
International Journal of IT in Architecture, Engineering and Construction
Volume 1 / Issue 4 / December 2003. ©Millpress 307

1 Introduction

As the use of information technology increases in the

construction industry, the need for software applications

to interoperate has become increasingly important.

With the variety of construction applications that can

be employed in a construction project, large volumes

of project information are created from different

sources. Different members of a project team may use

different application software for disparate purposes;

examples may include Primavera Project Planner™

(P3) or Microsoft Project™ for scheduling, Vite

SimVision™ for project organization, Timberline s̓

Precision Estimating™ for estimating cost, and 4D

Viewer (McKinney and Fischer 1998) for the view of

construction progress. It is not unusual that project data

are re-entered from one application to another.

To achieve interoperability, computer applications

need to agree on a standard ontology. An ontology

is an explicit specifi cation of a topic that includes a

set of terms and the relationships among these terms

(Guarino 1997). Ontologies can be represented in

many ways. Examples include graphical notations

Many project scheduling and management software systems are being

employed in the construction industry. Standards-based translation is one

way to achieve interoperability. This study discusses the applicability of the

Process Specifi cation Language (PSL) for exchanging project scheduling

information among different applications. PSL was initiated by the

National Institute of Standards and Technology (NIST) and is emerging as

a standard exchange language for process information in the manufacturing

industry. This paper explores how PSL can be used for exchanging project

scheduling information among software programs in project management.

Furthermore, we investigate how PSL could be utilized to reason about

potential confl icts and to perform consistency checking on project

scheduling information.

Process Specifi cation Language (PSL), information exchange, consistency

checking, project management

Process Specifi cation Language
for project scheduling information

exchange
Jinxing Cheng1, Michael Gruninger2,

Ram D. Sriram3 and Kincho H. Law4

ABSTRACT |

1. PhD Student, Civil and Environmental Engineering Department, Stanford University, Stanford, CA 94305–4020, email: cjx@stanford.edu

2. Project Leader, Ontology Development, ISO Standardization, National Institute of Standards and Technology, Gaithersburg, MD

20899–0001, USA, email: michael.gruninger@nist.gov

3. Group Leader, Design Process Group, Manufacturing Systems Integration Division, National Institute of Standards and Technology,

Gaithersburg, MD 20899–0001, USA, email: sriram@cme.nist.gov

4. Professor, Civil and Environmental Engineering Department, Stanford University, Stanford, CA 94305–4020, email: law@cive.stanford.edu

KEYWORDS |

International Journal of IT in Architecture, Engineering and Construction
Volume 1 / Issue 4 / December 2003. ©Millpress308

| Jinxing Cheng, Michael Gruninger, Ram D. Sriram and Kincho H. Law

(e.g. UML) and logic-based representations (e.g. KIF).

Currently, many product models and data standards,

such as STEP (ISO 1994), IFC (IAI 1997), and

aecXML (IAI 2002), exist to provide interoperability

among different applications in the AEC domain.

Examples include: (1) a product model for roofi ng

systems developed using STEP (Vanier 1998); (2)

the CIMsteel project, in which product modeling

and data exchange for the construction steelwork

industry was accomplished with STEP (Garas and

Hunter 1998); (3) the use of Unifi ed Modeling

Language (UML) to represent product and process

information in steelwork construction projects

(Anumba et al. 2000); and (4) an IFC-based model to

exchange information about maintenance management

(Hassanain et al. 2000). Most of these existing

standards focus, however, more on product data than

on process information.

Standards for business process and workfl ow

information have also been proposed to achieve

interoperability in workfl ow management. For

example, the Business Process Modeling Language

(BPML) was proposed as a meta-language to model

business processes (Arkin 2002). The Workfl ow

Management Coalition (WFMC) has developed

standards to enable the interoperability among multiple

workfl ow software products (Fischer 2002). However,

these languages cannot be directly applied for the

exchange of process information in manufacturing or

construction applications. The Process Specifi cation

Language (PSL) was designed specifi cally for

exchanging process information among manufacturing

applications (ISO 2003) and is currently undergoing

a standardization process at the international level. In

this paper, we evaluate the effectiveness of using PSL

for the exchange of process information in construction

management applications.

In addition to interoperability, maintaining the

consistency of project information also poses a

challenge since project information can come from

various sources. In a complex project, a tremendous

amount of information is being exchanged among

the different project participants and software

applications. Controlling the information fl ow and

ensuring the validity of information exchanged

between computer applications are among the

challenges in project management. For example, in

a distributed engineering environment, one project

team may choose to use Primavera Project Planner™ ,

while Microsoft Project™ is preferred by another for

project scheduling. With multiple project participants

utilizing different software applications, confl icts may

arise due to partial changes, miscommunications, etc.

Presently, there is no systematic approach to check

the consistency of the scheduling information from

different applications.

Few solutions have been considered for solving the

data inconsistency problem. For example, a central

database can be used as the common repository for

different applications to maintain data persistency

and consistency, such as the approach adopted for the

Collaborative Dynamic Project Management (CDPM)

system (Penã-Mora and Dwivedi 2002). However, this

centralized database approach only partially solves the

consistency problem in that while it eliminates version

confl icts, it does not address any logic confl icts.

Heuristic approaches have also been proposed, such

as the 4D WorkPlanner Time-Space Confl ict Analyzer

(4D TSConAn), for categorizing and detecting spatial

confl icts (Akinci et al. 2002). It is diffi cult, however,

to generalize such heuristic approaches to handle the

confl icts that are outside the defi ned domain problem.

The Process Specifi cation Language (PSL) provides

a logic-based representation, which is not only useful

for the exchange of process information between

application software, but also potentially useful

for discovering and resolving confl icts. This study

evaluates the applicability of PSL as an interchange

language for construction project management

applications, and explores the mechanism of using

PSL to maintain the consistency of the project

knowledge base.

International Journal of IT in Architecture, Engineering and Construction
Volume 1 / Issue 4 / December 2003. ©Millpress 309

Process Specifi cation Language for project scheduling information exchange |

This paper is organized as follows: Section 2 briefl y

introduces PSL and discusses the motivation and the

major components of PSL. Mapping the concepts

between PSL and project management applications

is discussed in Section 3. Section 4 describes the

parser and the wrappers developed for the exchange

of project scheduling information using PSL. Section

5 discusses the potential use of PSL for consistency

checking using a logic-based reasoning tool. Examples

on information exchange and consistency checking are

given in Section 6 to demonstrate the current prototype

environment. Finally, Section 7 summarizes the results

described in this paper.

