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Nonlinear response of plain concrete
shear walls with damage

S. Yazdani1 and H. L. Schreyer2

ABSTRACT  | During earthquakes, the natural frequencies of concrete structures are often signifi-

cantly lower than those predicted by conventional linear elasticity.  This can cause

severe motion of piping systems because the design of support structures utilizes val-

ues of predicted natural frequencies.  In an experimental program to investigate the

problem, a further decrease in stiffness was noted for model concrete structures.  In

this study continuum damage mechanics is proposed as a constitutive model for de-

scribing both the changes in natural frequencies, and the reduction in initial stiffness

of small concrete structures.  Structural members made with brittle materials such as

concrete experience damage under seismic excitation, which is reflected through al-

tered natural frequencies for the structure.  With regard to scale models, it is suggest-

ed that microcracking as a result of shrinkage may be the source of the loss in initial

stiffness.  Shrinkage cracks are easily reflected in the constitutive equation as initial

isotropic damage.  Finite element predictions based on anisotropic damage mechan-

ics indicate that the proposed approach may be practicable for routine engineering

analyses.

1 Introduction

The design of piping support systems is based in part

on the natural frequencies of the primary structure so

that potential motion of the pipes can be minimized if

the structure is subjected to earthquakes.  For certain

nuclear power plant structures made of reinforced con-

crete some data suggest that natural frequencies dis-

played during seismic disturbances are significantly

lower than those computed based on linear elasticity

which is considered appropriate because of the small

amplitudes that are experienced. To address this appar-

ent anomaly, Endebrock et al. [1] at Los Alamos

National Laboratory conducted a program to deter-

mine if such an effect could be experimentally demon-

strated.

Shear walls are important structural members, which

resist horizontal forces due to wind or seismic motion

and can be designed to support gravity loads as well.

Since the full-size construction and testing of shear

walls are expensive, many studies have been per-

formed on scaled down models.  Endebrock et al. [1]

chose to test both scaled models and prototype walls.

Their results did indeed show that if the model shear

wall is loaded to a level that might be experienced dur-

ing the beginning phase of an earthquake ground exci-

tation then there is a reduction in the values of natural

frequencies.

However, the conclusion was clouded by other obser-

vations.  First, the models exhibited nonlinear behavior

even at relatively small loads, as measured values of

fundamental frequencies were lower than those pre-

dicted by linear elasticity.  The elasticity parameters

were obtained in the traditional manner of testing

cylindrical specimens.  Second, with the use of appro-

priate scaling laws, the experimental values of natural
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frequencies obtained from the model walls were lower

than those obtained from prototype walls.

The basis of this work is the proposition that the rela-

tively new field of continuum damage mechanics

might be useful to help explain these observed fea-

tures.  The following assumptions are made:  (1) when

concrete is loaded, even to relatively low levels, dam-

age occurs and this damage is most easily noticed in

subsequent load cycles such as those occurring from

sinusoidal base excitation, and (2) shrinkage cracks,

which could be interpreted as initial damage, is more

significant for structural elements with large surface-

to-volume ratios than for those with small ratios so that

model shear walls should exhibit a lower initial stiff-

ness than the prototype shear wall formed from the

same batch of concrete.

The scope of the research is limited to a plausibility

study because continuum damage mechanics was, and

remains to a considerable degree, an unknown field to

the engineering community.  Also, an attempt at a

detailed correlation would have required the incorpo-

ration of a great amount of construction detail such as

steel reinforcement and the three-dimensional head-

work attached to the shear wall which transmitted the

load from the shaking device.

The source of the nonlinear behavior might be attrib-

uted to two distinct microstructural changes.  One is

the development of plastic flow along preferred dislo-

cation planes that occurs under high confining pres-

sures.  The second is the nucleation and propagation of

microcracks and microvoids.  Since most conventional

concrete structural members, including shear walls, are

designed to perform under no or low confining pres-

sure, it is plausible to assume that the second mecha-

nism is the dominant one in this case.  Continuum

damage mechanics is the specific theory that addresses

the effects of microcracks and microvoids on the mate-

rial response, so that such an approach seems to be par-

ticularly appropriate.

The text describes the damage model used for the

study.  The basis for shrinkage damage is given

together with a technique for incorporating shrinkage

in the constitutive equation.  Numerical results that

must be considered primarily qualitative are shown to

indicate that continuum damage mechanics is a power-

ful approach for addressing a significant engineering

problem.

