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Abstract

In this paper, we analyse one slice of the 2008 economic crisis in the Hungarian

residential real estate market. We show that less frequent o�ers can qualitatively

explain some of the observed phenomena. The decreasing volume of transactions and

the fall in transaction prices are explained in an optimal stopping framework, where

less frequent o�ers force sellers to decrease their reservation price. Our empirical

data reveals the connection between settlement size and transaction volumes. Post-

crisis adjustment in transaction volumes is di�erent in smaller settlements than in

larger ones: there appears to be a smaller relative decrease in transaction volumes

in smaller settlements. The unexpected negative relationship between size and the

change in volume is robust to the inclusion of controls (eg. for NUTS 2 region, or the

distance from the nearest larger town). A possible explanation is the following. The

fact that transaction volumes fall after a crisis means that sellers will receive fewer

o�ers over a given space of time. In smaller settlements, o�ers are generally less

frequent than in larger settlements. Therefore, in a post-crisis smaller settlement,

if an o�er does come along, sellers will be likely to accept it even if it is low -

since they anticipate that this o�er will be the only one they receive for some time.

Sellers in larger settlements, however, may still �nd it worth their while to hold

out and wait for a better o�er. This means that while post-crisis adjustment in

smaller settlements happens less in volume than in price, the converse is true of

larger settlements. The above argument �ts into an optimal stopping framework,

in which sellers receive di�ering o�ers at various intervals (each o�er only being

available for a limited amount of time), and must decide which o�er to accept. We

therefore address our puzzle using an optimal stopping model.

1 Introduction

The 2008 economic crisis had a profound impact on the real estate market in Hun-

gary, including (though not limited to) the residential market segment. In this paper,

we turn our attention to one puzzling aspect of the impact, and investigate it in an

optimal stopping framework.

We begin by underpinning the observation that post-crisis adjustment transac-

tion volumes was di�erent in smaller settlements than in larger ones. Our data
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shows, however, that contrary to popular belief, transaction volumes decreased rel-

atively less in smaller settlements than in larger ones. This result is robust to the

inclusion of various controls, various econometric speci�cations, and even di�ering

approaches to measuring the dependent variable.

A possible explanation is the following. The fact that transaction volumes fall

after a crisis means that sellers will receive fewer o�ers over a given space of time.

In smaller settlements, o�ers are generally less frequent than in larger settlements.

Therefore, in a post-crisis smaller settlement, if an o�er does come along, sellers will

be likely to accept it even if it is low - since they anticipate that this o�er will be

the only one they receive for some time. Sellers in larger settlements, however, may

still �nd it worth their while to hold out and wait for a better o�er. This means

that while post-crisis adjustment in smaller settlements happens less in volume than

in price, the converse is true of larger settlements. The above argument �ts into

an optimal stopping framework, in which sellers receive di�ering o�ers at various

intervals (each o�er only being available for a limited amount of time), and must

decide which o�er to accept. We therefore address our puzzle using an optimal

stopping model, based on the well-known "house-selling problem".

"Optimal stopping" entails choosing a point in time to take a given action to

maximize expected payo�s. The decision is based on random variables observed

sequentially. In our case, a person attempting to sell their house is the decision-

maker, who receives various o�ers for her house. According to Ferguson (2013), the

house-selling problem was �rst introduced by MacQueen and Miller (1960), Derman

and Sacks (1960), Chow and Robbins (1961) and Karlin (1962) in the case when

the seller can go back and accept o�ers from previous time periods. The case where

there is no such possibility (an o�er once rejected is lost forever) was described by

the aforementioned Chow and Robbins (1961). As noted in Ferguson (2013), the

house-selling problem shares much with the job search problem in economics, in

which a worker is searching for a job, and must decide whether to accept a current

o�er or wait for another. This problem is attributed to George Stigler (1961) and

(1962).

The structure of the paper is the following. Section 2 introduces the empirical

results we have reached, �rst introducing Hungary's settlement structure and then

focusing on transaction volumes. Section 3 shows the essentials of our theoretical

model. Section 4 concludes.

2 Some empirical observations on the Hungar-

ian residential housing market

In this section, we present and describe our data and calculate some descriptive

statistics, focusing on the relationship between settlement size and transaction vol-

umes. We �rst introduce the very basic facts regarding settlements in Hungary. We

then move on to transaction volumes and how they changed in response to the 2008

economic crisis.