2 Introduction to PSL

Representing activities and the constraints on their

occurrences is an integral aspect of commonsense

reasoning, particularly in project management,

enterprise modeling, and manufacturing. In addition to

the traditional concerns of knowledge representation

and reasoning, the need to integrate software

applications in these areas has become increasingly

important. However, interoperability is hindered

because the applications use different terminology

and representations of the domain. These problems

arise most acutely for systems that must manage

the heterogeneity inherent in various domains and

integrate models of different domains into coherent

frameworks. For example, such integration occurs

in business process reengineering, where enterprise

models integrate processes, organizations, goals,

and customers. Even when applications use the

same terminology, they often associate different

semantics with the terms. This clash over the meaning

of the terms prevents the seamless exchange of

information among the applications. Typically,

point-to-point translation programs are written to

enable communication from one specifi c application

to another. However, as the number of applications

has increased and the information has become more

complex, it has been more diffi cult for software

developers to provide translators between every pair

of applications that must cooperate. What is needed is

some way of explicitly specifying the terminology of

the applications in an unambiguous fashion.

The Process Specifi cation Language (PSL) has been

designed to facilitate correct and complete exchange

of process information among manufacturing systems

(Schlenoff et al. 1999b, Menzel and Gruninger 2001)5.

Included in these applications are scheduling, process

modeling, process planning, production planning,

simulation, project management, workfl ow, and

business process reengineering. This section gives a

brief overview of PSL; detailed description of PSL can

be found in the PSL specifi cation (ISO 2003).

The PSL Ontology is a set of fi rst-order theories

organized into PSL-Core and a partially ordered set of

extensions. All extensions within PSL are consistent

extensions of PSL-Core, although not all extensions

within PSL need be mutually consistent. Also, the

core theories need not be conservative extensions

of other core theories. A particular set of theories is

grouped together to form the Outer Core; this is only

a pragmatic distinction, since in practice, they are

needed for axiomatizing all other concepts in the PSL

ontology. The relationships among the core theories

are depicted in Figure 1.

The purpose of PSL-Core is to axiomatize a set of

intuitive semantic primitives that is adequate for

describing the fundamental concepts of manufacturing

processes. Consequently, this characterization of basic

processes makes few assumptions about their nature

beyond what is needed for describing those processes,

and the Core is therefore rather weak in terms of

logical expressiveness. Specifi cally, the Core ontology

consists of four disjoint classes: activities, activity

5. PSL has been accepted as project ISO 18629 within the

International Organisation of Standardisation, and as of October

2002, part of the work is under review as a Draft International

Standard. The complete set of axioms for the PSL Ontology can be

found at {http://www.mel.nist.gov/psl/psl-ontology/}.

International Journal of IT in Architecture, Engineering and Construction
Volume 1 / Issue 4 / December 2003. ©Millpress310

| Jinxing Cheng, Michael Gruninger, Ram D. Sriram and Kincho H. Law

occurrences, timepoints, and objects. Activities may

have zero or more occurrences, activity occurrences

begin and end at timepoints, and timepoints constitute

a linearly ordered set with endpoints at infi nity. Objects

are simply those elements that are not activities,

occurrences, or timepoints.

PSL-Core is not strong enough to provide defi nitions

of the many auxiliary notions that become necessary to

describe all intuitions about manufacturing processes.

To supplement the concepts of PSL-Core, the ontology

includes a set of extended theories that introduce

new terminology. These Outer Core theories provide

the logical expressiveness to axiomatize intuitions

involving concepts that are not explicitly specifi ed

in PSL-Core. The basic Outer Core theories include

Occurrence Trees, Discrete States, Subactivities,

Atomic Activities, Complex Activities, and Activity

Occurrences. An Occurrence Tree is the set of all

discrete sequence of activity occurrences. Discrete

States denote states and their relationships to activities.

Subactivities are defi ned to represent an ordering for

aggregations of activities. Atomic Activities are

defi ned to capture concurrent aggregation of primitive

activities. Complex Activities characterize complex

activities and the relationship between occurrences of

an activity and occurrences of its subactivities. Activity

Occurrences ensure that complex activity occurrences

correspond to branches of activity trees. The remaining

core theories in the PSL Ontology include: Subactivity

Occurrence Ordering (axiomatizing different partial

orderings over subactivity occurrence), Iterated

Occurrence Ordering (axioms necessary for defi ning

iterated activities), Duration (augmenting PSL-

Core with a metric over the timeline), and Resource

Requirements (which specifi es the conditions that

must be satisfi ed by any object that is a resource for

an activity).

There is a further distinction between core theories

and defi nitional extensions. Core theories introduce

primitive concepts, while all terminology introduced

in a defi nitional extension have conservative

defi nitions using the terminology of the core theories.

The defi nitional extensions are grouped into parts

according to the core theories that are required for their

Figure 1. Core Theories of the PSL Ontology

Activity

Occurrences

Complex Activities

Atomic Activities

Subactivity Occurrence Trees

PSL-Core

Discrete State

International Journal of IT in Architecture, Engineering and Construction
Volume 1 / Issue 4 / December 2003. ©Millpress 311

Process Specifi cation Language for project scheduling information exchange |

defi nitions. Table 1 gives an overview of these groups

together with example concepts that are defi ned in

the extensions. The defi nitional extensions in a group

contain defi nitions that are conservative with respect to

the specifi ed core theories; for example, all concepts in

the Temporal and State Extensions have conservative

defi nitions with respect to both the Complex Activities

and Discrete States theories.

3 PSL for Project Management
Applications

PSL was designed to exchange process information

among manufacturing applications. In a pilot

implementation at NIST, PSL was successfully used to

exchange manufacturing process information between

the IDEF3-based ProCAP and the C++ based ILOG

Scheduler (Schlenoff et al. 1999a). Although PSL was

initially created mainly for the manufacturing industry,

the core theories can be extended to construction

project management and scheduling applications.

In our research, we fi rst selected a typical project

management tool, Primavera Project Planner™ (P3),

as the benchmarking application to help defi ne the

core concepts for construction project management.