2 Damage mechanics

Continuum Damage Mechanics (CDM), which was

first introduced by Kachanov [2], has attracted the

attention of researchers in the past fifteen years.  In

particular, many advances have been made in the appli-

cation of CDM to the brittle-fracturing processes and

materials (Chen and Schreyer [3], Ju et al. [4], Karna-

wat and Yazdani [5]; Kracinovic [6], Krajcinovic et al.

[7], Ortiz [8], Ortiz and Giannakopoulos [9], Schreyer

and Neilson [10], Simo and Ju [11], and Stevens and

Liu [12]).  In this section a formulation (Yazdani and

Schreyer [13]) is proposed that is consistent with the

laws of thermodynamics and that utilizes experimental

information concerning the modes of evolution of

microcracks.  If E and e denote the elasticity and strain

tensors, respectively, the stored energy function for lin-

ear elasticity is defined to be

....................................................... (1)

where “:” indicates tensor contraction operation. It will

be assumed that damage is reflected through the elas-

ticity tensor, which is, therefore, listed as a variable.

Suppose further that the internal energy, U, can be

given in an uncoupled form as:

............................ (2)

in which ε denotes the entropy and ρ is the mass den-

sity.  The stress tensor, S, the temperature, θ, and the

conjugate thermodynamical force, Q, associated with

E (Chaboche [14]) are given by the constitutive rela-

tions as
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.............................................. (3a)

.................................................(3b)

........................................... (3c)

where the symbol “⊗” is used to denote tensor product

operation. Define the dissipation to be

...........................................(4)

in which superposed dots denote derivatives with

respect to time and “::” signifies a double tensor con-

traction.  In the absence of a heat source and a heat

flux, the first and second laws of thermodynamics

reduce to

.................................................(5)

since the absolute temperature is positive.  The flexibil-

ity tensor, F, is the inverse of the elasticity tensor, E, so

that

.....(6)

where I denotes the fourth-order identity tensor.  Let ω
be a monotonically increasing variable introduced to

parameterize the damage process which is described

through the damage response tensor, R, as

......................................................................(7)

Substituting Equations (6) and (7) back in Equation

(4), yields the following form of the dissipation:

.................................(8)

where the inequality condition will be satisfied if R is

a positive, semi-definite tensor.

To progress further, a damage function Φ(S,R,ω) is

introduced such that, if damage is occurring, the stress

state is said to be on the damage surface, Φ = 0 , and if

no damage is occurring, Φ < 0.  The condition Φ > 0 is

not allowed.  To construct such a function, utilize the

condition that the coefficient of  be positive during

the damage process, i.e., let

................................................. (9)

where the function “g” can be given directly as a hard-

ening and softening damage function, or g can be pre-

scribed through a separate evolution equation:

....................................................... (10)

for some function G.

The key part of the model is reflected through the ten-

sor, R, which appears in the evolution equation for the

flexibility (Equation 7).  Figure 1 shows the two dam-

age modes that are considered essential for describing

the failure of concrete.  Mode I refers to the cleavage

type of cracking that occurs under tension, and mode II

refers to a more complicated mechanism suggested by

Horri and Nemat-Nasser [15] that involves shear slid-

ing of an existing inclined flaw with tensile crack

opening under a far-field compressive stress state.  To

reflect these two modes in the formulation, R is con-

sidered to be the linear combination of modes I and II

response tensors as

............................................................ (11)

To develop the operators in (11), suppose the stress

tensor is separated into positive and negative cones as

S=S++S- where the positive (negative) cone is defined

to be the part of the stress tensor associated with posi-

tive (negative) eigenvalues of the stress tensor S.  Fol-

lowing Ortiz [8], R
I
 is proposed to be:

........................................................ (12)
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A similar form is not adequate for mode II because

damage is generally not observed under hydrostatic

compression.  The form suggested by Yazdani and

Schreyer [13] is the following:

........................(13)

in which  denotes the minimum eigenvalue of the

shifted stress tensor, 

...........................................................(14)

and λ denotes the maximum (nonzero) eigenvalue of

.  Here, i represents the second order identity tensor,

and the Heaviside function H[⋅] is used in the second

part of  to ensure that this term is activated only in

compression.  The material parameter, α , is deter-

mined from experimental data.  This formulation

implies that damage for compression occurs in the

direction associated with the minimum eigenvalue

(maximum absolute value) of  such as that reflected

by vertical splitting under uniaxial compression.  No

damage is predicted for hydrostatic compression.