2.1 Hungary's settlement structure

There are 3152 settlements in Hungary altogether for a population of around 10

million.1 The country is divided into 7 regions (NUTS 2 according to the European

1While the number of settlements changes very slightly over time due to settlements joining and
breaking up, these changes are not relevant to our investigation, and we can therefore ignore them.
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Union's statistical classi�cation), 19 counties (in addition to the capital city, NUTS

3), and 174 micro-regions (NUTS 4). Budapest is by far the largest settlement,

with a population of over 1.7 million people, and a housing stock close to 900 000.

The runner-up is county centre Debrecen with its population of just over 200 thou-

sand people in around 90 thousand dwellings - a mere tenth of Budapest's. In the

remainder of this paper, we will focus on housing stock as the descriptor of size.

Table 1 shows the number of settlements in various size categories. 61.6% of

settlement fall into the smallest category, and have less than 501 dwellings, and

96.5% have at most 5000. We draw the line between "small" and "large" settlements

at 5000 dwellings.

Table 1: Settlements by size

Housing stock (number of dwellings) Number of settlements Proportion of settlements

500 or less 1943 61.6%
501-1000 609 19.3%
1001-5000 491 15.6%
5001-20000 88 2.8%
20001 or more 21 0.7%

Sum 3152 100%

Table 2 shows the distribution of the housing stock by region. Regions are rela-

tively well-balanced in terms of housing stock with the exception of Central Hungary,

which contains the capital city Budapest and thus contains a disproportionate num-

ber of dwellings.

Table 2: Housing stock by region
Region Housing stock Proportion of housing stock

Southern Great Plain 595 138 14%
Southern Transdanubia 402 414 9%
Northern Hungary 514 452 12%
Central Hungary 1 332 512 31%
Central Transdanubia 440 872 10%
Western Transdanubia 425 368 10%
Northern Great Plain 619 925 14%

Sum 4 330 681 100%

We now turn our attention to our primary focus, transaction volumes in the

settlements.
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2.2 Transaction volumes

The housing market in Hungary was booming before the crisis. By 2008, prices had

doubled compared to 2000, the equivalent to a 30% increase in real terms. By the

third quarter of 2010, however, prices had plummeted to a level lower than in 2000

in real terms, and have continued to fall since.

Transaction volumes also re�ect the changes wrought by the crisis. To track

these changes, we will analyse data on the number of transactions completed in each

settlement in Hungary, for each year from 2007 to 2011.2 We de�ne 2007 and 2008

as "pre-crisis" and 2009 to 2011 as "crisis" years. Data on settlement size is also

available, both for the housing stock (number of dwellings) and the population. Our

data on housing stock is from 2009, and we will assume that it remains constant

over the period under investigation.3

Based on our sources, we �rst calculate the mean and median number of transac-

tions per year per settlement pre- and post-crisis. The results can be seen in Table

3.

Table 3: Number of transactions per year per settlement
Time Period Mean Median

Pre-crisis (2007-2008) 32 8%
Crisis (2009-2011) 18 6%

Two things are apparent from Table 3. Firstly, that the number of transactions

per year decreased dramatically following the outbreak of the crisis. We will inves-

tigate this relationship further in this section. Secondly, that the median is very

much smaller than the mean. This is a natural result, since the distribution of

transactions, similarly to the distribution of settlement size, is strongly skewed to

the left.

Table 4 gives an overview of how transaction volumes have changed year by year.

The dramatic drop post-2008 is immediately clear: volumes dropped over 40%.

Table 4: Transaction volumes over time
Year Number of transactions Number of settlements where transactions took place

2007 191 170 2633
2008 154 097 3010
2009 91 137 2964
2010 90 271 2890
2011 87 730 2905

It is worth looking at the fraction of dwellings traded compared to the total

number of dwellings in each settlement: this results in comparable numbers across

settlements. Figure 1 shows these numbers for �ve settlement size categories, for

2Data for 2012 was still incomplete at the time of writing, and we therefore omit it.
3Housing stock does, of course, change from one year to the next. However, the change is minor

(especially post-crisis), and would have no important e�ect on our results.
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2008 and 2011, and demonstrates that larger settlements have more active housing

markets: a larger proportion of dwellings is traded each year. This is true both before

and during the crisis, the di�erence is only one of magnitude, and again re�ects the

dramatic drop in transaction volumes due to the crisis.