Primavera P3 is a software tool for organizing,

planning, and managing activities, projects, and

resources. The following discussion focuses on the

semantic mapping between Primavera P3 and PSL.

To achieve interoperability using PSL, semantic

mapping is needed for various reasons. The same

term may have different meanings in different

applications and universes of discourse. For example,

the term successor in PSL means that there are no

other activities occurring between the two activities;

however, in P3 the term does not have such an

implication and only indicates that one activity cannot

start before the other. On the other hand, the same

concept in different applications may be represented

differently using different terms. For instance, the

terms Successor and Predecessor in P3 are used

to describe the dependency relationships; in PSL,

however, other terms, such as after-start and after-

start-delay, are used to describe the same concepts.

Table 1. Definitional extensions of PSL

Defi nitional Extensions Core Theories Example Concepts

• Activity Extensions • Complex Activities • Deterministic/
nondeterministic activities

• Concurrent activities

• Partially ordered activities

• Temporal and State Extensions • Complex Activities • Preconditions

• Discrete States • Effects

• Conditional activities

• Triggered activities

• Activity Ordering and Duration
Extensions

• Subactivity Occurrence Ordering • Complex sequences and
branching

• Iterated Occurrence Ordering • Iterated activities

• Duration • Duration-based constraints

• Resource Role Extensions • Resource Requirements • Reusable, consumable,
renewable, and
deteriorating resources

International Journal of IT in Architecture, Engineering and Construction
Volume 1 / Issue 4 / December 2003. ©Millpress312

| Jinxing Cheng, Michael Gruninger, Ram D. Sriram and Kincho H. Law

To exchange project scheduling information, we fi rst

need to map the concepts in different applications onto

formal PSL ontology.

A typical construction project consists of a set of

activities and the dependency relationships among

the activities. Construction activities can generally

be categorized into one of three types: production,

procurement, and administrative activities. Each

activity has attributes associated with it, such as start

date, duration, etc. Dependency relationships describe

the constraints defi ning the order in which the activities

must occur to complete the project (Gould 2002).

There are four typical dependency relationships:

Finish to Start, Finish to Finish, Start to Start, Start to

Finish. Figure 2 depicts the dependency relationships

and their respective defi nitions. For example, the

“Finish to Start” relationship between activity A and

activity B means that B starts only after A completes,

and the “Finish to Finish” relationship indicates that A

needs to complete before B does.

Each activity in a project schedule can be mapped onto

an activity occurrence in PSL, while the timepoint

is used to specify the beginning and the end points

of an activity occurrence. PSL extensions provide

terms to describe the dependency relationships among

activities. For example, the term before-start in

PSL corresponds to the “Start to Start” relationship,

while the lag in the “Start to Start” relationship

corresponds to the PSL term before-start-delay. The

PSL expression (before-start occ1 occ2 a3) specifi es

that both occ1 and occ2 are subactivity occurrences

of the activity a3, while the beginning timepoint of

occ1 is earlier than the beginning timepoint of occ2. In

addition, the expression (before-start-delay occ1 occ2

a3 d) implies that occ2 begins at least d timepoints

after occ1 begins. Table 2 lists the terms that are used

in Primavera P3 and PSL to describe activities and

dependency relationships.

In addition to activity and relationship information,

resource allocation also plays an important role

in project scheduling. A project schedule is not

completely specifi ed unless the necessary resources

are allocated. Resources include people, material, and

equipment required to fi nish the work. Resources can

be mapped onto the lexicon resource in PSL, which

identifi es the object required by an activity.

Semantic mapping between PSL and project

management applications is not always straightforward.

For example, the total fl oat concept in Primavera

P3 cannot be directly mapped to a corresponding

PSL term. In Primavera P3, total fl oat indicates the

maximum amount of time a task can be delayed

without postponing the whole project. To express the

total fl oat concept, we need a set of PSL expressions.

For example, assuming that in Primavera P3 there is a

project (proj1) with the scheduled completion date on

Figure 2. Dependency Relationships Among Activities

A B

(a) Finish to Start

A B

(b) Finish to Finish

A B

(c) Start to Start

A B

(d) Start to Finish

International Journal of IT in Architecture, Engineering and Construction
Volume 1 / Issue 4 / December 2003. ©Millpress 313

Process Specifi cation Language for project scheduling information exchange |

March 10, 2003, the activity A is scheduled to fi nish on

October 7, 2002 with a total fl oat of 3 days. To express

the total fl oat concept in the above example, we need

to use the following PSL expressions.

(=> (beforeEQ (endof A) 10/10/2002) (beforeEQ
(endof proj1) 03/10/2003))
(=> (before 10/10/2002 (endof A)) (before 03/10/
2003 (endof proj1)))

Here October 10, 2002 is the completion date of the

activity A if it is delayed by exactly 3 days. The fi rst

PSL expression implies that if A is delayed by no more

than 3 days, the project will be completed on time with

the end date of the project remains to be March 10,

2003. The second PSL expression indicates that if the

end date of activity A is beyond October 10, 2002, the

project completion date will then be postponed beyond

March 10, 2003.

Generally speaking, PSL has more expressive power

than many project management tools, including

uncertainty, conditioning, probability, universal and

existential relations, etc. As an example, the following

PSL expressions can be used to indicate that a

construction activity may require different resources

depending on the result of other activities.

(activity-occurrence pourConcrete)
(doc pourConcrete “Pouring Concrete”)
(=> (beforeEQ (endof formColumns) 11/20/2002)
(demand constructionWorker pourConcrete 3))
(=> (before 11/20/2002 (endof formColumns))
(demand constructionWorker pourConcrete 6))
(after-start pourConcrete formColumns proj1)

Here, the activity pourConcrete requires different

resources depending on its predecessor formColumns.

If the activity formColumns is not completed before

November 20, 2002, then the activity pourConcrete

would require more construction workers. This

conditioning expression, however, cannot be

represented or encoded using project management

tools that primarily handle deterministic scheduling.