The damage function, g, which may also be considered

the critical stress (Ortiz [8]) is determined from a

uniaxial tensile or compression tests.  An exponential

function proposed by Smith and Young [16] is adapted

to the present situation. Let  and  be limit stresses

in uniaxial tension and compression, respectively, and

let the initial modulus of elasticity be given by .

Guided by the work of Yazdani [17] and the experi-

mental work by Smith and Young [16] the damage

function is given as

................................... (15)

where, “e” is the natural number in Equation (15) and

A(S) denotes the maximum of the damage function, g,

proposed by Yazdani [17] as

............................. (16)

in which ξ is given by

.......................................................... (17)

If  ξ is zero (i.e., for tensile stress paths), A(S) =  and

the original formulation by Ortiz (1985) is retained.

When only compression stresses are involved, ξ
approaches infinity, and A(S) becomes equal to uniax-

ial compressive strength, .  A(S) takes on a value

between  and  for mixed cracking mode. 

Figure 1. 
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3 Shrinkage

Shrinkage is caused by the evaporation of free water

that is not needed for the hydration of cement paste.

The rate and completeness of drying depends on ambi-

ent temperature, humidity, and the surface that is avail-

able for the heat flux (Troxell et al. [18]).  Based on a

reasonable correlation of shrinkage strains obtained

experimentally Picket [19] suggested that shrinkage

deformation of concrete follows approximately the

laws of diffusion similar to those governing heat con-

duction.  Hanssen and Mattock [20] followed the

approach of Picket [19] and specifically investigated

the shrinkage characteristics of structural members

made from the same batch of concrete but with differ-

ent surface areas and volumes.  They concluded that

members with higher surface-to-volume ratios showed

higher shrinkage deformations.  Shrinkage deforma-

tions result in microcracks, and in this sense, can be

interpreted as initial damage to the structure.

These investigations do not address the effect of

shrinkage cracking on material and structural stiffness.

Material parameters for plain concrete are normally

obtained from standardized cylindrical tests, an

approach that may not be appropriate.  For example,

when Endebrock et al. [1] tested model shear walls

with the geometry shown in Fig. 2, the structural stiff-

ness was significantly lower than the stiffness obtained

by using material parameters that were obtained by

testing a cylinder formed from the same batch of con-

crete.  The work of Hanssen and Mattock [20] involv-

ing volume-to-surface ratios indicates that shrinkage

deformation associated with the model shear wall

would be significantly larger than that of the cylinder.

In this paper a method is proposed for taking into

account the effect of this initial damage.

Suppose Fc is the initial flexibility tensor based on con-

ventional cylinder tests.  If isotropy is assumed, then

........................................(18)

in which  Ec and nc denote Young’s modulus and Pois-

son’s ratio, respectively.  To account for shrinkage

cracks, let the initial flexibility tensor for the model

shear wall be

.................................... (19)

where

....................... (20)

In other words, ß
1
  and ß

2 
are dimensionless parameters

designed to reflect the additional factor of flexibility

introduced by shrinkage cracks.  Since shrinkage

cracks are primarily located near the surface, the mod-

ified flexibility tensor must be interpreted as one that

represents average properties suitable for plane stress

or plane strain.

4 Computational approach

A conventional stiffness approach associated with the

finite element method was used to analyze the model

shear wall.  Rectangular elements were adopted with 2

x 2 Gaussian numerical quadrature used to obtain the

element stiffness matrix.  The element stiffness at the

end of the previous load step was used to compute the

system stiffness matrix for the current (small) load

step.  Strain increments were obtained and used in the

constitutive equation subroutine to update the damage

parameter and the element stiffness matrices.  An iter-

ative algorithm was used to ensure that the stresses sat-

isfied the equation for the damage surface if damage

was indicated.  The plane stress restriction was

enforced.

Although nonlinear behavior is reflected in the load-

displacement curve, at no time was the load increased

to the point where the stiffness matrix became singular.