Figure 1: Fraction of dwellings traded in a year, by settlement size category

We shall now focus on calculating the change in transaction volumes before and

during the crisis. Since our central theme is the relationship of transaction volumes

and settlement size, we are interested in relative changes in transaction volumes.

Consider the following two ways for calculating a relative change for each settlement:

1. The di�erence in the average number of transactions per year before and during

the crisis, divided by the number of transactions pre-crisis.

∆TRelative =
Tduring − Tbefore

Tbefore
(1)

2. The di�erence in the average number of transactions per year before and during

the crisis, divided by housing stock.

∆THousing =
Tduring − Tbefore

Housing
(2)

The �rst case is a classical relative change, which eliminates units of measure-

ment. The second controls for size more explicitly by measuring the change in the

proportions of dwellings traded before and during the crisis. Arguments can be made

in favour of using either, and we will make use of both. However, we generally prefer

the second case.

To investigate how the drop in transactions was distributed among smaller and

larger settlements, we compare the average yearly transaction volume between 2009-

2011 with that between 2007-2008, using the (Tduring − Tbefore)/Housing method

of calculating changes, for each settlement. Figure 2 shows the results for various

settlement sizes.

It is apparent that a larger housing stock implied a larger relative change in trans-

action volumes, that is: transactions volumes decreased less, relatively, in smaller

settlements than in larger ones. The cut-o� point between "small" and "large" set-

tlements can be drawn at around 5000 dwellings. The next step is to verify that

this relationship is robust to the inclusion of controls. Several possible controls may

come to mind. As location is always key in real estate, �rstly it makes sense to
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Figure 2: Average change in transaction volumes by housing stock, 2009-2011 vs. 2007-
2008

introduce controls with regard to it. We control for "absolute" location by introduc-

ing dummy variables to represent the seven NUTS 2 regions of Hungary. "Relative"

location may also be important, and we control for it by including the distance (in

kilometres) from the nearest centre of a micro-region (NUTS 4), which essentially

corresponds to the nearest town where most services are available.

The exact results of regressions are not especially important and we will not

interpret them numerically. Prices and transaction volumes in�uence one another,

and their complex relationship is one of the main themes of this paper. We make

no claim that price were exogenous in such regressions. However, is it noteworthy

that in every speci�cation of the regressions, our main explanatory variable, housing

stock, is signi�cant and has a negative sign. Table 5 shows some of the speci�cations

and results.

Table 5: Regresion results

Dependent variable ∆THousing ∆THousing ∆TRelative ∆TRelative

Housing stock −5.12× 10−7∗∗∗ −4.32×−7∗∗∗ −1.19× 10−5∗∗∗ −8.97× 10−6∗∗∗

Region dummies Yes Yes Yes Yes
Distance to nearest Yes Yes Yes Yes
centre of a micro-region
Di�erence in average No Yes No Yes
price
Number of observations 3140 2285 2987 2283
R-squared 10.97% 15.51% 11.01% 14.71%

Signi�cance levels: *: 10%, **: 5%, ***: 1%

The crisis, essentially a demand-side shock, implies that some adjustments in

price and quantity must take place. If the crisis a�ected each settlement in the same

way (empirically, of course, this is not so), it would make sense that if adjustment

happens to a lesser extent in quantity (that is, in smaller settlements), it could

happen more in price.

According to our data, however, there is no robust relationship between set-

tlement size and price changes. Price adjustments, it appears, di�er strongly by
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location, but in contrast to transaction volumes, not by settlement size. Table 6

shows the correlation coe�cient between the number of dwellings and the relative

change in average price in the settlement between 2009-2011 and 2007-2008.

Table 6: Correlation coe�cient
Correlation coe�cient Settlement size (number of dwellings)

Di�erence in average price -0.0015

Measuring change in price and creating price indices is of course a complex issue

in itself, especially when there are is not a su�cient number of transactions in order

to reach reliable estimates. Several methods exits, but this is not the topic of this

paper. The numbers we use below are "raw" price di�erences, which implies they

are susceptible to composition bias, that is, that the composition (in terms of size,

location and type, for example) of dwellings traded has changed in the wake of the

outbreak of the crisis.

