Game Theory and Real Options: An alternative to the replicating portfolio

ERES Conference Eidhovenn, 17th June 2011

t.gabrieli@reading.ac.uk Game Theory and Real Options

🕮 HENLEY

1 Motivation

- 2 Case Study
 - NPV valuation
 - Real Option valuation and related problems
- 3 Competition and Game Theory

HENLEY

< ∃ →

A D

The problem

- This paper contributes to a novel literature which joins Real Option Theory and Game Theory
- Literature on Real Estate:
 - Only RO: Titman (1985), Williams (1993), Grenadier (1995) and many others
 - RO-GT: Smit and Ankum (1993), Grenadier (1996) and few others
 - Constant BIG PROBLEM: short sales/replicable portfolio
- We focus on Multiple optimal investment decisions
- Offer a first solution to the big problem

HENLEY

- 4 回 ト 4 ヨト 4 ヨト

NPV valuation Real Option valuation and related problems

< ロ > < 同 > < 回 > < 回 >

HENLEY

Case Study

- The site was acquired at the price of $\pounds 12.78m$
- The difference between the annual cost of £150k to keep the strategic option open, and the annual income generated by a car park managed on the site is marginal
 - We assume that there is no either cost or income in deferment other than financial costs related to discounting (i.e. the dividend is equal to zero)
- The local authority wishes to see the site completely developed and has already granted planning permissions for the actual development to be started within the next 5 years. Whenever the investor wishes to abandon the scheme within the next 5 years, she has to sell it back to the local authority at a fixed price of £8m

NPV valuation Real Option valuation and related problems

NPV valuation

Month	0	3	6	9	12	15	18
Time Index (t)	0	1	2	3	4	5	6
Property Sale	12	120	-	2	2	12	1
Land Acquisition	-12,78			-	-	1.0	-
Construction Costs	-0.59	-1.79	-2.00	-2.07	-2.89	-5.09	-6.06
Site Enabling	-0.13	-0.05		=	-	1-1	-
Prof Fees	-0.34	-0.22	-0.24	-0.25	-0.35	-0.61	-0.73
Other Fees	-0.51	-	-	-	-0.05	-	
FCFt	-14.34	-2.05	-2.24	-2.32	-3.29	-5.71	-6.79
Month	21	24	27	30	33	36	39
Time Index (t)	7	8	9	10	11	12	13
Property Sale	-	-	-	-	-	-	105.76
Land Acquisition	-	-	-	-	-	-	-
Construction Costs	-8.44	-10.06	-7.21	-5.75	-3.80	-1.10	-
Site Enabling	-	-	-	-	-	-	-
Prof Fees	-1.01	-1.21	-0.87	-0.69	-0.46	-0.13	-
Other Fees	-	-0.37	-	-	-	-0.32	-0.84
FCF,	-9.45	-11.63	-8.08	-6.44	-4.25	-1.55	104.92
FCF _t	-9.45	-11.63	-8.08	-6.44	-4.25	-1.55	104.9
Annual WACC (k)	9.00%]	NPVp		13.20		
Quaterly WACC (k_Q)	2.18%		NPVcp		<u>82 98</u>		
		1	PV (selling price)		79.93	1	
			PV (construction phaze)		56.95	1	

э

t.gabrieli@reading.ac.uk

Game Theory and Real Options

<ロ> <同> <同> < 回> < 回>

NPV valuation Real Option valuation and related problems

HENLEY

< ロ > < 同 > < 回 > < 回 >

NPV reconstruction

• Upward jump $\equiv u = \exp^{\sigma \sqrt{\Delta t}}$

• Downward jump
$$\equiv d = \exp^{-\sigma \sqrt{\Delta t}}$$

NPV valuation Real Option valuation and related problems

Deferral Option Value (incl. NPV)

• Option value $\equiv C_t = \exp^{-r\Delta t} (q \max[V_u, C_{t+\Delta t, u}] + (1-q) \max[V_d, C_{t+\Delta t, d}])$ • EMM $q = \frac{\exp^{rF * \Delta t} - d}{t \exp^{rF * \Delta t} - d}$. Which conficating pottfolio $2^{++\Delta t} + 2^{++\Delta t} = 2^{++\Delta t}$

NPV valuation Real Option valuation and related problems

HENLEY

∃ →

Decision Tree Analysis

• Proposed solution by Boris, JACF 2005

• EMM
$$q = \frac{\exp^{r_W * \Delta t} - d}{u - d}$$

NPV valuation Real Option valuation and related problems

< 1 →

🕮 HENLEY

A problem of arbitrage (DTA)

- Problem: Risk-adjusted discount rates are constant
- Arbitrage: Is not risk changing along the tree??

NPV valuation Real Option valuation and related problems

< □ > < 同 >

HENLEY

A problem of arbitrage (back to ROA)

- Risk-adjusted discount rates are <u>not</u> constant
- No Arbitrage given replicable portfolio

Real Option and Game Theory Analysis

- Cournot Model: $P = a b\overline{Q}$, $Q_L > Q_S > Q_F$
- Two options: (i) Defer and (ii) Decide the Size

• No replicable portfolio assumed, EMM $q = rac{\exp^{rW^{*\Delta t}} - d}{u - d}$

• • • • • • • •

HENLEY

Obtained Decision Tree and Valuation

- Which *number* when multiple equilibria? Gabrieli and Marcato, 2010
- No replicable portfolio assumed, what about arbitrage?

Obtained Decision Tree and Valuation (2)

- Risk-adjusted discount factor varies
- Arbitrage opportunities <u>not</u> based on replicable portfolio have been excluded

The impact of competition

	b=0.1	b=0.3	b=0.5
DEFER/NPV	20 %	24 %	10 %

< 17 ▶

HENLEY

.⊒ →

The impact of equilibrium selection rules

	Optimistic	Average	Pessimistic
DEFER/NPV	11.5 %	9.2 %	8.56 %

____ ▶

HENLEY

Conclusion

Contribution

- Comparison of various approaches
- Risk-varying discount rates
- No evident arbitrage opportunities
- Questions ? Suggestions ?

A ►

- (E

HENLEY