However, certain elements did go into the softening

regime that would indicate that the corresponding

regions in the wall are susceptible to the formation of

macrocracks.  However, this aspect was not investi-

gated because softening is associated with localization,

and a nonlocal feature must be included in the analysis
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to provide the proper amount of energy dissipation.

These topics are well beyond the scope of the investi-

gation.

5 Results

The shear-wall part of the model structure shown in

Fig. 2 was modeled with a series of increasingly

refined mesh configurations consisting of 4(2,2),

8(2,4), 16(4,4), 24(4,6), and 32(4,8) uniform elements.

In each bracket, the first number denotes the number of

elements used to discretize the side of the shear wall

with a length of 191mm (7.5 inches).  The second

number represents the number of elements that discre-

tized the side of length 457mm (18 inches).  The result

of a convergence study is shown in Fig. 3 for typical

elastic properties.

Test results from cylindrical specimens were used to

determine Young’s modulus and Poisson’s ratio.  The

parameters ß
1
 and ß

2 
were determined by trial and error

so that the initial slope of the predicted load-deflection

curve matched that of experiments on the model shear

wall.  For these results, ß
2
 had no significant effect,

which is not surprising since the shear modulus should

be the dominant parameter for this problem.  There-

fore, ß
2
=1 was used throughout and ß

1
 suffices to

reflect the damage due to shrinkage cracks.  The mate-

rial parameters, including  ß
1
 used for the final analysis

are the following: E0= 27000Mpa (4000 ksi), v0= 0.2,

f
c
 = 27Mpa (4 ksi) (uniaxial compressive strength), f

t
 =

3.5Mpa (0.5 ksi) (uniaxial tensile strength), α =

0.00112, and ß
1
= 1.25. It was further assumed that all

elements had the same distributed shrinkage damage

for this study.  If the experimental records would show

otherwise, different shrinkage damage values must be

assigned to different damaged elements.

Predicted and experimental load-deflection curves are

shown in Fig. 4.  The good match of the slope near the

origin is a direct consequence of the use of the param-

eter, ß
1
.  The discrepancy for larger values of load may

be attributed to the fact that the effect of reinforcing

Figure 2. 

Figure 3. 

Figure 4. 

Figure 5. 
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bars was not included in the finite element analysis.

Also, the experimental data corresponded to a very low

levels of loads that the model shear walls were sub-

jected to.  It is plausible to assume that at higher stress

levels larger deflection would be observed due to load

induced cracks (damage) in walls.

With the system stiffness matrix obtained at various

levels of load required to obtain the plot in Fig. 4 and

with the development of the system mass matrix, a

general eigenvalue subroutine was used to obtain the

fundamental frequency.  The decay in the frequency as

a function of load (or damage) is shown in Fig. 5.

Although only one experimental value of fundamental

frequency is shown, and that frequency is based on

essentially no damage, there is already a significant

reduction from the natural frequency based on linear

elasticity even after the reduction due to shrinkage

cracks is taken into account.  A plausible explanation is

that the load reversals caused by the shake table have

caused some debonding of the rebars and that the nat-

ural frequency actually reflects the structural property

of plain concrete rather than reinforced concrete.  If

this hypothesis is verified with additional experiments,

then the model used to predict damage illustrated in

Fig. 4 might prove to be an appropriate one for predict-

ing natural frequencies after an initial load has been

applied to a reinforced concrete structure.

6 Conclusion

Damage mechanics is a relatively new field with very

few demonstrated examples of applications to signifi-

cant engineering problems.  One example of damage

involving an important engineering problem is that of

the change in natural frequencies of reinforced con-

crete structures subjected to seismic motion with the

consequence that piping structures may not be suitably

designed.  The result of this investigation is that a con-

stitutive equation based on continuum damage

mechanics may provide the means for evaluating these

potential changes in natural frequencies.  Conversely,

nondestructive tests that provide natural frequencies

may be used in an inverse manner to provide informa-

tion on the degree of damage existing in a structure

subjected to an unusual load.

This present work is considered as a feasibility study

for employing an anisotropic damage model for the

analysis of a structural system.  To this end, a com-

bined analytical, experimental, and numerical effort is

required to further examine the merits of the proposed

approach. In particular, the effects of reinforcements

must be included in the analysis to realistically predict

the overall response of a prototype shear wall in the

case of seismic events.
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