The basic statistics shown above served as inspiration for the theoretical part of

this paper.

3 Optimal stopping: a possible modelling ap-

proach

3.1 The house-selling problem

The basic problem is the following. The owner of a house wishes to sell his property.

O�ers are made to him, and following each o�er, the owner decides whether to accept

(1) or reject (0) the o�er. This decision is �nal, that is, if an o�er has been rejected,

then it can never be recalled. The distribution of the o�ers is known to the seller. In

our case, this distribution will be a uniform distribution with a given minimum (a)
and maximum (b). There is, however, a cost associated with waiting for a further

o�er. This cost will be expressed through a discount factor. Theoretically, the seller

may wait forever - there are an in�nite number of periods. However, unless he sells,

the house is worth nothing.

Solving the house-selling problem entails �nding the owner's optimal stopping

rule. Speci�cally, we will calculate the owner's reservation price (the smallest o�er

that he will accept) and the expected time of his decision to accept (how many peri-

ods he waits, in expected value, before receiving an o�er which reaches his reservation

price).

The size of settlements enters into picture in the form of the frequency of o�ers:

in smaller settlements, o�er arrive less frequently than in larger settlements. The

fact that o�ers arrive at di�erent frequencies for di�erent settlements means that

we must be very explicit about what we mean by a "time period". Consider the

following de�nition: a period is de�ned from the point of view of the seller. For each

seller, an o�er arrives each period. If o�ers arrive once a year, then the time period

for the given seller is one year, if they arrive monthly, then a period is one month

long.
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3.2 Deriving the reservation price

First, we will solve for the reservation price. Price will be denoted by P , the reser-
vation price by P ∗. There is also a discount factor. Traditionally, a yearly discount

factor is used in the form 1/(1 + r), and this is what we will use here. This entails

making the implicit assumption that the period for this particular seller is one year.

For the sake of simplicity, for now we can make this assumption, but it is by no

means necessary. In, theory, r could be de�ned to mean a discount rate for any

length of time.

Analytically, the solution looks like this. The Bellman equation of the problem

is the following:

V (P ) = max
(0,1)

[
0 +

1

1 + r
EV (P ′|P ), P

]
(3)

This equation de�nes P ∗, the reservation price. We can �nd P ∗ from the following

equation:

1

1 + r
EV (P ′|P ∗) = P ∗ (4)

Since we have assumed that the o�er are drawn from a uniform distribution with

parameters (a, b), EV (P ′|P ∗) can be expressed in the following way:

(1 + r)P ∗ = EV (P ′|P∗) = P ∗
P ∗ − a
b− a

+
b− P ∗

b− a
P ∗ + b

2
(5)

This leads to the following quadratic equation for P ∗:

P ∗2 − 2((1 + r)b− ra)P ∗ + b2 = 0 (6)

The solutions are:

P ∗1,2 = ((1 + r)b− ra)± (((1 + r)b− ra)2 − b2)
1
2 (7)

One of these solutions will fall outside the [a, b] interval, but the other, the

reservation price we seek, will fall within it. To show how this works, let us look

at a few numerical examples. The simplest case is, when in a uniform distribution,

a = 0 and b = 1. Further, we will make the assumption that r = 0.1, that is, 10%.
Then the solutions are the following:

P ∗1 = 1.56 (8)

P ∗2 = 0.64 (9)

Of these, P ∗2 is relevant. If we shift b, the maximum upward to 2, leaving all else

unchanged, the solutions are:

P ∗1 = 3.12 (10)

P ∗2 = 1.28 (11)

Of these, P ∗2 is possible. It is, in fact, exactly twice the result we got previously,

where b = 1. Equation 7 explains this: the results react linearly to changes in b, as

long as a = 0. Now let us shift the distribution to o�ers between a = 1 and b = 2,
that is, the spread is once again one, and r is unchanged at 0.1. The solutions are
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the following:

P ∗1 = 2.74 (12)

P ∗2 = 1.46 (13)

Of these, P ∗1 is possible. Once both a and b are larger than 0, results do not react
in a linear way to changes in the parameters. Even without looking at Equation 7

the reason is intuitively clear, and lies in the existence of a discount factor. If r is
the same, but the minimum and maximum price shift upward, there is more to lose

by waiting another period. It is interesting to note that the result is smaller than

the simple expected value of the o�er.