Letʼs look at a mapping example between Primavera

P3 and PSL. Figure 3 shows the major activities

involved in the schedule of a typical residential

building project. The project schedule is shown as a

PERT (Primaveraʼs Easy Relationship Tracing) chart

from Primavera Project Planner™ . In the project, the

activity “Frame House” needs to fi nish before either

the activity “Frame Roof” or “Install HVAC” can

start. After the completion of these two activities, the

activity “Install Drywall” can proceed. Figure 4 shows

the ASCII outputs of the scheduling and resource

information of the project plan from Primavera P3.

For example, as shown in Figure 4, the activity “Frame

House” starts on August 5, 2002 and lasts 15 days,

while the activity “Install Drywall” needs the resource

“drywall” to proceed.

The scheduling information in Primavera P3 can be

described precisely using PSL. Figure 5 shows portion

of the PSL expressions for the example project. Here,

ResProject is the project identifi er of the example

residential building project. The PSL expressions

(after-start ID100 ID110 ResProject) and (after-start-

Table 2. Mapping of Activities and Dependency Relationships

Concepts in Primavera P3 PSL terms

Activity Activity occurrence

Predecessor, Successor Activity occurrence, before-start, before-fi nish, after-start, after-fi nish

Start to Start before-start

Start to Finish before-fi nish

Finish to Start after-start

Finish to Finish after-fi nish

Dependency Lag before-start-delay, before-fi nish-delay, after-start-delay, after-fi nish-delay

International Journal of IT in Architecture, Engineering and Construction
Volume 1 / Issue 4 / December 2003. ©Millpress314

| Jinxing Cheng, Michael Gruninger, Ram D. Sriram and Kincho H. Law

delay ID100 ID110 ResProject 0) specify that the

activity ID110 (“Frame Roof”) needs to start after the

completion of the activity ID100 (“Frame House”) with

no lag between the two activities. The PSL expression

(available drywall ID130) indicates that the resource

drywall is available for the activity ID130 (“Install

DryWall”), while the PSL expression (demand drywall

ID130 2220) specifi es that the activity ID130 requires

2200 sqft of drywall.

4 Information Exchange Using PSL

To exchange project scheduling information among

different project management applications, we need to

develop wrappers for each application. Figure 6 shows

the wrappers currently prototyped for information

exchange between a variety of application software,

including Primavera Project Planner™ (P3), Vite

SimVision™ , Microsoft Project™ , and 4D Viewer,

using PSL. The PSL wrappers are used to retrieve and

transfer information between the applications.

There are three basic steps involved in exchanging

project information using PSL. The fi rst step is to

retrieve the project information from an application

and to update the project model. Semantic mapping is

then performed to translate between the formal PSL

ontology and the concepts in the project management

tools. Finally, the project data are syntactically

translated between PSL fi les and the applications.

The information exchange process is depicted in

Figure 7. To map the information from applications

to PSL, different wrappers have been implemented for

various project management applications. In addition,

these wrappers are also used to map the information

from PSL to the applications.

• After mapping the concepts in Vite SimVision™

onto PSL, we use Java Database Connectivity

(JDBC) to parse the relevant information stored in

the Access database created by Vite SimVision™ ,

translate the information into PSL, and create a PSL

fi le. For the PSL to Vite SimVision™ translation, the

information in the PSL fi le is parsed and rewritten

into VNB (Access database) fi le format.

• For Primavera P3, the Primavera Automation

Engine (RA) is employed. The RA is a set of object-

oriented, OLE 2.0-based API, which allows object-

oriented programming access to the P3 scheduling

engine and other applications. We use RA to

communicate with P3, such as retrieving project

scheduling information from P3 and transferring

project scheduling information to P3.

• For Microsoft Project™ , VBA (Visual Basic for

Application) is employed. The process here is

very similar to the communication protocols for

Primavera P3.

• For 4D Viewer (McKinney and Fischer 1998), the

scheduling information from the PSL fi le is retrieved

and converted into ASCII format required by the

4D Viewer.

Figure 3. Example Dependency of a Scheduling Chart in Primavera P3

International Journal of IT in Architecture, Engineering and Construction
Volume 1 / Issue 4 / December 2003. ©Millpress 315

Process Specifi cation Language for project scheduling information exchange |

Figure 4. Schedule and Resource Information from Primavera P3

Figure 5. PSL Expressions For the Example Chart in Primavera P3

Figure 6. PSL in the Information Exchange

 ACT TITLE ES EF TF RD
---------- --------------- -------- -------- ----- ----
ID100 Frame House 5AUG02 23AUG02 0 15
ID130 Install Drywall 5SEP02 2OCT02 0 20

……
 ACT RES RUT QTC QAC
---------- -------- ---- ------------- ------------
 ID130 DRYWALL sqft 2200.00 2200.00

……

 (and
 (activity-occurrence ID100)
 (doc ID100 "Frame House")
 (beginof ID100 08/05/2002)
 (duration-of ID100 15)
 (after-start ID100 ID110 ResProject)
 (after-start-delay ID100 ID110 ResProject 0)

)
(and
 (resource drywall)
 (available drywall ID130)
 (demand drywall ID130 2220)
)
......

PSL

PSL

Wrapper

PSL

Wrapper

PSL

Wrapper
PSL

Wrapper

Primavera

P3

Vite

SimVision

MS

Project

4D

Viewer

International Journal of IT in Architecture, Engineering and Construction
Volume 1 / Issue 4 / December 2003. ©Millpress316

| Jinxing Cheng, Michael Gruninger, Ram D. Sriram and Kincho H. Law

A PSL parser has also been developed to read the

project scheduling information from PSL fi les. One

simplifi cation we made in the PSL parser is that

PSL sentences are expressed as relations rather than

functions. In PSL, each function has a unique value;

for example, in the PSL expression (endof A), the

activity A can only have one unique completion date.

In contrast, the value of a relation is either true or

false; furthermore, relations can have disagreement on

the last element. For example, the relations (before t1

t2) and (before t1 t3) differ. As a result, every function

can be expressed as an equivalent relation with axioms

that ensure the uniqueness of values, while not every

relation can be expressed as a function. Therefore,

using relations is usually more convenient than using

functions and minimizes unnecessary confusions and

complexities in implementing the PSL parser.

It should be noted that only the information that is

common to the applications can be exchanged. As

shown in Figure 8, Primavera Project Planner™ (P3)

includes scheduling, resource, and cost information,

while Vite SimVision™ provides scheduling, resource,

communication, and organizational information.

