Controlled Unpredictability: Constraining Stochostic Search as o

Form-FiNnding Method for Architectural Design

T his paper presents a description of the
architectural problem and of the rule building
process, images and descriptions of three
different towers produced, and an evaluation of
the algorithmic process used for

generating the form.

The succesful evolution of the experiments
show how in a computation-oriented design
process the interpretation of the problem and
the rule setting process play a major role in
the production of architectural form, outlining
the shifting role of human designers from
form-makers to rule-builders in a computation-

oriented design endeavour.

1. Introduction

How can we devise a dialogue between
designers and computers that takes advantage
of the inherent capabilities of both? Recent
architectural thinking has been concerned

by this and other questions surrounding the
changes that current technology claims from

the architectural practice and from the form-
generation process in particular. Concerned with
the creative limits imposed by software tools
architects and designers have started to value a
deeper understanding of the computer beyond
the graphic user interfaces and the standardized
tools provided by CAD packages (Manovich 2001).
End user programming languages have allowed
designers to take advantage of the potential of
the computer’s processor to perform a very large
number of calculations manipulating complex
geometry through scripting; this new kind of
interaction with the computer is still new for
most practising designers, yet has proved to
provide an extended field for design exploration
(Loukissas 2003). The autonomy implicit in the
process of generating architectural form through
code suggests a shift in the role of the designer
from form-maker to rule-builder or breeder of
architectural forms (De Landa 2000). Following
this line of tought it can be inferred that
constraining a design space is a heavily charged
design act. Providing a concrete example of this
assertion is the main goal of the experiments
presented in this document.

In this paper | put forward a concrete example of
an active dialogue between computer and human
designer that provides different solutions

to a specific architectural problem. Taking the
program and site for a residential tower as a
theme, | document the rule-building process and
the implementation of these rules in a Stochastic
(Random) Search program written in MELScript.
This document clearly shows how adjustments
made in the set of rules after evaluating the

263

Controlled
Unpredictability:
Constraining
Stochastic Search
as a Form-Finding
Method for
Architectural Design

Daniel Cardoso

Department of Architecture,
Computation Group

Massachusetts Institute of Technology

Provided with a strict set of

rules a computer program can
perform the role of a designer.
Taking advantage of a computer’s
processing power, it can provide

an unlimited number of variations
in the form while following the
same set of constraints. This paper
delineates a model for interrelating
a rule-based system based on purely
architectural considerations with
non-deterministic computational
procedures in order to provide
controlled variations and constrained
unpredictability.

The experimental model consists of
a verisimilar architectural problem,
the design of a residential tower
with a strict program of 200 units
of different types in a given site.
Following the interpretation of the
program, a set of rules is defined by
considering architectural concerns
such as lighting, dimensions,
circulations, etc. These rules are
then encoded in a program that
generates form in an unsupervised
manner by means of a stochastic
search algorithm. Once the program
generates a design it is evaluated,
and the parameters on the
constraints are adjusted in order to
produce a new design.

=264

LJ
XSIDreDiéDDb/an@sfigacién en Teoro, Procesos 4y Métodos de Diseno

output of the program change in a substantial
way the new designs produced by the program.

In the following section of this paper | will
describe the architectural program for the
tower, and how it led to the definition of a

set of architectural rules or constraints; in the
third section | will explain how these rules are
encoded in a MELScript program that produces
correct towers in a non-deterministic manner
using Stochastic Search, and | will show images
and descriptions of three different towers
produced by the program, explaining how
changing the parameters of the program affected
the search space and thus the resulting form.

The final section examines the generality of the
results, and suggests some discussion points on
the implications of the experiment regarding
authorship in design.

Relevant precedents of non-deterministic
form-generation strategies

The use of non-deterministic methods as creative
force is present in XXth century art in the works
by lanni Xenakis like Phitopracta, Diamorphoses,
and N’Shima; interestingly Xenakis often

relied on computers for the interpretation of
this pieces. The setting of rules for musical
interpretation in some works by composer
Pierre Boulez is also a precedent of constrained
unpredictability; in his Third Piano Sonata (1955)
the interpreter could choose form a prefixed
range of alternatives provided by the composer
thus altering the structure of the piece; Boulez
called this, conveniently, Controlled Chance.
Cage’s music of changes by John Cage is one
early example of a musical piece composed
entirely through random procedures. The

active role of the interpreter on an open,
cross-referenced text was developed from the
semiotic perspective by Umberto Eco in his Open
Work (Eco 1962). In the domain of architecture
the underground station lidabashi in Tokyo by
Sei Watanabe relied on computer generated
proposals and human-computer evaluation for
developing the design (Watanabe 2002).

