli, Vincent) As a

result of yet unconcluded studies we try to show some of

those connections, as experimented within Generative

Components, Rhino+Paracloud and Rhino+Grasshopper.

At the present moment, those few students delving into the

exploration of these tools face a twofold drama: on one side,

the dullness of software interfaces imposes an additional layer

of unnecessary complexity to otherwise simpler tasks. On the

other side, their lack of canonical reflections on design

methods render the task of representing ideation of processes

a most difficult one, even when considered that those few

students are some of the best in software learning. Like all

new concepts, the idea of representing a process is hard to

grasp at first hand. Our brief experimentation with the new

tools is summarized in the following paragraphs.

In Bentley’s GC, the hierarchic parametric diagrams are

displayed using the graphic engine of Microstation, and its

responsiveness to mouse input is limited to the arrangement of

icons for clarifying the structure. One cannot alter the

relations in a graphic way. On the other hand, mouse access to

geometric entities in the model area is granted.

Fig. 1 - Bentley's Generative Components - first runs.

CG is heavily dependent on transactions, which might

appear as a barrier to the more fluid architects’ graphic

processes. However, the parametric connections between

more abstract graphs – such as, for instance, splines

representing traffic flows, boxes representing air volume

requirements –, greatly facilitate the architects’ job of

associating functional concepts to form generation and, once

the connections are established, mouse input serves well as a

mean of altering base geometry, with instant propagation onto

more complex forms.

Fig. 2 - Paracloud : student first tests.

Paracloud, as far as we could see, provides quite efficient

methods for analysis and transformations – by means of

matrices – applied to formal geometry. But its interface is dull

 CCIA’2008 4

and not even close to ‘fluid’. We would say it still needs some

degree of developing, particularly as its graphics engine –

VRML Cortona –, is crude and behaves unpredictably in

response to mouse action.

The most recent addition to the generative branch is

Grasshopper, for McNeel’s Rhinoceros. Again, our experience

with it has been rather tentative, but we could advance some

first impressions of its behavior. Geometry is created, in a

similar fashion to GC, by declarations. The difference this

time is that, unlike GC, both the declarations and the logical

structure of dependencies are unified into a single area. The

closest interface to Grasshopper would be vvvv, a graphic

programming engine hardly useful to architects. As such, our

experience with it has been pretty straightforward, since the

whole logic structure is clearly displayed and fully

manageable.

IV. CONCLUSION

What in BIM software are catalogs of building components,

parametric or not, might find its counterpart in conceptual

objects for ready use. Programmable space connectors

depicting, for instance, the ideas of door, window – and not

the objects doors and windows –, flow splines, depicting the

flow of people inside a building, through promenades and

concourses, and so on.3 The average architect would resort to

a rather comprehensive conceptual vocabulary and its

connects. Preliminary design could then be just a matter of

connecting and establishing quantities for the objects. After

sketching with such objects, connections from roughs to forms

is to follow and then from form to constructs. As of our

experimentation, the representation of these concepts is made

with geometry, to which constraints are applied and from

which other constraints are linked to more evolved

constructive geometry. The real intent is not embedded into

the geometry, depending largely on the user choice.

It seems that software developers are yet to come close to

more intuitive interfaces, which could seduce the average

architect into the digital realm. Such phenomenon is to be

quite similar to what once happened to web design: in the first

years, web sites revealed more of their internal html logic;

after those beginnings, designed interface layers begun being

superimposed on top of the harsher structure, greatly

facilitating widespread use. Finally, we observe today an

increasing number of web design tools which further cover the

html and xml logic, broadening design possibilities and

domesticating programming languages.

What did Swift skip in his skeptic description of Academy

of Lagado’s random writing machine? A shape grammar? Or

perhaps some semantic system? Would we survive his keen

scrutiny?

ACKNOWLEDGMENT AND NOTES
1 P.S. Curiously enough, this is the same parallel William J.

Mitchell traced in the last paragraph of his The Logic of

Architecture – Design, Computation and Cognition, which I

rather unconsciously retrieved from some deeper cerebral

registry.
2 It is necessary to stress the difference between

constructive functionality and human use functionality. When

referring to function in architecture we intend it to be taken as

related to human use and appreciation of buildings.
3 It is arguable that these processes are still representational

ones, the main difference being that the represented subject is

now the ideation itself, not the buildings. This might pose

some problems, since much of academia is trained to deal with

the objects, and the critics made upon students’ production is

a critic of the object, with little emphasis on the understanding

of creative processes.

REFERENCES

[1] Terzids, K.: 2007, Digital Design: Ideological Gap or Paradigm Shift?,

in La Comunicación en la Comunidad Visual, Proceedings of the XI

SIGraDi Congress, Universidad La Salle, pp. 220–224.

[2] Oxman, R.: 2006, Theory and Design in the First Digital Age, in Design

Studies, Vol. 27, pp. 229–247, Elsevier.

[3] Nardelli, E.S., Vincent, C.C.: 2008, Diagnosis and Strategies for a

Digital Design Studio, in Architecture in ‘computro’ – Integrating

Methods and Techniques, proceeding of eCAADe 2008, Antwerp,

pp.177-182.

[4] Laseau, P.: 1975, Graphic Problem Solving for Architects and Builders,

Boston: Cahners Books International.

Charles C Vincent is an architect and

lectures at the School of Architecture and

Urban Planning (FAU), Universidade

Presbiteriana Mackenzie, São Paulo,

Brazil. He holds a doctoral degree from

Universidade de São Paulo, where he also

graduated. Presently he is Executive

Editor of Cadernos de Pós-Graduação in

Architecture and Urbanism, and

researcher with the Teoria e Projeto na

Era Digital group, at Universidade

Mackenzie.