Scheduling and resource information, which is common

to both applications, can be exchanged through PSL.

However, not all scheduling and resource information

is exchanged between these two applications, since

the granularity of such information may be different.

For example, Primavera P3 includes more detailed

scheduling information than Vite SimVision™ ; in other

words, not all scheduling information in Primavera P3

is needed by and transferred to Vite SimVision™ .

The PSL parser developed so far can only deal with

parsing predefi ned terms in PSL. We are currently

investigating the possibility of building a generic PSL

parser using JavaCC (Java Compiler Compiler (SUN

2002)). The generic PSL parser can read a grammar

specifi cation and convert it to a Java program that can

recognize matches to the grammar.

Figure 7. PSL Wrappers

PSL

Convert to PSL format PSL parser

Map PSL ontology into concepts in

individual software

Retrieve information from applications

P3: Primavera Automation Engine

MS Project: VBA

Vite SimVision: JDBC

Map concepts into formal PSL ontology

Feed information into applications

P3: Primavera Automation Engine

MS Project: VBA

Vite SimVision: JDBC

4D Viewer: Plain text

Primavera

P3

MS

Project

Vite

SimVision
4D Viewer

International Journal of IT in Architecture, Engineering and Construction
Volume 1 / Issue 4 / December 2003. ©Millpress 317

Process Specifi cation Language for project scheduling information exchange |

5 Consistency Checking Using PSL

Confl icts can occur from time to time during the

course of a construction project. Design changes,

unexpected weather conditions, labor actions,

and procurement delays are all common bases for

confl icts. In a distributed engineering environment,

confl icts can occur more often due to partial changes

and miscommunications. For example, a subcontractor

may change its sub-schedule without realizing the

potential impact on other project participants.

PSL can be used to check for consistency and to resolve

some of the confl icts. We can use PSL to check the

logic confl icts in the project base, where information

comes from heterogeneous applications. For example,

as illustrated later, our initial investigation shows that

it is possible to detect version confl icts and cyclic

dependency relationships between Primavera Project

Planner™ and Microsoft Project™ . With the confl icts

found, it will be relatively easy to trace back to the

sources of the confl icts. In addition, project personnel

can check assumptions using PSL. For instance,

suppose one would like to fi nd out whether an activity

can start on a specifi c date, say on November 15,

2001 without causing confl icts with other activities or

prolonging the project. With PSL, we can add one piece

of knowledge, which in PSL format would be (beginof

activity 2001–11–25), into the PSL knowledge base, and

reason on the whole knowledge base. If no confl ict is

found during the reasoning, project personnel can infer

that the assumption is reasonable; in other words, in this

example, the activity can start on November 15, 2001.

Figure 9 depicts the basic process for detecting the

confl icts or inconsistency of project information

in the prototype implementation. PSL wrappers

are employed to retrieve project information from

different applications. In this work, we employ a

theorem-prover—Otter (Organized Techniques for

Theorem-proving and Effective Research)—as the

logic reasoning tool (McCune 1994, Wos and Pieper

2000). Otter infers conclusions from given hypothesis

and takes two types of input: logic clauses and fi rst

order logic sentences. Internally, Otter converts all

inputs into logic clauses and applies inference rules

to all possible logic clauses to infer new facts or

conclusions. To utilize Otter, a translator has been built

to convert PSL fi les and PSL axioms into fi rst order

logic sentences that Otter can understand.

The reasoning process using Otter can be summarized

in Figure 10. Otter fi rst infers new conclusions from

the existing knowledge base. For the new knowledge,

Otter rewrites it and checks whether it is subsumed by

the existing knowledge. If not, the new knowledge will

be added to the existing knowledge base; otherwise,

it will be deleted. Usually, the reasoning process will

stop either when Otter fi nds confl icts, or when no more

conclusions can be inferred.

Figure 8. Exchange Information between Primavera P3 and Vite SimVision through PSL

Scheduling

Resource

Cost

......

Scheduling

Resource

Communication

Organiztion

......

Primavera P3 PSL Vite SimVision

International Journal of IT in Architecture, Engineering and Construction
Volume 1 / Issue 4 / December 2003. ©Millpress318

| Jinxing Cheng, Michael Gruninger, Ram D. Sriram and Kincho H. Law

The knowledge base includes two main parts:

(1) axioms and defi nitions from PSL Core, PSL

outer core, and PSL Extensions; and (2) facts of

individual project from heterogeneous sources. The

reasoning among the axioms and defi nitions can

signifi cantly slow the reasoning process without

producing essential results. We therefore partition

the inputs into two lists: the axioms on the usable

list and the project specifi c facts on the SOS (set

of support) list. The performance of Otter can be

signifi cantly improved by separating the project

specifi c knowledge and the PSL axioms/defi nitions.

For example, in the chip design project to be

presented in Section 6.2, Otter takes only 3 seconds

Figure 9. Consistency Checking Using PSL

Figure 10. Simplified Reasoning Process in Otter

Primavera

P3

Microsoft

Project

Vite

SimVision

PSL Files

Otter Files

PSL Axioms

4D Viewer

Otter
(Reasoning Tool)

PSL to Otter

Translator

PSL

Wrapper

Reasoning Results

PSL

Wrapper
PSL

Wrapper

PSL

Wrapper

Project knowledge base

PSL Core, PSL Outer Core, and PSL Extensions

Project Specific Knowledge

Knowledge

to be added

Knowledge

to be deleted

Infer new

knowledge

Rewrite

Knowledge

Update

knowledge

base

International Journal of IT in Architecture, Engineering and Construction
Volume 1 / Issue 4 / December 2003. ©Millpress 319

Process Specifi cation Language for project scheduling information exchange |

to complete the reasoning, as compared to several

hours without partitioning.

6 Demonstrations

This section presents several examples to demonstrate

the concepts described in this paper. In Section 6.1

we show two examples which illustrate the use of

PSL for information exchange. Section 6.2 shows an

example that demonstrates how PSL can be used for

consistency checking.

6.1 Information Exchange Using PSL

Example 1: A Chip Design Scenario

We select a sample project from Vite SimVision™

to test PSL for the exchange of project scheduling

information. A Vite SimVision™ project is composed

of a traditional CPM diagram and additional links

showing failure dependence, reciprocal information,

and management structure. The example scenario, as

shown in Figure 11, is to design and fabricate a chip

set for a new personal digital assistant (PDA) product.