2. Methodology

2.1 Interpreting the program

In this section | describe the architectural
program and the considerations taken into
account by the human designer in order to
develop the set of rules.

The program requires the building to place 200
residential units in a flat urban site with

dimensions 110’ x 110’ on a corner of two
streets. The design should leave at least 20% of
the area to circulations. The units to be placed
are divided into three groups: fifty efficiency
units, 400 sqft each, one hundred one-bedroom
units, 900 sqft each, and fifty two-bedroom
units, 1600 sqft each. It is a desirable condition
for the units to face the street.

The corner condition of the site and the
proximity of the neighbours makes the
north-east corner of the site inconvenient

for residential units because of poor lighting
condition and views. Looking for an arrangement
that provides a maximum of street facade to the
apartments, the core is located in the north-east
corner of the site (Figure 1B).

The three different types of units are set to have
a common width in order to allow for a regular
distribution along a modular three-dimensional
grid; the modularity of the grid has a logical

1108 4028

2490 st

12100 sqt

110590

2490 sq
11on

12100 sq#

110sqf

1100

= [12100 s

110597

Confrolled Unpredictability: Constraining Stochaoastic Search as o

Form-FiNnding Method for Architectural Design

and a constructive reason that relates to the
continuity of the structural frame. The depth is
variable depending on the required area of each
unit. Unit C is split into two floors in order to
meet the area requirement; the small width of
the units will guarantee that a larger number of
apartments have facade on the street.

The width of the unit is related to the total size
of the site, and it defines a grid that will serve as
the skeleton for the whole structure (Figure 1C).
The regularity of the grid is altered to allow all
of the units to have optimal lighting conditions,
providing more circulation area in front of the
units located in the south-west corner of the
building. This increase in the circulation area
generates a new constraint, because the slots

in the south-east quadrant of the tower are too
small to allocate type B Units. The circles on the
grid indicate the insertion spots for the units. For
providing common spaces, a number of empty
spaces will be allowed in each tower, however this
number should never be bigger than 20.

The overall orientation of the tower is
guaranteeing that most apartments have optimal
lighting conditions from the south.

2.2 Implementation in a script

In this section | show how the considerations
made in the previous one define a set of rules
that is encoded in a compuer script.

An individual (a tower) is an arrangement

of randomly placed units along the three-
dimensional grid of insertion points defined in
the previous section. The maximum number

of floors of the tower is a parameter that can

be adjusted. As a result of the human-driven
problem evaluation and constraint setting
process, each individual or tower must fullfill the
following rules:

» The units are to be placed on the three-
dimensional grid of insertion points. No
more than one unit can be allocated in a
insertion point

» A Type B unit cannot be placed in any of
the south-west corner insertion points

» A Type C Unit has two stories, thus it
occupies two insertion points

» A succesful tower must allocate all of the
200 units

» There cannot be more than ten unused
insertion points in one individual

265

At each iteration of the program, an insertion
point is selected randomly, and once it has
checked if the point is not already occupied by a
previously placed unit, a unit of type random is
inserted. If it’s being used, go to another random
point and follow the same procedure. The data
structure of a tower is as follows:

((1,1,3,3,0,3,2,2,2,3,4) , (2,3,3,2,1,1,1,0,3,1,1)
, ... and so on for evey floor until the required
number of units is reached)

Where 0 stands for an unused insertion point, 1
stands for an insertion point with an efficiency,
2 stands for an insertion point with a 900 sqft
unit; 3 stands for an insertion point with a 1600
sqft unit. Conceptually, this data structure can
be described as an array of floor elements. Each
one of these elements holds the information
about the type of it’s respective units; notice
that the number of elements in a floor equals
the number of insertion slots in the floorplate
(Figure 1C). There are two different cases for
the termination of the program: the first one
occurs when the conditions are met and a
‘correct’ individual is created. The second one
occurs when the maximum number of iterations
is reached without having a solution: the script
asks the user to increase the search field.