The analytical calculations presented here can be con�rmed by simple simula-

tions.

As discussed above, these results do not rely on periods being one year long.

The important element is that the discount factor relate to the period at hand. If

the yearly discount rate is r and the period is k years long, then the appropriate

discount rate is (1 + r)k − 1. This means, for example, that the monthly discount

rate (where k = 1/12) is (1 + r)1/12− 1. The following equation shows the solutions

in this form:

P ∗1,2 = ((1 + r)kb− ((1 + r)k − 1)a)± (((1 + r)kb− ((1 + r)k − 1)a)− b2)
1
2 (14)

3.3 Deriving the expected time of stopping

The seller accepts the o�er, ie. stops, when the o�er reaches his reservation price.

Therefore, the probability that he stops in the �rst period is simply

b− P ∗

b− a
(15)

The probability that he stops in the second period is the product of two proba-

bilities: the probability that he did not stop in the �rst period, and the probability

that he will stop in the second:

P ∗ − a
b− a

b− P ∗

b− a
(16)

For the next periods, the situation is similar. The owner stops in the nth period,

for example, with the following probability.(
P ∗ − a
b− a

)n−1 b− P ∗

b− a
(17)

It is simple to verify that the sum of the probabilities equals 1:
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b− P ∗

b− a

∞∑
i=1

1 +
P ∗ − a
b− a

+

(
P ∗ − a
b− a

)2

+ ... = (18)

=
b− P ∗

b− a
1

1− P ∗−a
b−a

= (19)

=
b− P ∗

b− a
b− a
b− P ∗

= (20)

= 1 (21)

The expected period of stopping (denoted by T ) can then be calculated from the

formula for expected value.

E(T ) =
b− P ∗

b− a
+ 2

(
P ∗ − a
b− a

)
b− P ∗

b− a
+ ...+ n

(
P ∗ − a
b− a

)n−1 b− P ∗

b− a
+ ... = (22)

=
b− P ∗

b− a
∗ S, (23)

where S is de�ned as

S = 1 + 2

(
P ∗ − a
b− a

)
+ ...+ n

(
P ∗ − a
b− a

)n−1
+ ... (24)

To gain the simple solution to E(T ), we multiply S by (P ∗ − a)/(b− a):

S

(
P ∗ − a
b− a

)
=

(
P ∗ − a
b− a

)
+ 2

(
P ∗ − a
b− a

)2

+ ...+ n

(
P ∗ − a
b− a

)n

+ ..., (25)

and then subtracting Equation 25 from 24 results in:

S − S
(
P ∗ − a
b− a

)
= 1 +

(
P ∗ − a
b− a

)
+ ...+

(
P ∗ − a
b− a

)n−1
+ ..., (26)

which simpli�es to

S

(
1− P ∗ − a

b− a

)
=

1

1− P ∗−a
b−a

. (27)

This can also be written as

S

(
b− P ∗

b− a

)
=

b− a
b− P ∗

. (28)

Therefore, S can be expressed as

S =

(
b− a
b− P ∗

)2

. (29)

This means that the expected period of stopping is

E(T ) =
b− P ∗

b− a
∗ S =

b− a
b− P ∗

. (30)

As expected, if the distribution is �xed, E(T ) depends only on the reservation

price P ∗, as de�ned in Equations 7 and 14. P ∗ in turn depends on the discount rate.
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Thus, a, b, r and k (all exogenous variables) de�ne E(T ) and P ∗ (our endogenous
variables).

3.4 Transaction volumes

Up until now, we have focused on the case of one seller. We now consider the case of

settlements, where multiple sellers reside. As observed above, we identify settlement

size as the frequency with which o�ers are made on a speci�c house. The larger the

settlement, the more frequent the o�ers are. For the sake of simplicity, we assume

that within a settlement, the frequency of o�ers received by sellers is identical.

A further assumption we make is that the number of houses for sale at any

given time in a settlement is �xed. This implies that the number of transactions

in any period is also �xed. E�ectively, this means that if a house is sold, another

one appears immediately on the market - altogether N houses per period. This

assumption, while stringent, is not without merit. We are basically assuming that

adjustment due to, for example, the crisis, does not a�ect the supply of houses for

sale, but instead a�ects the frequency of o�ers (meaning that a period would become

longer or shorter).