There are 12 activities in this project. Among the 12

activities there are three milestone activities: (1) Start

Project, (2) Ship Tapes to Foundry, and (3) Fab, Test

and Deliver. The activity “Design_Coordination”

maintains the overall control of the project.

Using PSL, we successfully exchange scheduling

information among Vite SimVision™ , Primavera

Project Planner™ (P3), and Microsoft Project™ .

Figure 12 shows some selected logic sentences from

the PSL fi le particular to this project. These logic

sentences specify the properties of the project and

activities in the project. For example, the expression

(beginof TUTO 9/18/1998) specifi es that the TUTO

project starts on 9/18/1998. The expression (after-start

ID190 ID200 TUTO) specifi es that the task ID190

should fi nish before the task ID200 starts.

Figures 13 to 15 illustrate the generated schedule

in Vite SimVision™ , P3, and Microsoft Project™ .

Figure 13 is the original Gantt chart of the sample

project in Vite SimVision™ . Figures 14 and 15

show the regenerated project schedule in P3 and

Microsoft Project™ , respectively. As shown in the

fi gures, project scheduling information is successfully

exchanged among these three applications. Activities

have the same start date and duration in all three

applications. The critical paths are also the same in all

three applications.

In this example scenario, the scheduling information

from Vite SimVison™ is retrieved and converted

into a PSL fi le. The information in the PSL fi le is

then parsed and used to regenerate the project sche-dule

in Primavera Project Planner™ and Microsoft Project™ .

The successful information exchange among these

applications shows the potential of PSL as an interchange

standard in construction project management.

Figure 11. Original CPM Diagram in Vite SimVision

Start

Project

Fab, Test

and Deliver

Develop

Specification

Write-Verify-

Synth_B1RTL
FullChipSynth

Sim_Gates

Eng Layout &

Physical Ver'n

Assemble &

verify_RTL

PartitionChip

& Floor

Planning

Generate Test

VectorsShip Tapes

to Foundry

Design_Coordination

International Journal of IT in Architecture, Engineering and Construction
Volume 1 / Issue 4 / December 2003. ©Millpress320

| Jinxing Cheng, Michael Gruninger, Ram D. Sriram and Kincho H. Law

Figure 12. Sample PSL FileL

Figure 13. Original Gantt Chart in Vite SimVision

Figure 14. Regenerated Schedule in Primavera Project Planner using PSL

(and
 (project TUTO)
 (doc TUTO "TUTORIAL Project")
 (beginof TUTO 9/18/1998)
 (subactivity-occurrence ID100 TUTO)
……
)
(and
 (activity-occurrence ID190)
 (doc ID190 "PartitionChip & Floor Planning")
 (beginof ID190 10/19/1998)
 (duration-of ID190 42)
 (after-start ID190 ID200 TUTO)
 (after-start-delay ID190 ID200 TUTO 0)
……
)

International Journal of IT in Architecture, Engineering and Construction
Volume 1 / Issue 4 / December 2003. ©Millpress 321

Process Specifi cation Language for project scheduling information exchange |

 Example 2: Mortenson Ceiling Project

We demonstrate the scalability and applicability of

PSL as an interchange standard through the Mortenson

Ceiling Project, which is part of the Walt Disney

Concert Hall, built by Mortenson Construction and

designed by Frank O. Gehry & Associates. There are

191 activities and 459 dependency relationships in

this example project. We use PSL as the data standard

to exchange project scheduling information among

Primavera P3, Microsoft Project™ , and 4D Viewer.

The PSL fi le of this project contains more than 2000

logic sentences.

Figures 16 to 18 show selected results of this example

demonstration. Figure 16 is the original Gantt chart of

the ceiling project in P3. Figure 17 shows a snapshot

of the construction progress in 4D Viewer on March

25, 2001. The scheduling information originally in

Primavera Project Planner™ (P3) is successfully

transferred to Microsoft Project™ using PSL, as

shown in Figure 18.

To further illustrate the information exchange process,

we altered the duration of activity 18T1–33201 from

1 day to 40 days in Microsoft Project™ , as shown in

Figure 15. Regenerated Schedule in Microsoft Project using PSL

Figure 16. Original Schedule in Primavera P3

International Journal of IT in Architecture, Engineering and Construction
Volume 1 / Issue 4 / December 2003. ©Millpress322

| Jinxing Cheng, Michael Gruninger, Ram D. Sriram and Kincho H. Law

Figure 17. Model in 4D Viewer Taken on March 25, 2001

Figure 18. Regenerated Gantt Chart in Microsoft Project using PSL

Figure 19. Updated Project Schedule in Microsoft Project

International Journal of IT in Architecture, Engineering and Construction
Volume 1 / Issue 4 / December 2003. ©Millpress 323

Process Specifi cation Language for project scheduling information exchange |

Figure 19. The regenerated information is exchanged

and displayed using Primavera Project Planner™ in

Figure 20 and 4D Viewer in Figure 21. The successful

information exchange on this project demonstrates the

scalability, applicability, and robustness of PSL as an

interchange standard.

6.2 Consistency Checking of Project Schedules

To test the use of PSL for consistency checking

purpose, we use the same chip design scenario,

as shown in Figure 11. For this example, which

includes the design and fabrication of a chip set for

a new personal digital assistant (PDA) product, the

project involves managing design tasks as well as the

foundryʼs layout, testing, and manufacturing tasks.

Here we assume that there are two groups working

on the project: one primarily responsible for the

foundryʼs layout, and the other primarily responsible

for testing and manufacturing tasks. Assuming that

the two groups employ different application software,

they work on the schedule independently but

collaboratively. In addition, letʼs assume that group

1 uses Primavera P3 to create the detailed schedule.

Moreover, in this groupʼs schedule the “Eng Layout

& Physical Verʼn” task is assumed to start after the

“General Test Vector” task. Figure 22 shows the

group 1ʼs schedule in Primavera P3, and Figure 23

shows the CPM diagram.

