

International Real Estate Business School Universität Regensburg

Optimizing the Shopping Center Mix: A GIS based Analysis

Jens Hirsch / Matthias Segerer / Kurt Klein

International Real Estate Business School (IREBS), University of Regensburg

'Ironically, real estate as a discipline espouses the supremacy of location while employing economic tools designed for a spaceless world.'

Source: Dubin, Pace and Thibodeau (1999)

- Shopping centers 'suggest' the GIS-use due to monitoring customers' behavior
- two of the main problems of Shopping Center management: The optimization of the tenant mix at all and the arrangement of shops by a given optimal tenant mix

'to solve the problem of the ideal tenant placement within the shopping centers by

using GIS analysis'

1 Literature Review

2 Research Design and Results

3 Discussion

4 Conclusions

Category Concentration (CARTER/HALOUPEK 2002; YUO 2010)

- Non-anchor stores of the same retail category tend to be dispersed
 - \Rightarrow GIS can identify a concentration of retail categories within the shopping center

Pass Ratio (BROWN 1992, CARTER/HALOUPEK 2000)

- The pass ratio declines from the center of a shopping center
 - \Rightarrow GIS can identify 'dead spots' within the shopping center

Coupling Potential (BROWN 1992, YUO 2004)

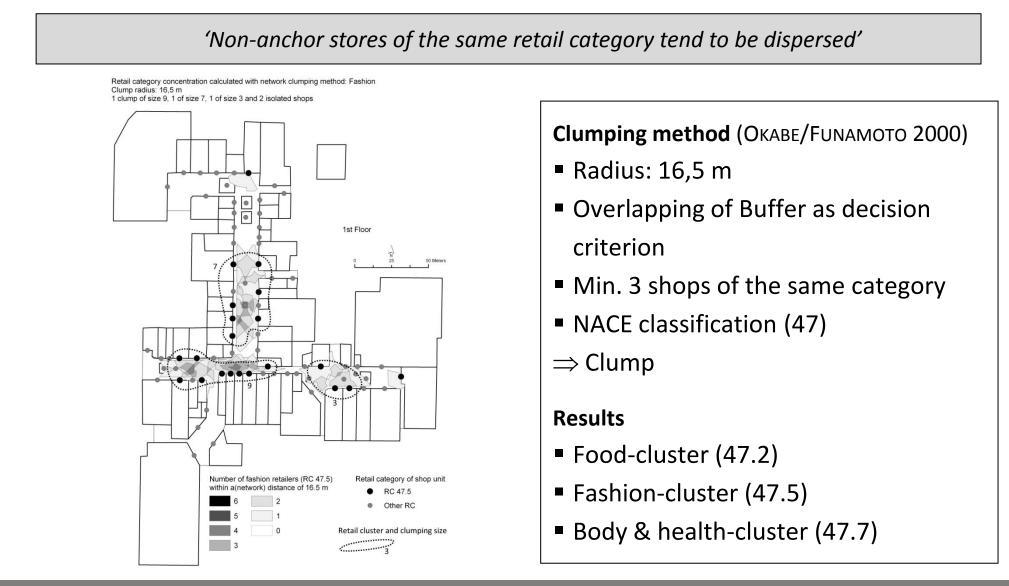
- Shops of the same retail category have a higher coupling potential than those of different
- Proximity of shops suggests a higher coupling potential

 \Rightarrow GIS can identify coupling potentials within the shopping center

Attribute Data

- German Shopping Center with about 60.000 m² selling space and about 140 shops
- Customer survey: N= 1.163
 - Survey of the coupling potential: Customer had to draw their routes

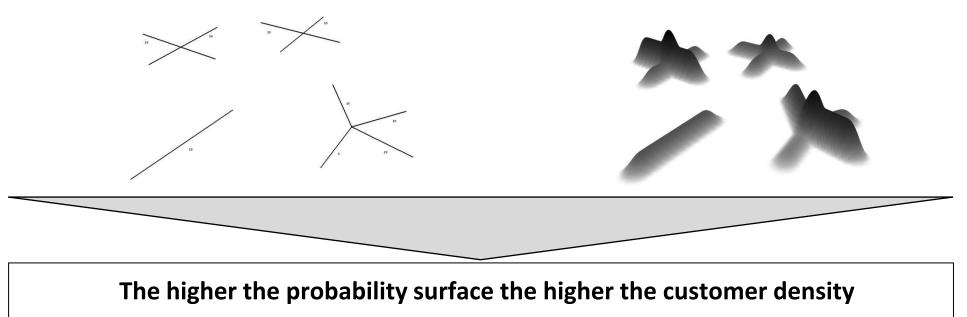
 n x n coupling matrix (customer shopping sequence is not regarded)


Geometric Data

■ Polyline network ⇒ ArcGIS ,Network Dataset'

Integration of costumer survey data into GIS (spatial dabase)