Under these assumptions, the long run equilibrium in the market can be expressed

in the following way:

N ∗ πout1 +N ∗ πout2 +N ∗ πout3 + ... = N, (31)

where N is the number of houses sold in equilibrium in a given period, and πoutx
is the probability that a house is sold from the "generation" that entered the market

x periods ago. We can also calculate the number of houses for sale in a given period,

which equals:

N +N ∗ πin1 +N ∗ πin2 +N ∗ πin3 + ..., (32)

where πinx is the probability that a seller has refused x o�ers on the market.

This can be further expressed as

N (πin1 + πin2 + πin3 + ...) = (33)

= N

(
P ∗ − a
b− a

+

(
P ∗ − a
b− a

)2

+

(
P ∗ − a
b− a

)3

+ ...

)
= (34)

= N

(
1

1− P ∗−a
b−a

)
= (35)

= N
b− a
b− P ∗

(36)

To sum up, this means that N transactions takes place out of a for sale housing

stock of N b−a
b−P ∗ houses each period, and settlements di�er in how long that period

actually is. The fraction of houses traded in a period (which we wll denote by A) is
therefore

A =
N

N b−a
b−P ∗

=
b− P ∗

b− a
. (37)

This is actually an acceptance rate: in a period, everyone receives an o�er, and
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the fraction of them shown in Equation 37 accept. As a numerical example, the

convex curve in Figure 3 shows this acceptance rate for various o�er frequencies, for

the case where the yearly discount rate r is 3%, and b = 2a.
To understand the concave curve in Figure 3, we return to the notion of several

settlements. We have introduced the idea of several settlements, but until now

have always focused on one settlement only, with its own individual period length.

However, if we wish to compare settlements with di�erent period lengths, that is,

di�erent frequencies of o�ers arriving, we need to standardise the above result for

the acceptance rate. A logical approach is to standardize to a year. In Section 3.2

we introduced the possibility of using k to signify the length of a period as compared
to one year (at one year, k = 1). If a period is one month (ie. an o�er arrives every

month), then k = 1
12 , and if it is 2 years long, then k = 2. A standardised expression

for the transaction volume over stock for sale in a year (which we will denote by F ),
is then:

F =
b− P ∗

b− a
∗ 1

k
. (38)

Figure 3: Transactions and o�er frequency: a numerical example

The fact that A is increasing in k and F is decreasing in it as seen in Figure

3 is not dependent on the speci�c values chosen for a, b and r. P ∗ increases with
the frequency of o�ers, that is, the earlier the next batch of o�ers is expected in

a settlement, the higher the reservation price. It follows that the probability of

acceptance will be lower. F is decreasing in k: if o�ers arrive less frequently the

fraction of houses traded from among those available, standardised to a year, will

grow smaller.

The formulas above make it possible to simulate our pre-crisis and crisis situation

described in Section 2. We introduce this with a simple, numerical example and will

expand on the topic at a later date. Imagine that pre-crisis in a "large" settlement,

o�ers are made every six months (k = 1
2), whereas in a "small" settlement, o�ers

arrive only once every year (k = 1). However, due to the crisis, the time period

lengthens by one month in each case. Assuming, as in Figure 3 that r = 3% and

b = 2a, this means that F decreases by 7.82% for the large settlement but only by

4.21% for the small settlement.
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4 Conclusions and further work

In this paper, we analysed one slice of the 2008 economic crisis in the Hungarian

residential real estate market. We showed that less frequent o�ers can qualitatively

explain part of the observed phenomena. The decreasing volume of transactions and

the fall in transaction prices were explained in an optimal stopping framework, where

less frequent o�ers force sellers to decrease their reservation price. Our empirical data

revealed the connection between settlement size and transaction volumes. Post-

crisis adjustment in transaction volumes is di�erent in smaller settlements than in

larger ones: there appears to be a smaller relative decrease in transaction volumes

in smaller settlements. The optimal stopping framework could also explain this

surprising phenomenon.

This work is preliminary and incomplete. Further work will give a detailed

description of housing price behaviour according to settlement size, and quantitative

analysis is also needed for the identi�cation of the size of the shock, speci�cally,

income change in settlements. In relation to the model, further work will analyse

the results in a more detailed fashion, and attempt to calibrate the model using

plausible empirical data.

This is a work in progress, please do not quote without authors' consent.
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