Figure 20. Updated Project Schedule in Primavera P3

Figure 21. Updated Model in 4D Viewer Taken on March 25, 2001

International Journal of IT in Architecture, Engineering and Construction
Volume 1 / Issue 4 / December 2003. ©Millpress324

| Jinxing Cheng, Michael Gruninger, Ram D. Sriram and Kincho H. Law

For group 2, Microsoft Project™ is employed as

the project management tool. Furthermore, the task

“PartitionChip & Floor Planning” is split into two

tasks: task “PartitionChip” and task “Floor Planning.”

In addition, in the schedule, group 2 assumes that the

task “Sim_Gates” should follow the task “Eng Layout

& Physical Verʼn.” Figure 24 shows the group 2ʼs

schedule in Microsoft Project™ , and Figure 25 shows

the CPM diagram.

Figure 22. Group 1’s Schedule in Primavera P3

Figure 23. Group 1’s CPM Diagram

Figure 24. Group 2’s Schedule in Microsoft Project

Start

Project

Fab, Test

and Deliver

Develop

Specification

Write-Verify-

Synth_B1RTL
FullChipSynth

Sim_Gates

Eng Layout &

Physical Ver'n

Assemble &

verify_RTL

PartitionChip

& Floor

Planning

Generate Test

Vectors

Ship Tapes

to Foundry

Design_Coordination

International Journal of IT in Architecture, Engineering and Construction
Volume 1 / Issue 4 / December 2003. ©Millpress 325

Process Specifi cation Language for project scheduling information exchange |

To check for inconsistencies in the two schedules, we

fi rst use PSL wrappers to retrieve project information

from Primavera P3 and Microsoft Project™ . We then

store the information in PSL fi les, convert the PSL fi les

into Otter format, and link the project information with

Otter. Finally, Otter is employed to reason about the

project knowledge base and to detect confl icts. Figure

26 shows the results obtained from the reasoning. In

the last sentence, the “$F” indicates a confl ict has been

found; the sentence numbers 333 and 47 can be used

to traced the sources of confl icts. In particular, the

sentence after_start(ID110,ID180,TUTO) specifi es

that ID110 (“Sim_Gates”) should fi nish before

ID180 (“Generate Test Vectors”) starts. Similarly,

Figure 25. Group 2’s CPM Diagram

Figure 26. Reasoning Results in Cyclic Dependency Relationships

Figure 27. Cycle in Dependency Relationships

Start

Project

Fab, Test

and Deliver

Develop

Specification

Write-Verify-

Synth_B1RTL FullChipSynth

Sim_Gates

Eng Layout &

Physical Ver'n

Assemble &

verify_RTL

Generate Test

Vectors
Ship Tapes

to Foundry

Design_Coordination

Floor Planning

PartitionChip

44 [] -after_start(x100,x101,x102)| -
after_start(x101,x103,x102)|after_start(x100,x103,x102).
47 [] -after_start(x111,x112,x113)| -
after_start(x112,x111,x113).
85 [] after_start(ID110,ID180,TUTO).
136 [] after_start(ID180,ID160,TUTO).
252 [] after_start(ID160,ID110,TUTO).
310 [hyper,136,44,85] after_start(ID110,ID160,TUTO).
333 [hyper,310,44,252] after_start(ID160,ID160,TUTO).
361 [hyper,333,47,333] $F.

Sim_Gates
Generate

Test Vectors

Eng Layout &

Physical Ver'n

From Primavera P3

From MS Project

International Journal of IT in Architecture, Engineering and Construction
Volume 1 / Issue 4 / December 2003. ©Millpress326

| Jinxing Cheng, Michael Gruninger, Ram D. Sriram and Kincho H. Law

after_start(ID180,ID160,TUTO) indicates that ID180

completes before ID160 (“Eng Layout & Physical

Verʼn”) starts, while after_start(ID160,ID110,TUTO)

indicates that ID160 completes before ID110 starts.

The confl ict detected is graphically depicted in Figure

27. A cyclic dependency relationship in the project

schedule is detected because the task “Sim_Gates”

needs to start after the task “Eng Layout & Physical

Verʼn” is completed, while at the same time the

activity “Eng Layout & Physical Verʼn” needs to start

after the activity “Sim_Gates” fi nishes.

In addition to detecting logic confl icts in the activity

relationships, we can also detect other confl icts that

may arise due to versioning problems. For example,

the same activity may have different start dates or

durations in Primavera P3 and Microsoft Project™ . To

fi nd these confl icts, we can simply add the following

axioms into the knowledge base.

(forall ?a ?t1 ?t2 (=> (beginof ?a ?t1) (beginof ?a
?t2) (= ?t1 ?t2))
(forall ?a ?d1 ?d2 (=> (duration-of ?a ?d1)
(duration-of ?a ?d2) (= ?d1 ?d2))

The fi rst axiom specifi es that the start date of an activity

is unique. In other words, if an activity has two start

dates, these two start dates must be equal. Similarly, the

second axiom specifi es that the duration of an activity

is unique. These axioms will guarantee that an activity

has a unique start date or duration. With these axioms

added into the project knowledge base, Otter can detect

the activities that have different start dates or durations

in Primavera P3 and Microsoft Project™ .

Figure 28 shows the sample confl ict of the start

dates of the activity ID210 (“Fab, Test and Deliver”)

detected by the reasoning tool. The fi rst logic

sentence in Figure 28 indicates that an activity must

have a unique start date. Since Otter cannot directly

operate on dates, we assume 01/01/1970 as the base

date and use the Java class Calendar to convert the

dates into numeric values. The second logic sentence

beginof(ID210,10738) specifi es that the activity

ID210 starts at 10738 that is equivalent to 04/27/1999,

as shown in Figure 22, which displays the project

schedule using Primavera P3. Similarly, in the logic

sentence beginof(ID210,10773), the numeric value

10773 corresponds to the date 06/01/1999, which is

the start date of the activity ID210 from the schedule

shown in Figure 24 using Microsoft Project™ . The last

logic sentence in Figure 28 concludes that the activity

ID210 has different start dates in the schedules from

Primavera P3 and Microsoft Project, thus causing

inconsistency.

The above examples show that PSL can be used to

detect inconsistency in the project knowledge base.

Following the proof process, we can trace for the root

of the confl icts, identify the causes, and help resolve

the inconsistency problems in the project.