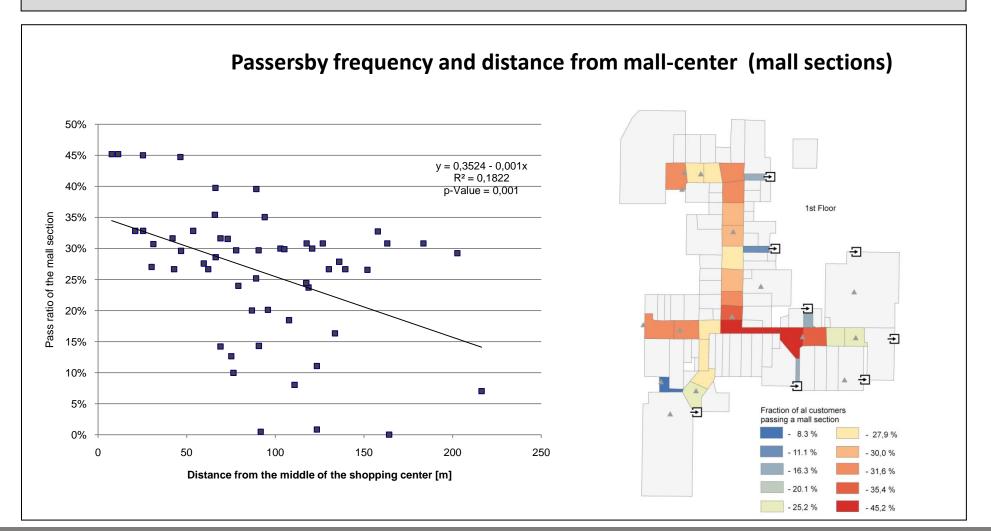
 \Rightarrow A GIS connects non-spatial database information with a matching geometry



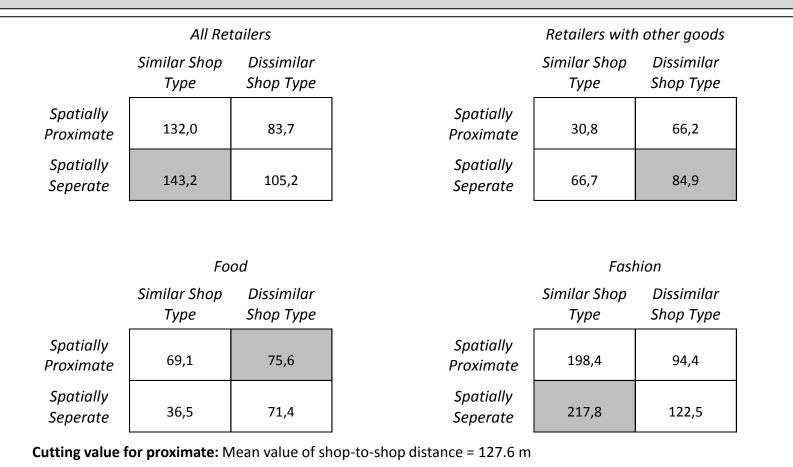
Kernel Density Estimator


- Integration over an area
- Volume above the area represents the probability of customer-presence

 \Rightarrow GIS-enables to detect 'dead spots'



'The pass ratio declines from the center of a shopping center'



'The pass ratio declines from the center of a shopping center'

'Shops of the same retail category have a higher coupling potential than those of different' 'Spatially proximate shops have a higher coupling potential than spatially separate shops'

Value standardization: Mean value of coupling potential = 100

 Non-anchor stores of the same retail category tend to be dispersed ⇒ based on the clumping approach food, fashion and body & health stores tend to be clustered – due to the complex SC floorplan (c.f. Yuo 2010) 	×
 The pass ratio declines from the center of a shopping center ⇒ Regression, kernel density estimation and visual analysis of the pass ratio confirm a decline of the pass ratio from the mall-center 	
 Shops of the same retail category have a higher coupling potential than those of different ⇒ The results of Brown 1992 cannot be confirmed for all retail categories (e.g. food) 	
 Proximity of shops suggests a higher coupling potential ⇒ The results of Brown 1992 can only be for the examined category food 	-

4 Conclusion

Methodic perspective:

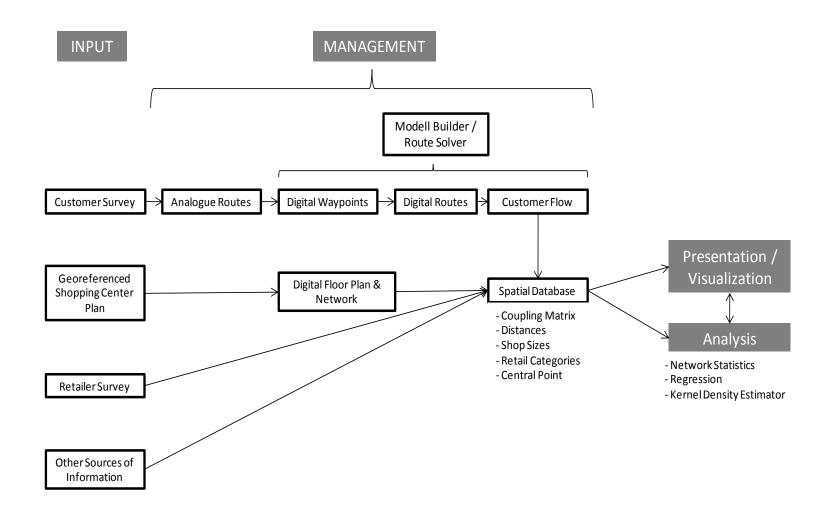
 GIS-use simplifies sophisticated (spatial) SC analyses, like clumping method or kernel density estimator