2.3 Experiments
2.3.1 First Tower
Search field (stories) = 80
Minimum Empty Spaces allowed = 20
Units Placed:
Type 1 : 50
Type 2: 100
Type 3: 50
Type 0: 20
Floors: 78
Iterations required to complete this tower: 820
Success: Yes

The search field defines the maximum number
of floors. The tower is interesting as a form, but
totally unfeasible as a building because of the
discontinuity of the volumes. (Figure 2)

2.3.2 Second Tower
Search field = 40
Minimum Empty Spaces allowed = 20
Units Placed:
Type 1: 50
Type 2: 100
Type 3: 50
Type 0: 20
Floors: 39
Number of iterations required by the algorithm
to find this solution: 2311.

266

LJ
XSIDreDiéDD(‘:/an@sfigacién en Teoria, Procesos Uy Métodos de Diseno

First Tower Second Tower

For this tower the search field is reduced to 40 in
order to produce a denser tower.

The second tower is twice as dense as the

first one, and equally succesful in terms of full
placement of units. (Figure 2)

2.3.3 Third Tower

Search field = 29

Minimum Empty Spaces allowed = 0
Units Placed:

Type 1: 50

Type 2: 88

Type 3: 50

Type 0: 20

Floors: 29

For this tower, the search field will be reduced
to 29 in order to generate more density.

The Stochastic Search doesn’t output a correct
tower. This tower has still 12 Type B Units left
top place. The number of iterations required to
get to this solution: 250 000. The brute force of
the Stochastic Search Algorithm is not sufficient
to find a correct solution within this search space
(Figure 2).

3. Discussion

The methodology presented in this paper
provides a scheme of interaction between the
designer and the tool in the process of defining a
search space through constraint setting and the
synergy between the algorithm and a simplified
but verosimile architectural problem through
human rule-building and evaluation. This is a
particular methodology for design exploration
based on the definition of a set of rules and the
implementation of a computer program that
provides solutions of a given design problem. It
shows how a clear division between the rule-
building process and the actual production

of form fosters an active dialogue between

the computer and the human designer. The
Stochastic Search Algorithm plays the role of the
form-maker, whereas the human designer plays

Vv ..
-v\\\

.

Seem T N,

¢
2,
g
%
f
;
v
[
y

~ 3

Third Tower

the role of the rule-builder and evaluator.

The implemented Stochastic Process is a search
algorithm that iterates over a given spatial
structure assigning alleatory architectural
elements to specific spots until a set of
conditions defined by the rules is met. The
alleatory nature of the algorithm is intended
to make evident the distinction between the
rule-building and a non-deterministic form-
making process, therefore showing to what
extent in computer-oriented design problem
interpretation, rule-building and evaluation are
the most important design acts.

The tension between random methods and
design constraints is a viable alternative to
computational design. This paper does not try
to assess that the proposed methodology is the
only way to stablish this dialogue, but it does
highlight the fact that computational design is
constraint based in nature.

It is often said that digital technologies will make
the human designer disappear; in this

%

Controlled Unpredictability: Constraining Stochostic Search as o
Form-FiNnding Method for Architectural Design 267

paper | show how computational design systems
are an open field for new design methodologies
and strategies that rather than making human
designers disappear, will change their role
enabling them to create new kinds of dialogues
with the technology, and therefore new
scenarios for design exploration.

References

DelLanda, Manuel.(2001). Philosophies of Design:
the Case of Modelling Software. Verb:
Architecture Bookazine.

Madrid: Actar Press, 2001.

Eco, Umberto, The Open Work [Opera
aperta](1962). Cambridge: Harvard UP, 1989.

Loukissas Yanni, Rulebuilding: explorign design
worlds through end user programming

Thesis (S.M.)--Massachusetts Institute of
Technology, Dept. of Architecture, 2003.

Makoto Sei Watanabe, Induction Cities (2002).
Birkhauser Verlag AG.

Manovich Lev, The Language of the New
Media(2001). The MIT Press.