7 Conclusions

In an engineering project, project team members may

use many software applications. Exchanging project

information among different software applications

Figure 28. Reasoning Results in Version Conflicts

59 [] -beginof(x162,x163)| -beginof(x162,x164)|x163==x164.
161 [] beginof(ID210,10738).
273 [] beginof(ID210,10773).
323 [hyper,273,59,161,demod,propositional] $F.

International Journal of IT in Architecture, Engineering and Construction
Volume 1 / Issue 4 / December 2003. ©Millpress 327

Process Specifi cation Language for project scheduling information exchange |

poses an impediment to collaboration. Maintaining the

consistency of the project information from various

sources presents an even bigger challenge. Although

PSL was originally designed for manufacturing process

information, our research shows that PSL can be used

for construction project management applications.

In this study, we have developed PSL wrappers

and successfully exchanged project scheduling

information among software applications, such as

Primavera Project Planner™ , Microsoft Project™ ,

Vite SimVision™ , and 4D Viewer. Moreover, we

have explored the potential use of logic-based PSL

for confl ict resolution and consistency checking of

a project schedule. Our research shows that PSL, an

emerging interchange standard for manufacturing

applications, not only shows promise in this role, but

also has the potential to resolve confl icts and check

consistency.

Acknowledgements

This work is partially sponsored by the Center

for Integrated Facility Engineering at Stanford

University, a Stanford Graduate Fellowship, and the

Product Engineering Program at NIST. The Product

Engineering Program gets its support from the

NISTʼs SIMA (Systems Integration for manufacturing

Applications) program and the DARPA̓ s Radeo

Program. The 4D Viewer and the 4D model of the

Mortenson Ceiling Project are provided by Professor

Martin Fischer and his research group at Stanford

University. The authors are grateful to Mr. Peter

Denno of NIST for his valuable inputs on this paper.

No approval or endorsement of any commercial

product by the National Institute of Standards and

Technology or by Stanford University is intended or

implied.

[1] Akinci, B., Fischer, M., Levitt, R., and Carlson, R. (2002). “Formalization and
Automation of Time-Space Confl ict Analysis.” Journal of Computing in Civil
Engineering, Vol. 16, No. 2, pp. 124–134.

[2] Anumba, C.J., Baldwin, A.N., Bouchlaghem, N.M., Prasad, B., Cutting-Decelle,
A.F., Dufau, J., and Mommessin, M. (2000). “Integrating Concurrent Engineering
Concepts in a Steelwork Construction Project.” Concurrent Engineering: Research
and Applications, Vol. 8, No. 3, pp. 199–212.

[3] Arkin, A. (2002), “Business Process Modeling Language.” Draft of the BPML
Specifi cation, BMPL Working Group.

[4] Fischer, L. (editor) (2002), Workfl ow Handbook 2002. Future Strategies.
[5] Garas, F. K., and Hunter, I. (1998). “CIMSteel (Computer Integrated Manufacturing

in Constructional Steelwork) – Delivering the Promise.” Structural Engineer, Vol. 76,
No. 3, pp. 43–45.

[6] Gould, E.F. (2002). Managing the Construction Process: Estimating, Scheduling, and
Project Control. Prentice Hall.

[7] Guarino, N. (1997). “Understanding, Building and Using Ontologies.” Int. J. of
Human-Computer Studies, Vol. 46, No. 2–3, pp. 293–301.

[8] Hassanian M, Froese T., and Vanier D. (2000). “IFC-based Data Model for Integrated
Maintenance Management.” Proceedings of the Eighth International ASCE
Conference on Computing and Building Engineering, Vol. 1, pp. 796–803, Stanford,
CA.

[9] IAI (1997). “Industry Foundation Classes.” Specifi cation Volumes 1–4, International
Alliance for Interoperability, Washington, DC.

[10] IAI (2002). “AecXML.” International Alliance for Interoperability, <http://
www.aecxml.org>.

[11] ISO (1994). “Product Data Representation and Exchange: Part 1: Overview
and Fundamental Principles.” No. 10303–1, International Organization for
Standardization.

[12] ISO (2003). “Industrial Automation System and Integration — Process Specifi cation
Language.” No. 18629–11, International Organization for Standardization.

REFERENCES |

International Journal of IT in Architecture, Engineering and Construction
Volume 1 / Issue 4 / December 2003. ©Millpress328

| Jinxing Cheng, Michael Gruninger, Ram D. Sriram and Kincho H. Law

[13] McCune, W.W. (1994). “Otter 3.0 Reference Manual and Guide.” Mathematics and
Computer Science Division, Argonne National Laboratory, Report No. ANL–94/6.

[14] McKinney, K., and Fischer, M. (1998). “Generating, Evaluating and Visualizing
Construction Schedules with 4D-CAD Tools.” Automation in Construction, Vol. 7,
No. 6, pp. 433–447.

[15] Menzel, C., and Gruninger, M. (2001), “A formal foundation for process modeling.”
Proceedings of Formal Ontology in Information Systems, Ogunquit, Maine, pp.
256–269.

[16] Penã-Mora, F., and Dwivedi, G.H. (2002). “Multiple Device Collaborative and Real
Time Analysis System for Project Management in Civil Engineering.” Journal of
Computing in Civil Engineering, Vol. 16, No. 1, pp. 23–38.

[17] Schlenoff, C., Ciocoiu, M., Libes, D., and Gruninger, M. (1999a). “Process
Specifi cation Language: Results of the First Pilot Implementation.” Proceedings of
the International Mechanical Engineering Congress and Exposition, Vol. 10, pp.
529–539, Nashville, Tennessee.

[18] Schlenoff, C., Gruninger, M., and Ciocoiu, M. (1999b). “The essence of the Process
Specifi cation Language.” Transactions of the Society for Computer Simulation, Vol.
16, No. 4, pp. 204–216.

[19] SUN (2002). “Java Compiler Compiler (JavaCC) – The Java Parser Generator.” Sun
Microsystems, <http://www.webgain.com/products/java_cc/>.

[20] Vanier, D. (1998). “Product Modeling: Helping Life Cycle Analysis of Roofi ng
Systems.” The Life Cycle of Construction IT Innovations, Stockholm, Sweden, pp.
423–235.

[21] Wos, L., and Pieper, G.W. (2000). A Fascinating Country in the World of Computing:
Your Guide to Automated Reasoning. World Scientifi c Publishing Company,
Singapore.