 \Rightarrow GIS-use is the basic tool to automate the SC research and thus $% A_{\rm SC}$ ideal tenant arrangement

An integration of the dimension ,time' is neccessary

Content perspective:

- Data Survey: Automated survey of passersby frequency
- Sample: Number of assessed Shopping Centers has to be extended
- **Target Variable:** The results have to be confirmed by focusing rental data


GIS can be assessed as a fundamental application to analyze and optimize the shopping center mix within the shopping center research

Contact:

Matthias Segerer International Real Estate Business School (IREBS) University of Regensburg tel: +49 941 943 3616 email: <u>matthias.segerer@irebs.de</u>

Back Up

$$\hat{f}_{K,h}(x) = \frac{1}{nh} \sum_{i=1}^{n} K_i(x)$$

K: Kernel function

n: Sample size

h: Bandwidth

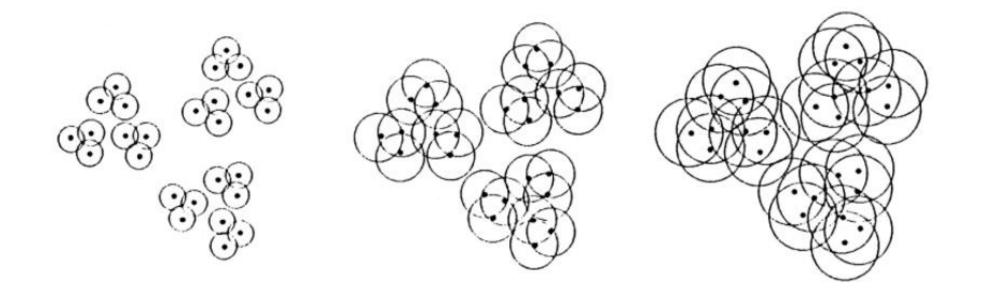
The kernel function is:

$$K_i(x) = 3\pi^{-1} \left(1 - \left(\frac{x - x_i}{h}\right)^2 \right)^2 \qquad \text{if } \left(\frac{x - x_i}{h}\right)^2 < 1$$
$$K_i(x) = 0 \qquad \text{otherwise}$$

x_i: Location of ith observation

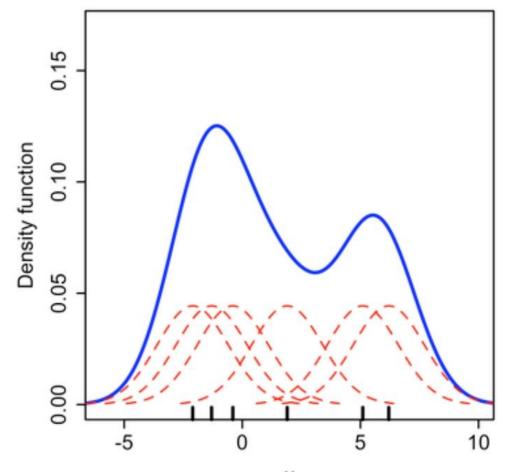
н.

$$\hat{C}_{ij} = \beta_{0j} + \beta_j \cdot C_{i+}$$


 $\hat{C}_{ij} = estimated coupling between shops i and j and i \neq j$

The residuals of this regression provide information about the relative coupling behavior.

$$\varepsilon_{ij} = C_{ij} - \hat{C}_{ij}$$


 $\hat{C}_{ij} = estimated coupling between shops i and j$ $C_{ij} = observed coupling between shops i and j$ $\varepsilon_{ij} = Residual value$ and $i \neq j$ Back Up

Source: Okabe/Funamoto 2000

х

Back Up

rj	i = 2	3	4	5	6	7	8	9	10
0.00	0	0	0	0	0	0	0	0	0
28.02	0	0	0	0	0	0	0	0	0
56.05	2	1	0	0	0	0	0	0	0
84.07	3	1	1	0	0	0	0	0	0
112.10	3	1	1	1	0	0	0	0	0
140.12	3	2	1	1	1	0	0	0	0
168.15	3	2	1	1	1	1	1	0	0
196.17	2	1	1	1	1	1	1	1	0
224.20	2	1	1	1	1	1	1	1	1
252.22	1	1	1	1	1	1	1	1	1
280.24	1	1	0	0	1	1	1	1	1
308.27	1	0	0	0	0	1	1	1	1
336.29	1	0	0	0	0	0	1	1	1
364.32	0	0	0	0	0	0	1	1	1
392.34	0	0	0	0	0	0	0	1	1
≥ 420.37	0	0	0	0	0	0	0	0	1

Table 1. Critical numbers $n_i^*(r_j)$ of clumps with respect to a clump size i = 1, ..., 10 and a clump raidus r_j , j = 1, ..., 16 in a 1000m by 1000m square

Source: Okabe/Funamoto 2000